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Abstract
Cold plasma has been a potent energy-efficient and eco-friendly advanced oxidation technology which has gained attention in
recent decades as a non-thermal approach in diverse forms of applications. This review highlights a comprehensive account of the
implementation of this technology in the field of wastewater treatment to resolve certain issues regarding the degradation of
numerous aqueous pollutants and water-borne pathogenic microorganisms including viruses up to a significant level. The paper
addresses plasma chemistry sources and mechanisms on wastewater treatment and impact on various physical, chemical, and
biological characteristics of treated water. Furthermore, studies have revealed that this emerging technology is effective in
inactivating SARS-CoV-2 or coronavirus, which serves as a transmission channel for this lethal virus in wastewater. Despite
these benefits, the development of cold plasma as a wastewater treatment technique is still hampered by a lack of information like
capital investment, proficient application, liveability, and operating cost, thus necessitating additional research for its booming
commercialization, as this can be an emerging approach to solving water crises andmeeting the demand for fresh or potable water
resources.
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Introduction

In recent decades, the presence of numerous kinds of novel
contaminants has been recognized and their potential environ-
mental ramifications have been drawn attention. New source
contaminants which require new treatment and means of de-
tection are called “emerging.” They are classified based on the

probable and apprehensible risk to the environment and hu-
man health. The inflating anthropogenic activities results in
the continuous release of emerging contaminants into the nat-
ural environment (Fatima and Kumar 2020). They originate
either from industries or may come from agricultural, munic-
ipal (domestic), laboratory, or hospital wastewater, which
damage human, terrestrial and aquatic ecosystems (Shah

Responsible Editor: Philippe Garrigues

* Bhawna Bisht
bhawnabisht494@gmail.com

* Vinod Kumar
kumarvinod.ls@geu.ac.in

1 Department of Biotechnology, Graphic Era (Deemed to be
University), Dehradun 248002, India

2 Department of Life Sciences, Graphic Era (Deemed to be
University), Dehradun 248002, India

3 Department of Post-Harvest Process and Food Engineering, G. B.
Pant University of Agriculture and Technology,
Pantnagar, Uttarakhand 263145, India

4 Peoples’ Friendship University of Russia (RUDN University),
Moscow, Russian Federation 117198

5 Material Science & Nanotechnology Laboratory, Research &
Development, Uttaranchal University,
Dehradun, Uttarakhand 248007, India

6 Department of Food Process Engineering, National Institute of
Technology, Rourkela 76900I, India

7 Department of Food Science and Technology, G. B. Pant University
of Agriculture and Technology, Pantnagar, Uttarakhand 263145,
India

https://doi.org/10.1007/s11356-021-16741-x

/ Published online: 7 October 2021

Environmental Science and Pollution Research (2021) 28:65062–65082

http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-021-16741-x&domain=pdf
http://orcid.org/0000-0003-1808-1980
mailto:bhawnabisht494@gmail.com
mailto:kumarvinod.ls@geu.ac.in


et al. 2020). Accommodating over 44 million people who rely
on surface water, the World Health Organisation's analysis
indicates that 785 million people have insufficient drinking
water supplies. In addition, about two billion people around
the world use a drinking water source contaminated by faecal
matter, which can cause around 485 000 fatalities per year
from diarrhoea (WHO 2019). Moreover, the reports on
SARS-CoV-2 transmission or coronavirus transmission via
wastewater provides an urgency for implementation of an ad-
equate wastewater treatment technology (Rimoldi et al. 2020).
Wastewaters can be regarded as untapped resources and, as
water and energy resources are lacking worldwide, the focus
has switched to remediation of these substances to preserve
earthly life. For this reason, it is crucial that new environmen-
tally friendly and highly efficient wastewater treatment
methods and clean water generation continue to be the main
priority (Oturan and Aaron 2014).

Using sophisticated analytical methods, wastewater is
regarded as an efficient resource for balancing water demand
on a variety of scales, particularly in arid, semi-arid, metro-
politan areas, for drinking water supplies, agriculture, and oth-
er activities. Presently, scientists are pushed forward to estab-
lish several conventional methods like chemical, biological
and physical methods of wastewater treatment. But all these
methods have numerous disadvantages such as non-reactive
chemical residues and inorganic solids (Zeghioud et al. 2020).
In addition, these methods are inefficient against some organic
pollutants that have a very little concentration and are not
biodegradable easily (Iervolino et al. 2019). For instance,
techniques like flocculation, coagulation, ion exchange etc.
exhibit high consumption of energy and reagents, low selec-
tivity with high investment and operational cost (Laureano-
Anzaldo et al. 2020). Moreover, incineration and thermal ox-
idation require high running costs and emit various dioxins
and other pollutants into the environment. Likewise, biologi-
cal methods are also related to several flaws like unrestricted
breakdown of products, low biodegradability of some pollut-
ants such as dyes and also requires maintenance and manage-
ment of microorganisms (Crini and Lichtfouse 2019).

To overcome these limitations of conventional methods,
technologists are more concentrated towards establishment
of modern oxidation processes like cold plasma technology
(Wang et al. 2015; Duan et al. 2015), photo-Fenton techniques
(Ameta and Ameta, 2018), photocatalysis (Vaiano et al. 2017;
Vaiano and Iervolino 2018), ozonation (Saeid et al. 2018),
electrochemical reactions (Garcia-Segura et al. 2018), irradia-
tion technology (Bisht et al. 2021; Pricaz and Uta 2015) or a
combination of these for treating wastewater followed by mi-
crobial inactivation. All such techniques undergo the process
of mineralization, causing decomposition of various organic
pollutants, i.e. changing of compounds to inorganic interme-
diates, water and carbon dioxide. It has been proved that these
methods possess the potential of degrading toxic pollutants

and recalcitrant materials (García et al. 2017). However, a
complete oxidation process is a prior necessity for treatment
of wastewater that cannot be achieved by techniques like
ultrasonication, UV/ozone, photocatalysis etc. (Thirumdas
et al. 2015). As the challenges of wastewater treatment are
expanding, cold plasma technology, therefore provides a more
viable and emerging advanced oxidation processes (AOPs)
option for the solution (Zeghioud et al. 2020).

Cold plasma technology is one type of non-thermal tech-
nique which generates several reactive species like O, OH,
H2O2, H, O3, and HO2which interact with molecules of water,
simultaneously emitting light and producing shockwaves. In
particular, non-thermal plasma offers the advantage of OH
radicals’ generation and added reactive species being indepen-
dent on the inclusion of UV lamps and costly chemicals
(Iervolino et al. 2019). Furthermore, it is simple, eco-friendly,
economical and easily-to-use technology at room temperature
and atmospheric pressure which has the capability of elimi-
nating various toxic components found in wastewater includ-
ing microorganisms (Zeghioud et al. 2020; Li et al. 2020).

Several traditional approaches and advanced oxidation pro-
cesses (AOPs) experimented in the recent past. This review
article is to provide a deep imminent of cold plasma technol-
ogy encompassing removal efficiencies of numerous toxic
aqueous pollutants including microorganisms and viruses for
treating wastewater. This article also emphasizes its effect on
the physical, chemical and biological characteristics of treated
wastewater and long-term application prospects.

Wastewater and its different sources

Water (chemically defined, H2O) is the most liberal and pre-
cious compound covering 70% of the earth’s surface existing
in dynamic equilibrium between gas and liquid phase at aver-
age pressure and temperature. It is an odourless and tasteless
liquid reflecting a slight tint of blue colour at room tempera-
ture and acts as a dissolving medium for many substances,
hence also termed as universal solvent. It is a most commonly
known natural compound enduring in all three states, i.e. sol-
id, liquid, and gas (Hossain 2015).

Nevertheless, from the last few years, problems related to
water pollution or generation of wastewater in surplus
amounts are rising at a very rapid rate due to enhancement
in population, industrial activities and economy (Laureano-
Anzaldo et al. 2020). The term “wastewater” can be defined
as “any water whose biological, physical or chemical compo-
sition has been altered due to direct discharge of various pol-
lutants into water bodies either from domestic or industrial
sources thus making it unfit for portable and other purposes”
(Amoatey and Bani 2011; Laureano-Anzaldo et al. 2020).
Figure 1 shows the various sources responsible for generation
of wastewater.
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Today, release of raw or carelessly treated wastewater is
considered as one of the major reasons behind surface water
contamination (Edokpayi et al. 2020). It has been stated that in
developing countries, nearly 90% of untreated sewage is re-
leased directly into water streams. Furthermore, on an annual
basis, this direct discharge of industrial effluents and raw sew-
age is around 730 million tonnes, worldwide (Connor et al.
2017). According to recent statistics of the Central Pollution
Control Board of India, about 72368 MLD of sewage is gen-
erated in India, annually (National inventory of sewage
treatment plants CPCB 2021). Besides this, the water report
of the United Nations edition in 2018, concluded that by the
year 2050 around 6 billion people will suffer from the problem
of water scarcity (Boretti and Rosa 2019). However, such
inadequate treatment of wastewater can be hazardous for the
environment as well as for human health (Edokpayi et al.
2021).

Rapid industrialization and uncontrolled discharge of
wastewater are causing contaminants to persist and
bioaccumulate in various ecosystems (Nanda and Kumar
2021). Moreover, due to the persistence of current COVID-
19 pandemic, wastewater analysis becomes a crucial step in
order to detect coronavirus transmission in communities, thus
providing caution about the possible outbursts of such a con-
tagious disease (Ali et al. 2021). Recently, various studies
have revealed the detection of SARS-CoV-2 in hospital sew-
age and community wastewater (Lodder and de Roda Husman

2020). The genomic sequence of SARS-CoV-2 is around
96.2% alike to that of “BatCoV RaTG13” bat coronavirus
but its transmission rate in humans is much higher as com-
pared to that of MERS and SARs (Yan et al. 2020). As per the
evidences, around 2–35% of COVID-19 patients suffers from
gastrointestinal illness like vomiting, diarrhoea, and abdomi-
nal pain; however, it is less recurring as compared to respira-
tory illness (Wang et al. 2020a; Yeo et al. 2020) but this has
led to detection of viral RNA in sewage and faecal matter.
Coronavirus may find its way into hospital and domestic
wastewater through various sources like vomit, handwashing,
sputum etc. (Amoah et al. 2020).

Furthermore, it has been stated that around 67% faecal
matter of infected persons tested positive for presence of
coronavirus (Chen et al. 2020). Several studies have also
revealed the shedding of SARS-CoV-2 from urine of in-
fected individuals (Nomoto et al. 2020). However, viral
transmission through wastewater can be a major matter of
concern especially in areas where there is lack of proper
sanitation and water treatment facilities. In underdevel-
oped countries, domestic wastewater is discharged direct-
ly into the environment which ultimately leaches into
groundwater and people residing in peri-urban or rural
areas depend on groundwater sources to satisfy their wa-
ter requirements. Thus, there can be the possibility of
coronavirus transmission through untreated wastewater
(Thakur et al. 2021).

Fig. 1 Different sources
responsible for generation of
wastewater
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Having regard to the concerns referred to above,
implementing suitable wastewater treatment technology is
therefore a priority in order to protect our environment and
human health, which can be effectively solved with the non-
thermal Cold Plasma Technology.

Prologue to plasma technology

The phrase “plasma” was introduced by Irving Langmuir in
1928 to highlight a portion, comprising balanced charges of
species like electrons and ions (Li et al. 2020). Next to solids,
liquids and gases, plasma is considered as the fourth state of
matter (Thirumdas et al. 2015) occurring either in ground state
or in its excited state possessing a net neutral charge (Mir et al.
2020). To put it another way, it is a fully or partially ionized
gas containing neutrals, ions, free radicals and electrons which
can be produced by a variety of electrical discharges (Mishra
et al. 2016). Nowadays, plasma technology is very well
known for its functionalization and decontamination purposes
in both abiotic and biotic matrices (Ojha et al. 2020). Usually,
it can be classified on the basis of several parameters out of
which temperature is the major one, giving it quantitative
description. On the basis of temperature, it can be categorized
as Hot plasma also known as “Thermal plasma” while Cold
plasma also known as “Non-thermal plasma” (Reynamartínez
et al. 2018; Li et al. 2020).

Thermal or hot plasma is a type of plasma in which the
temperature of heavier species like radicals, ions, molecules
and atoms is similar to that of electrons, demonstrating that
nearly all of its particles are in thermal equilibrium
(Whitehead 2016). It mainly includes radio frequency, torches
and arc discharges. This plasma is widely used for processing
and treating solid waste including the most recalcitrant waste
through plasma gasification or thermal incineration process
because in this plasma a high heat flux can be generated by
initiating a high amount of power up to 50 MW and extreme
pressure levels (≥ 105 Pa) for its propagation (Ekezie et al.
2017).

On the other hand, non-thermal or cold plasma is another
type in which the electrons have much higher temperature,
compared to that of heavier species because of difference in
their mass thus also referred to as non-equilibrium plasma.
Furthermore, on the passage of energy, the gas dissociates into
various reactive species followed by ionization, de-excitation
or excitation reactions (Ekezie et al. 2017). Earlier, discharges
of cold plasma were produced by alternating (AC) or pulsed
and stationary (DC) electrical fields and for producing such
discharges different types of electrical power supplies like
capacitive coupled plasma (CCP), inductively coupled plasma
(ICP) or pulsed (DC) plasma were employed (Zainal et al.
2015). But nowadays, atmospheric pressure plasma jets dis-
charge, corona discharge, radio frequency, microwave-
induced plasma, gliding arc discharge, dielectric barrier

discharge etc. are widely implemented for producing cold
plasma discharges (Guo et al. 2015). These discharges possess
numerous advantages making their application commercial.
Some of those advantages are listed below in Fig. 2. This
non-thermal cold plasma is energy efficient and provides high
selectivity in resulting chemical reactions because it does not
reveal a localized thermodynamic equilibrium. Therefore,
considering all these reasons, application of cold plasma tech-
nology is increasing at a very rapid rate and attracting the
interest of technologists for wastewater treatment purposes
(Jiang et al. 2014).

Different methods of cold plasma discharges used in
wastewater treatment

Dielectric barrier discharge (DBD) is regarded as the “work-
horse” of plasma technology (Ojha et al. 2020) as shown in
Fig. 3(a). It consists of two flat metal electrodes enclosed
tightly in a target chamber out of which, one is usually cov-
ered with a dielectric material like mica, glass, ceramics, alu-
mina, quartz etc. generating several micro-discharges due to
which there are less chances of electrode etching and spark
formation (Ozen and Singh 2020). Between both the elec-
trodes there is movement of any neutral gas or its mixture
which undergoes ionization for producing plasma products
(Shimizu et al. 2018). But for wastewater treatment purposes,
ozone gas along-with air feed or oxygen is used widely
(Tichonovas et al. 2013). Furthermore, it is also suitable for
decontamination purposes as it offers stability and uniformity
in process and avoids the chances of any arc movement from
the processing environment (Yong et al. 2015). Additionally,
atmospheric pressure plasma jets depicted in Fig. 3(b) is an-
other type of cold plasma discharge consisting of two concen-
tric electrodes in which the outer one is grounded and inner
one is coupled with an external power supply like radio-
frequency creating radio-frequency energy. On passage of an
electric current, it interacts with the gas like oxygen, helium or
a mixture of gas causing its ionization (Zhang 2015). Such
gases are also helpful in pushing the stream containing active
species out of the electrodes through blowing the active por-
tion of the jet (Scholtz et al. 2015). Furthermore, atmospheric
pressure plasma jets are simple in construction, commercially
available and easy to operate (Ozen and Singh 2020). In this,
discharge takes place in a dielectric tube and the electrical
energy generally ranges from few kHz to 27 MHz and power
ranges from a few W up to kW (Ehlbeck et al. 2010).
Figure 3(c) shows the gliding arc discharge of non-thermal
plasma which is widely used for wastewater remediation pur-
poses. As compared to other types of discharges, it offers high
operating pressure, power and plasma density (Krishna et al.
2016). Moreover, GAD possesses the characteristics of both
thermal and non-thermal plasma. It consists of impedance,
nozzle, “knife-edge” diverging electrodes betweenwhich high
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voltage is introduced, insulating cover and high-power supply
and when electric field is approximately 3 kV mm-1, the arc
discharge generates. Hence, due to high velocity, the arc
length increases (thermal plasma) and temperature of ionized
gas decreases, becoming non-thermal plasma (Kim et al.
2014). At atmospheric pressure, this technology is very well
known for degradation of various organic components present
in water (Tiya-Djowe et al. 2015; Slamani et al. 2018). Pulsed
corona discharge is a fourth type non-thermal plasma dis-
charge that is regarded as best for wastewater treatment as
shown in Fig. 3(d). Usually, these reactors are in stainless steel
and are constructed as a needle, a multiple needle plate and
wire. Generally, a high voltage is connected to the pin elec-
trode and the plate electrode is connected to the ground. In the
case of multi-pin electrodes, pins were distributed uniformly
with a circular shape (Taghvaei and Rahimpour 2016). The
reactor is energized by high voltage pulses with short rise time
and durations and there is an initiation and propagation of
discharge towards grounded plates due to its high curvature
characteristic (Ajo et al. 2018). A water solution in plasma in
the gas phase would obtain the maximum level of decontam-
ination efficiency.

Many studies on direct current glow plasma discharge in
and in contact with liquids published within the last couple of
years due to the rising interest in waste water treatment

applications. It is also termed as electrode effect in some ref-
erences depending on which electrode glow discharge takes
place. According to the positions of both electrodes, it is clas-
sified into two types, i.e. submerged glow discharge electrol-
ysis (SGDE) and contact glow discharge reactor (CGDE).
Among these, contact glow discharge reactor has been
regarded as an efficient reactor for water purification
purposes.

In advanced oxidation process, it is an unconventional
method in which electrochemical reactions occurs in the
course of an electronic conductor, i.e. electrode and neighbor-
ing ionic conductor surface, i.e. electrolyte. In this type of
discharge, cathode is immersed in water and isolated from
anode through a porous glass. A constant direct current volt-
age is applied to thin wire anode communicating with surface
of electrolyte. Direct current glow discharge is initiated in a
thin sheath film of vapor covering the electrode surface, where
vapor phase water molecules are electrolytically dissociated at
a high temperature into hydroxyl radical and hydrogen radical
(Jiang et al. 2014). These radicals can diffuse in the surround-
ing liquid and be used for the removal of dissolved com-
pounds. Especially, OH are able to oxidize any organic mol-
ecule into “harmless” carbon dioxide in a non-selective way.
This makes CGDE as a commercially viable tool particularly
for decontamination and sterilization of wastewater treatment.

Fig. 2 Advantages of cold plasma discharge types used in wastewater treatment
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Hence, such type of electrical plasma discharges been studied
extensively as effective method for the removal of hazardous
chemicals in aqueous solution.

Cold plasma technology working mechanism

The evolution of an advanced oxidation process for wastewa-
ter treatment is a major challenge because for the decontami-
nation of wastewater complete oxidation is needed which can-
not be fulfilled by methods like ultrasonication, UV/ozone,
photocatalysis etc. (Reddy and Subrahmanyam 2012).
Therefore, from the last few years, implementation of non-
thermal plasma for wastewater and environmental remedia-
tion purposes has gained considerable relevance because of
its potential for destroying hazardous organic components in
both wastewater and in raw water. The efficiency of this meth-
od has been examined for a range of reasons such as decon-
tamination of numerous harmful elements contained in water
such as medicinal products, organic dyes, pesticides, herbi-
cides, biomolecules, phenolic compounds, and antibiotic sub-
stances. It also works to decrease TOC and COD in treated
wastewater by enhancing the biodegradability and eradication
of different pathogens including bacteria, fungi, and viruses
(Zeghioud et al. 2020). Various studies have revealed the

antimicrobial efficacy of cold plasma technology (Lunov
et al. 2016; Lu et al. 2014; Kim et al. 2014). Furthermore, it
is also an emerging technique in the biomedical sector for
treating wastewater and inactivating microbes (Patange et al.
2018). Hence, a detailed general mechanism of this novel
technology for treating wastewater and inactivating pathogen-
ic micro-organism is discussed below.

a. General mechanism for treating wastewater

Discharge plasma is a very well-known process for total
mineralization and elimination of occurring pathogens in
wastewater (Abdul-Majeed et al. 2015). The main reason be-
hind the fact is that due to physico-chemical impact of plasma
there is generation of oxidizing species: radicals (O-, OH-, H-)
that might diffuse into shockwave, UV light, liquids, and mol-
ecules (O3, H2O2) and electrohydraulic cavitation may de-
grade the pollutants present in wastewater or decomposes
the pollutants into another compound. In case of a liquid and
gas, plasma can be generated either in gas above the liquid or
in liquid directly and if there are hybrid reactors, it can be
generated in both gas and liquid. But the most effective meth-
od that requires less power consumption for treatment is the
diffusion of gas phase into liquid phase (Thirumdas et al.

Fig. 3 Different methods of cold plasma discharges used in wastewater treatment a) dielectric barrier discharge; b) plasma jet; c) gliding arc discharge; d)
pulsed corona discharge. (Adopted from Ghezzar et al. 2009; Hoffmann et al. 2013; Taghvaei and Rahimpour 2016)
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2015). Figure 4 depicts the working mechanism of plasma
discharge for treating wastewater.

b. General mechanism for inactivation of bacteria and fungi

The antimicrobial efficiency of discharge plasma is also
due to similar reasons as discussed above, i.e. generation of
reactive oxygen species and is considered as the primary
mechanism evolved in its inactivation. Studies have revealed
that genetic material, proteins and cell envelopes of pathogen-
ic microorganisms are target points for plasma resulting in
their inactivation (Sharma et al. 2018). When the microbial
cells are treated with plasma, there is formation of
malondialdehyde which disrupts their genetic material leading
to cell death. Particularly, when produced species interrelate
with water, there is generation of hydroxyl ions which are
most deleterious and reactive to pathogenic cells.
Furthermore, it has been stated that hydroxyl radical is the
main reason behind 90% of DNA destruction along with dam-
aging cell components and cell membrane (Thirumdas et al.
2015). Figure 5 depicts the working mechanism of plasma
discharge for inactivating pathogenic microorganisms (bacte-
ria and fungi). As soon as the electrical discharge reaches
liquid, they generate several physical and chemical effects
which are responsible for detrimental inactivation of patho-
genic microorganisms.

& Initiation of pores in cell membranes as generated reactive
species interact with microbial cell membranes.

& Disruption of cell structure due to shockwaves ranging
between 5 and 20 kBar.

& Destruction of DNA strands when exposed to UV-
radiation ranging between 200 and 400 nm due to muta-
tion (Abdul-Majeed et al. 2015; Bhatnagar 2019).

iii. General mechanism for viral inactivation

Virus is the most abundantly found microorganism which
has a potency to harm all living organisms from humans to
plants, animals and bacteria (Nasir and Caetano-Anollés
2015). They are seen as one of the main sources of various
illness outbreaks, some of which are life-threatening (Filipić
et al. 2020). It can either be transmitted directly from one
infected person to another or indirectly such as surfaces, wa-
ter, air, food, or objects. Amongst all, water is turning as one
of the main routes for transmission of pathogenic viruses (Van
Doremalen et al. 2020; Shrestha et al. 2018). Today, the fore-
most reason behind insufficiency of potable water is the con-
veyance of various waterborne pathogenic viruses.

In addition, the demand for inactivation of the virus was
quite rapid compared to previous ones because of the ongoing
highly contagious COVID-19 pandemic produced by SARS-
CoV -2 or coronavirus as the respiratory virus. Therefore, all
these elements can provide an effective, new and promising
option for inactivating viruses with the purpose of using cold
plasma technology to achieve a better life and stop coronavi-
rus spread. Various studies have also shown how antivirals in
different viruses such as respiratory virus A and B, respiratory

Fig. 4 Working mechanism of cold plasma for treating wastewater
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syncytial virus, etc. are effective for deactivation of several
viruses (Filipić et al. 2020).

Generation of reactive nitrogen species or reactive oxygen
species is considered as the primary mechanism of cold plas-
ma for inactivating viruses. The plasma is aimed at viral cap-
sid, protein and nucleic acid, therefore compromising their
genomic and structural integrity. Due to the effects of reactive
species, there is loss of virus infectivity damaging the binding
of virus with the host cell receptors. In addition, the infectious
property of the virus will be lost in the event of a genetic
material disruption because the replication and translation of
a genome is very crucial. It has been stated that generated
reactive species can damage the outer protein layer also by
penetrating RONS to the genetic material of virus (Filipić
et al. 2020). Figure 6 depicts the working mechanism of plas-
ma discharge for inactivating viruses.

Parameters affecting the efficiency of cold plasma
technology in wastewater treatment

Various studies have reported several factors significantly af-
fect the process efficacy of cold plasma discharge in treatment
of wastewater. These factors include input power, designing
of electrode and reactor systems, pollutant concentration, pH
and temperature of solution, conductivity of water, type and
composition of feed gas used etc. (Zighoud et al. 2020). For

instance, input energy or power plays a very vital role in
effective mineralization and degradation of pollutants as with
an increase in input power, the rate of removal also increases
(Wang et al. 2016). Moreover, the designing of plasma reactor
systems should be such that there can be maximum energy
utilization at a given power input. Generally, the plasma reac-
tors are made up of Perspex or glass like rectangular parallel-
epiped vessels or in the form of reaction column type reactors
that can be employed for batch, continuous or circulating-flow
mode. Similarly, in the case of electrode designing, the main
point to be taken into consideration is high compatibility of
electrode with reactor and wide zone for electrical discharge.
Usually, for plasma generation two asymmetric conductive
mediums possessing high curvature are used as electrodes
(Jiang et al. 2014).

Furthermore, studies have also observed the effect of initial
pollutant concentration on removal efficiency. With an in-
crease in initial concentration of pollutants the reaction rate
also increases till the formation of reactive species sets off as a
restraining step in treatment (Wang et al. 2016). The pH of the
reaction medium also plays a very important role in assess-
ment of plasma discharge potential. A proportional relation-
ship has been revealed between pH and decontamination effi-
cacy of certain aqueous pollutants (Yan et al. 2013; Kim et al.
2013). Similarly, temperature also has a significant effect on
degradation potential of several pollutants present in

Fig. 5 Working mechanism of cold plasma for inactivating pathogenic microorganisms (Adopted from Misra and Jo 2017; Misra et al. 2019)
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wastewater (Jiang et al. 2012). The composition and type of
feed gas used in cold plasma discharge possess a significant
effect on treatment efficiency. Moreover, the electrical con-
ductivity of liquid medium also greatly influences properties
of discharge and ultimately formation of reactive species in
discharge plasma (Zeghioud et al. 2020). A list of factors
affecting process efficiency of cold plasma are mentioned be-
low in Fig. 7.

Implementation of cold plasma technology for
treating wastewater and inactivating pathogenic
microbes.

As compared to other advanced oxidation methods like elec-
trochemical oxidation (Bakheet et al. 2018), photocatalysis
(Zhang et al. 2015), Fenton process (Liu et al. 2018a) etc.

non-thermal plasma technology currently has received great
attention in the field of wastewater treatment along with
inactivating harmful pathogenic microorganisms present in
water (Magureanu et al. 2018; Guo et al. 2018; Patange
et al. 2018) thus making water suitable for potable purposes.
Furthermore, this technology does not demand any precursor
or catalyst like hydrogen peroxide or TiO2 coupling with UV
light for generation of hydroxyl radicals. Hence, considered as
an eco-friendly technique. Moreover, it also remains unaffect-
ed by penetration depth of ultraviolet radiation and turbidity of
wastewater (Schneider et al. 2020).

Nonetheless, several studies have revealed the high effi-
ciency of cold plasma technology in removing harmful toxic
components from wastewater and inactivating pathogenic
microbes. Like, Iervolino et al. (2019) examined the efficiency
of dielectric barrier discharge NTP reactor in removing

Fig. 6 Working mechanism of
cold plasma for inactivating
viruses. (A) Morphologically dif-
ferent viruses treated with CP.
(B)Close-up of CP properties re-
sponsible for virus inactivation.
The most essential moieties in vi-
rus inactivation are reactive oxy-
gen and/or nitrogen species
(RONS), although UV radiation
and charged particles (e.g. ions,
electrons) can also play a role.
Molecules in the ground state are
neutral and do not have any ef-
fects on virus inactivation. CP can
target both viral proteins and
nucleic acids (or even the virus
envelope, when present). (C)
After CP treatment, the virus par-
ticles and nucleic acids are partly
or completely degraded to nonin-
fective particles that cannot cause
harm to their hosts (Adopted from
Filipić et al. 2020)
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various water pollutants like phenol, ceftriaxone, caffeine,
methylene blue and paracetamol. The study revealed that there
was complete mineralization and degradation of ceftriaxone
and methylene blue after treating only for 5 min at 20kV
voltage with application of oxygen as a process gas while
the complete mineralization and degradation time for paracet-
amol and phenol was 15 min and 25 min for caffeine, respec-
tively. Furthermore, it was concluded that dielectric barrier
discharge NTP reactor has a better efficiency in removing
organic water pollutants as compared to other non-thermal
technologies.

Similarly, Krishna et al. (2016) studied the efficacy of glid-
ing arc plasma discharge system for degradation of verapamil
hydrochloride in water. The results revealed that initially, con-
centration of verapamil in water was 5×10-5 M and 5×10-4 M.
However, after treating for about 80mins there was a signifi-
cant reduction in initial concentrations by 97 % and 37 %,
respectively. Wang et al. (2020b) also studied the efficacy of
dielectric barrier discharge plasma in removing tetrabromo
bisphenol A (TBBPA) from wastewater and concluded that
the performance for removal of TBBPA was very rapid and
highly efficient.

Additionally, Slamani et al. (2018) investigated the effi-
ciency of gliding arc plasma discharge in combination with
the Fenton process for degrading paracetamol in aqueous so-
lution. The study revealed that paracetamol was completely
degraded after combined GAS at 10 kV and Fenton treatment.
Furthermore, after a treatment time of 0.5mins, the minerali-
zation content also increased by 58.7 % from 20.1 % and this
increment possessed the same tendency at 30mins and 60mins

treatment time. Similarly, the removal efficacy of total organic
carbon also got enhanced and this reduction was 3 to 4 times
higher as compared to that in single GAD or Fenton treatment.
After 10 days, the highest values of TOC removal were 96.8
%, 92.2 % and 95.1 % while it was 49.6 % after 21 days when
only GAD treatment was applied.

Similarly, Wang et al. (2020c) designed a micro hollow
cathode excited DBD plasma for improving the treatment ef-
ficacy of organic wastewater in which the target organic pol-
lutant was P-chlorophenol. It was observed that after treating
for 30 min, the highest removal of P-chlorophenol and
dichlorination ratio was about 99 %. Hence, the study con-
cluded that micro hollow cathode excited DBD plasma pos-
sesses the efficiency of treating organic wastewater. Likewise,
García et al. (2017) investigated the efficiency of microwave
atmospheric pressure plasma jets forMB-ladenwater in which
argon was applied as a feed gas. The study reported that deg-
radation of methylene dye was greater at low concentration of
dye. Additionally, this degradation rate got further increased
with an increase in the flow rate of argon gas and it was also
found that when multiple plasma applicators were applied
instead of single the degradation efficiency was better as
compared to those in single applicators under the same input
power and total flow.

Similarly, Ekanayake et al. (2021) reviewed the potential of
non-thermal plasma for water purification and desalination
purposes and concluded that this novel technology can be an
effective tool in achieving such goals. It possesses the efficacy
of improving water purification and desalination purposes
making them more effective and energy efficient. In

Fig. 7 Process parameters affecting efficiency of cold plasma in wastewater treatment
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addition, it will minimize discharge of harmful contaminants
into the environment.

Furthermore, Abia et al. (2015) observed the synergistic
effect of gliding arc plasma discharge and biosorption system
for removing glycine and nitrophenol from an aqueous solu-
tion. The study reported that after treating for 1 hour the total
organic carbon concentration was 658 mg/L from 950 mg/L.
Furthermore, on treating for 6 hours this concentration
reached up to 460 mg/L. also, when plasma treatment was
combined with a bio sorbent (Jatropha shell) the concentration
on total organic carbon was significantly reduced to 530 mg/L
and 280 mg/L after 1 and 6 hours of treatment, respectively.
Hence, it was also concluded that the efficiency of plasma
treatment can be improved by incorporation of such modified
horticultural residues. The effect of different cold plasma dis-
charges on pollutants present in wastewater are mentioned in
Table 1.

Moreover, Ott et al. (2021) also demonstrated the potential
of high voltage atmospheric cold plasma for inactivating
spores of Aspergillus flavus. The applied voltage was 70, 80,
and 85 kV for 0, 1, 2, 5, and 10 min, respectively. The study
concluded that after exposure, the fungal spores were signifi-
cantly reduced by 46.85 %, 23.86 %, 13.47 %, and 4.54 %
with 1, 2, 5, and 1 min treatment time. Furthermore, a change
in morphology of fungal spores was also observed after treat-
ment as compared to non-treated spores. There was destruc-
tion of the outer cell wall and treated spores were shrunken
and irregularly shaped and initially, the colour of fungal
culture was yellow to green. But after treatment, a change in
colour to pale yellow or white was observed which got
increased with exposure time. A decrease in density was
also observed in treated spores.

Likewise, Van Nguyen et al. (2020) investigated the effi-
ciency of cold plasma technology (corona discharges) using a
high voltage source (18 kV–29 kHz) for treating groundwater
to be supplied for domestic purposes. The study revealed that
after treatment the E. coli population was less than 3 MPN/
100ml while its initial concentrations were 7.33 and 722.67
MPN/100ml at 2L/min flow rate with 30 min water retention
time after treatment. Additionally, the arsenic and iron content
were also reduced to great extents. However, the efficacy of
cold plasma treatment was not high enough in removing arse-
nic but it got increased in combination with ferric ions. At last,
it was stated that the quality parameters of treated groundwater
met all the requirements of WHO guidelines and Vietnamese
standards.

Similarly, Chandana et al. (2018) studied the efficacy of
non-thermal atmospheric pressure plasma jets for reducing
bacterial load in an aqueous solution and concluded that such
non-thermal plasma technology can be a substitute for steril-
izing thermo-labile and vacuum sensitive living tissues.
Likewise, Kim et al. (2014) investigated the efficiency of
gliding arc discharge plasma for inactivating E. coli in water.

The study concluded that there was significant inactivation (of
around 99.9 % with 5 log reduction) in the population of
E. coli during a storage period of 4 h after being exposed to
plasma treatment. Production of strong anti-microbial proper-
ties by GADwas also reported. A decrease in pH of up to 3.26
was observed in treated water.

Furthermore, Lee et al. (2011) examined the efficiency of
streamer corona discharge process for inactivation of MS2
bacteriophage in water. It was observed that after treatment
the virus got rapidly inactivated (approximately up to 4log
reduction in 5 mins). Hence, the study concluded that streamer
corona discharge process can significantly inactivate MS2
bacteriophage. However, with an increase in charge storage
capacitance and applied voltage the reduction rate of viral
pathogens also increased. The effect of different cold plasma
discharges on pathogenic micro-organisms including viruses
present in wastewater are mentioned in Table 2.

.

Future challenges and scope of cold plasma
technology

Nonetheless, in recent years, there has been a considerable
surge in interest in the use of cold plasma technology for
wastewater treatment. Today, the problem of shortage of po-
table water resources is escalating fast for a variety of reasons,
and it has the potential to become a serious concern in the near
future if the surplus creation of wastewater is not adequately
addressed. Furthermore, SARS-Co-V-2 or coronavirus trans-
mission through wastewater has recently been observed,
which is a significant issue that might lead to a faster spread
of the COVID-19 outbreak.

Cold plasma technology can be seen as a promising ap-
proach for resolving the problems related to wastewater treat-
ment but requires more development and research as there are
various challenges that are yet to be confronted.
Consequently, there is a necessity to further analyze and dis-
cuss the shortcomings of this particular process so that its
utilization can be commercialized.

In particular, the efficiency of plasma depends upon a num-
ber of factors like which type of gas is used, energy input,
properties of liquid, source of excitation etc. For instance, high
consumption of gas is considered as a drawback towards large
scale application of cold plasma technology. Hence, advance-
ment and production of physical effects including reactive
species for decontamination purpose needs to be explored
further so that the treatment process can be optimized hypo-
thetically along with comprehensive explanation of its oxida-
tion mechanism (Ognier et al. 2009; Dojcinovic et al. 2011).

Aside from the aforementioned criteria, the deployment of
cold plasma treatment on a wide scale will also be determined
by capital investment, competent application, liveability, and
process running costs (Zeghioud et al. 2020). Thus, there is a
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significant need for comprehensive research to identify the
capacity of different plasma equipment since the chemistry
of plasma is reliant on its source, producing variance in the
process. As a result, the industries will specifically recognize
an affordable and scalable plasma system (Gavahian et al.
2019).

Furthermore, there is a need for a thorough investigation
into the presence of long-lived oxidants in exposed water, as
well as the type of by-products generated during the oxidation
process, in order to confirm that there will be an adequate and
continuous reduction in overall toxicity after treatment, as the
production of highly toxic by-products is a possibility
(Zeghioud et al. 2020). Additionally, plasma reactors de-
signed to meet the goal of wastewater treatment are extremely
challenging and complicated, necessitating the use of theoret-
ical information in order for plasma reactor scale-up to be
efficient. Precisely, some notable issues that should be taken
under consideration for designing a wastewater treatment sys-
tem are as follows:

a. Characteristics of wastewater and pollutants to be treated.
b. Suitability of plasma reactor and type of discharge used.
c. Biodegradability and toxicity analysis of intermediates

produced by plasma discharge.
d. Cost-effectiveness of the process (Jiang et al. 2014).

As a result, the accuracy of cold plasma technology should
be thoroughly examined for its normal working lifetime, pref-
erable efficient sustainability, and operation safety so that the
process of wastewater treatment can be successfully proposed,
as there are still several obstacles that must be overcome in
order to meet the demand of industries.

Several previous researches have demonstrated the poten-
tial effectiveness of plasma discharge in decontaminating
wastewater by significantly lowering the amount of certain
aqueous pollutants up to a remarkable level. Besides this,
researchers have noticed a consequential reduction in several
water-borne pathogenic microorganisms including viruses
(Wang et al. 2015; Patange et al. 2018; Ma et al. 2020; Guo
et al. 2018). Similarly, Guo et al. (2020) recently demonstrat-
ed substantial inactivation of S protein in plasma activated
water to inhibit coronavirus transmission. However, more
study on the effect of plasma discharge on SARS-Co-V 2 is
required in order to prevent disease transmission.

Looking forward, application of cold plasma in the field of
wastewater treatment might be a viable solution to the afore-
mentioned issues. The scope and existence of cold plasma
alone or in conjunction with other suitable treatment can be
fairly broad for wastewater remediation for future use.
However, additional research is needed to have a deeper
knowledge of its functioning mechanism and good results.
Furthermore, there is a fundamental necessity for resolving
the aforementioned problems and overcoming process

constraints so that the sustainability of technology may be
improved further to be effectively applied on an industrial
scale.

Conclusion

In recent decades, the plasma technology used for raw and
industrial wastewater treatment has been a major focus of
academics and technologists due to significant increase of
aqueous pollutants. Different plasma discharge methods are
provided and also demonstrated general mechanism for
degrading a range of contaminants in wastewater and harmful
microorganisms have been presented in this review. This man-
uscript also presented a holistic overview of the advancement
of direct current glow plasma discharge in waste water treat-
ment, which exhibits distinctive features and widely examined
as an efficient approach for sterilizing and decontamination.
Besides, several parameters including input power, pH of re-
active medium, gas input, temperature and solution conduc-
tivity, plasma reactor and electrodes can influence the perfor-
mance of plasma systems. It has also shown high efficiency in
removing various aqueous pollutants and microorganisms in-
cluding SARS-CoV-2, a deadly and contagious virus in
wastewater as compared to other conventional techniques
and advanced oxidation processes. But looking ahead, still
many obstacles remain to be surmounted for further research
and development in cold plasma technology in order to meet
commercial use and industrial application.
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