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Abstract
The etiology of the majority of human cancers is associated with a myriad of environmental causes, including physical, chemical,
and biological factors. DNA damage induced by such mutagens is the initial step in the process of carcinogenesis resulting in the
accumulation of mutations. Mutational events are considered the major triggers for introducing genetic and epigenetic insults
such as DNA crosslinks, single- and double-strand DNA breaks, formation of DNA adducts, mismatched bases, modification in
histones, DNA methylation, and microRNA alterations. However, DNA repair mechanisms are devoted to protect the DNA to
ensure genetic stability, any aberrations in these calibrated mechanisms provoke cancer occurrence. Comprehensive knowledge
of the type of mutagens and carcinogens and the influence of these agents in DNA damage and cancer induction is crucial to
develop rational anticancer strategies. This review delineated the molecular mechanism of DNA damage and the repair pathways
to provide a deep understanding of the molecular basis of mutagenicity and carcinogenicity. A relationship between DNA adduct
formation and cancer incidence has also been summarized. The mechanistic basis of inflammatory response and oxidative
damage triggered by mutagens in tumorigenesis has also been highlighted. We elucidated the interesting interplay between
DNA damage response and immune system mechanisms. We addressed the current understanding of DNA repair targeted
therapies and DNA damaging chemotherapeutic agents for cancer treatment and discussed how antiviral agents, anti-
inflammatory drugs, and immunotherapeutic agents combined with traditional approaches lay the foundations for future cancer
therapies.
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Introduction

Genomic integrity is an essentiality that needs to be main-
tained and assured. Alterations arising from various genotoxic
factors like stress induced due to environmental agents and
toxins, exposure to ionizing radiations, DNA replicative er-
rors, and various endogenous and exogenous metabolites thus
hamper the cellular deoxyribonucleic acid (DNA). As these
mutagenic factors affect the molecular signature of DNA, they
exert different mutational signatures, which helps predict the
extent of damage caused to the complex cellular machinery
comprising DNA. These environmental mutagens also affect

at the level of metabolism by interrupting the metabolites in-
volved in maintaining the state of various enzymes (for exam-
ple, cyclooxygenases and oxygenase) involved in command-
ing multiple pathways (Volkova et al. 2020). Ubiquitination
plays a prominent role in cancer. Evident studies suggest that
ubiquitin E3 ligases such as the expression murine double
minute 2 (MDM2) are highly upregulated in various cancers
that affect various downstream targets like p53. These muta-
gens distort the regulatory machinery of these ligases, thereby
causing progression in cancer (Gupta et al. 2019). The extent
of the damage caused depends on the mutagens’ structural and
molecular capabilities to which the DNA is exposed. Studies
predict that these environmental mutagens are highly damag-
ing as these can lead to carcinogenesis and aging of the affect-
ed cells. Therefore, this level of damage is caused via chro-
mosomal instability, modification in the sequence of bases of
DNA, and aneuploidy (Karthika et al. 2021). Mutagens that
cause this variable damage can be physical, biological, and
chemical in nature (Temko et al. 2018). Physical mutagens
such as lead, arsenic, cadmium, and mercury are known to
be associated with cancer and are potent carcinogens. These

Responsible Editor: Lotfi Aleya

* Rashmi K. Ambasta
rashmiambasta@gmail.com

1 Molecular Neuroscience and Functional Genomics Laboratory,
Department of Biotechnology, Delhi Technological University,
Shahbad Daulatpur, Bawana Road, Delhi 110042, India

https://doi.org/10.1007/s11356-021-16726-w

/ Published online: 5 October 2021

Environmental Science and Pollution Research (2022) 29:62111–62159

http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-021-16726-w&domain=pdf
http://orcid.org/0000-0002-8874-7752
mailto:rashmiambasta@gmail.com


mutagens bind and cause mutation in the sequence of DNA
bases either by interacting with proteins that bind to the DNA
or by halting the repair machinery of DNA, thereby
increasing the level of mutations and prompting carci-
nomas of various origin (Kabir et al. 2021). Evident
studies suggest cadmium’s role in inducing non-small
cell lung carcinomas (NSCLCs), prostate, and cancers
of biliary regions (Hartwig 2013). Exposure to radia-
tions of ionizing nature such as UV and gamma also
causes denaturation that further leads to spontaneous
mutagenesis (Toxicology 1992). These mutagens in-
crease reactive oxygen species (ROS) aggregation level
that binds with the nucleic acid, enhances apoptosis and
oxidative stress, causing tumor loading and unclear ab-
normal cellular check.

Similarly, various classes of chemical mutagens (alkylating
agents, DNA intercalating agents, and deaminating agents)
such as melphalan, benzidine, and diethylstilbestrol mediate
base-analog and cause pyrimidines to shift, leading to muta-
genesis in healthy cells (Weber et al. 2002). Studies also de-
fine the role of various infectious mutagens (bacteria and vi-
rus) that also interferes with the biological integrity of cells.
Viruses of various modalities like the Epstein-Barr virus, hep-
atitis B, and C elevate the cellular damage and are known to be
linked with carcinogenesis (Li et al. 2004). Another interest-
ing character that comes into foreplay is hypoxia, being het-
erogeneous in nature, causes a metabolic shift in DNA stabil-
ity by being linked with ROS generation causing oxidative
stress and death of cells. Hypoxia-inducible factor (HIF-1α),
a major transcription factor in hypoxia, is also somewhere
known to be linked to promoting carcinogenesis in healthy
cells (Jun et al. 2017; Kaplan and Glazer 2020). Epigenetic
and genetic mechanisms are also known to be associated with
the growth and development of various tumors (Rahman et al.
2021). Mutagens that interfere with the pathways associate
with these mechanisms, such as differentiation, histone mod-
ifications, acetylation, methylation, etc., also degrades the
DNA quality, causing cancer. Mutagenic agents of this class
are also known to be activation-dependent and activation-
independent mutagens. Examples of these DNA-damaging
carcinogens include mycotoxins, polycyclic aromatic hydro-
carbons, forms DNA adducts. Studies that govern the role of
mutagens being the associator in the formation of DNA ad-
ducts are extensively described (Arlt et al. 2005; Totsuka et al.
2021). Also, how these DNA adducts are identified using
sophisticated molecular techniques such as gas chromatogra-
phy, liquid chromatography/mass spectroscopy (LC/MS), and
fluorescent methods in the measurement of DNA adducts is an
important concept, preventing adduct formation and cel-
lular damage. Many studies have explored the therapeu-
tic potential of natural compounds and phytochemical
extracts in reducing the countereffects of these mutagens
in various carcinomas (Grover et al. 2021).

Evident studies prescribe the role of environmental muta-
gens (endogenous and exogenous) in media t ing
inflammation-associated pathways. As these pathways help
in mediating DNA damage and play a key role when talking
about carcinogenesis, it is important to explore these associa-
tions (Bhattacharya et al. 2021; Piotrowski et al. 2020).
Downregulation elements in these signaling like the nuclear
factor-κB (NF-κB), signal transducer and activator of tran-
scription 1 (STAT1), interferon regulatory factor 3 (IRF 3),
and activation of caspases and bridging with mutagens opens
up a window how these mutagens guide inflammation, ulti-
mately leading to cancer, the chunk of which is described in
detail in this review (Preventive 2018). The release of various
inflammatory cytokines like the IL-2, IL-10, and TNF-α and
their secretions influence DNA-damage response and activa-
tion of pathways such as the JNK/STAT1, which can act as a
therapeutic possibility targeting inflammation in cancer
(Sandhir et al. 2017; Fadriquela et al. 2021). In order to
achieve stable, and functional DNA integrity, a certain
DNA-repair mechanism comes into action when struck by
the effect of any exogenous and endogenous mutagens.
These DNA-repair mechanisms include single-strand break
repair (SSB) comprising the base-excision repair (BER),
nucleotide-excision repair (NER), and mismatch repair. For
more severe damage (double-stranded DNA break), homolo-
gous recombination (HR) and non-homologous end-joining
(NHEJ) commands the repair machinery that is affected by
these environmental mutagens(Chatterjee and Walker 2017).
Deformity in the repair mechanism affects the cellular ma-
chinery that ultimately leads to the formation of an abnormal
mass of cells, causing cancer. Therefore, targeting these repair
mechanisms can be an asset to how these mutagens affect the
cellular DNA and in the prevention of carcinomas. Also, it is
necessary to explore inhibitors that could potentially target
these damages caused by various environmental mutagens,
as an early detection and prevention can be a game-changer
when talking about how these environmental modulators im-
pact the DNA and lead to the establishment of a deadly disease
so-called cancer.

Environmental mutagens as DNA damage
activators enhancing carcinogenesis

Any environmental substance that causes a mutation is known
as a mutagen, and these agents are called mutagenic agents.
Cancer-causing mutagens are known to be carcinogens, but
not all mutants are necessarily carcinogenic in nature
(Griffiths et al. 2000; Errol 2001). Every single mutant knows
to characteristic mutational signatures (combinations of muta-
tion types arising from specific mutagenesis processes such as
DNA replication infidelity, exogenous and endogenous
genotoxins exposures, defective DNA repair pathways, and
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DNA enzymatic editing) (Kaoru 2016). Some mutation is
known as “spontaneous mutations” due to spontaneous hydro-
lysis, DNA replication errors, repair, and recombination
(Ripley 2013). Some mutants are known as promutagens that
exert their effect through their metabolites, and conversion of
these metabolites into carcinogenesis depends on the metabol-
ic process of an organism, for example, through the activity of
the cytochrome P450 system and other oxygenase such as
cyclooxygenase (Kim and Guengerich 2005; Martín-Sanz
et al. 2017). Different mutagens act differently on DNA, for
example, some mutagens induce chromosomal instability, in-
cluding chromosomal breakages and rearrangement of the
chromosomes such as translocation, deletion, and inversion
(Mishima 2017). In the same way, some mutagens modify
DNA sequence involving the substitution of nucleotide base-
pairs, insertions and deletions of one or more nucleotides in
DNA sequences and others lead to aneuploidy (Mandrioli
et al. 2016). The complicity of environmental mutagens
(DNA damaging agents) in biological processes and how it
is linked to cancer has been shown in Figure 1. The role of
mutagens has also been briefly described below.

Physical mutagens triggered mutagenesis

Environmental agents (physical, chemicals, radiation, and bi-
ological) can be mutagens (mainly that alter DNA) or carcin-
ogens (cancer-causing substances). The steps involved for a
mutagen to become a carcinogen to cause cancer involve the
metabolic activation, reaction with DNA to form DNA ad-
duct, and then DNA replication of this adduct, subsequently
resulting in a mutation. This mutation (in a cancerous gene)
results in enhanced growth potential and ultimately induces
tumor. The physical mutants are present in our surroundings,
possessing mutational signatures that alter the genetic infor-
mation or change an organism’s DNA sequence. These pri-
marily include heavy metals and heat. In the current scenario,
many heavy metals are known to be contagious to well-being,
and studies suggest some acts as potential carcinogens too.
The metals can either endogenously or exogenously damage
the DNA by producing ROS, thereby impairing the repair
mechanisms. Additionally, comprehensive studies have re-
vealed that heavy metals can cause various diseases like car-
diovascular diseases, autoimmune disorders, neurodegenera-
tive disorders, etc. The damage caused by arsenic (As), lead
(Pb), cadmium (Cd), chromium (Cr), and mercury (Hg) has a
long history as a carcinogen. There are multiple mechanisms
by which these metals can induce carcinogenesis, as the ex-
posure of these heavy metals directly or indirectly disrupts the
intracellular processes. And thus, these processes have poten-
tial candidature for acting as markers of heavy metal-induced
carcinogenesis.

As is known to be one of the most common mutagenic
agents that is also a potential class I human carcinogen.

There is an enormous collection of writing supporting As-
related carcinogenesis (Vega et al. 1995; Salazar et al. 2010;
Tokar et al. 2010). Being a toxic semi-metal, As exists in
mainly inorganic form as arsenate and arsenide in nature.
These inorganic forms are highly hazardous to health as they
can cause skin, lung, and liver cancers (D’Souza and
Peretiatko 2002; Martinez et al. 2011). Also, As residues in-
teract with DNA-binding proteins and disrupt the DNA repair
machinery and increase the risk of carcinogenesis. The studies
have also stated that exposure to As alone is not satisfactory
enough to cause cancer, it just acts as a co-carcinogen whose
effect is enhanced when combined with the other mutagenic
agents like UV radiations or Benzo(a)pyrene diol epoxide
(BPDE), which give rise to high genomic instabilities and
finally results in tumorigenesis (Rossman et al. 2004), which
is beneficial for the evaluation of its bioeffect. The compre-
hensive studies suggest that As (III) and BPDE synergistically
lead to genotoxicity, DNA strand break damage, and causes
carcinogenesis. The plausible mechanism of action is by
inhibiting As metal methylation, in return As(III) inhibits nu-
cleotide excision repair (NER) of the DNA adduct damage
caused by BPDE(Li et al. 2019).

Also, occupational exposure to another heavy metal, Cd, is
concerned with toxicity and carcinogenesis as evidence sug-
gests it to be a prime suspect causing lung cancer(Nawrot et al.
2006). However, exposure to cadmium is equally responsible
for causing tumors in other organs like the kidney, breast, and
prostate (Nordberg et al. 1975; Dudley et al. 1985; Lauwerys
and Bernard 1986; Itoh et al. 2014). In general, the cadmium-
induced carcinogenicity triggers the proteins involved in DNA
damage and results in cellular growth deregulation and apo-
ptotic resistance of cells (Hu et al. 2002).

On the other hand, lung cancer is also diagnosed in people
working in the chromate-producing industry, indicating that
Cr is also a primary cause (Langård and Vigander 1983). The
Cr dust is highly insoluble in water; after entering the body, it
settles down in blood vessels and produces ROS. These ROS
then bind with DNA, causes cellular damage, further inducing
apoptosis, oxidative stress, and cancer in the lungs and kid-
neys. In addition to above mentioned, other prevailing muta-
genic metals known to provoke carcinogenesis are listed in
Table 2, along with the cancer they cause and current medi-
cations used.

The shifting temperature has been quite long known to
cause mutations in various organisms (Waldvogel and
Pfenninger 2020). These mutations are caused by a raised
weather that does not directly affect the DNA but results from
perturbations of the enzymes involved in DNA synthesis. The
heating of DNA over 95 °C leads to denaturation and break-
age of phosphodiester bonds, while heating to 36 °C is known
to cause spontaneous mutagenesis. From the studies, it has
been found that the rate of heat-induced mutation in T4 is
nearly 4 X 10-8 at 37° per G-C base pair/day. While for the
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human genomes, this value accounts for 100 per diploid
cell/day(Siddiqui and Khan 1999). Thus, all the evidence ad-
vocates that heat can also act as a common physical mutagen.

Congeneric series of chemical mutagens

Percival Pott, in 1775, was the first one to report a case of
occupational cancer caused by the mutagens present in a work
environment. He observed that prolonged exposure to

chimney sweeps was a major contributory factor towards the
development of scrotal cancer in men. These sweeps contain
potential DNA-damaging agents, polycyclic aromatic hydro-
carbons, which cause mutations and lead to cancer develop-
ment (Androutsos 2006). Thus, chemicals that alter the DNA
are known as chemical mutagens. These include alkylating
agents, hydroxylation agents, deaminating agents, intercalat-
ing agents, base analogs, etc. Most of these are mutagens, and
some of them even act as potential carcinogens.

Fig. 1 Model for environmental
risk factor, DNA damage, and its
response in biological processes
linked to cancer: Repetitive
exposure of cells to intrinsic and
extrinsic carcinogens may result
in accumulation of free radicals
such as ROS, which leads to
oxidative stress andDNA damage
and together with all results into
inflammation. These generate
various growth factors (VEGF),
cytokines (TGF-β, TNF-α, IL-6,
etc.), transcription factors (c-Myc,
NF-κB, STAT3), HIF-1α.
Elevation ROS upregulates the
expression of MMPs through
TGF β. Furthermore, ROS also
mediates the expression of
vimentin and VEGF, which
increases EMT (promotes cancer
cell migration) and angiogenesis,
respectively. DNA damaging
agents also generate a variety of
lesions, such as mismatched
nucleotides, base lesions, bulky
(helix-distorting) adducts, SSBs,
or DSBs, which causes mutations
that have specific cellular
consequences, including
transformation or cell death.
Cellular events lead to genomic or
microsatellite instability, which
causes cancer. The dysregulated
DNA repair mechanism is unable
to recognize DNA lesions and
which may subsequently lead to
carcinogenesis. AID, activation-
induced cytidine deaminase
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Interestingly, International Agency for Research on Cancer
(IARC) has listed 88 chemical agents as human carcinogens
based on animal bioassays (generally conducted in rats and
mice). These animals were exposed to high doses of these
agents, typically for two years. These agents include organic
compounds (Naphthalene, 4-Aminobiphenyl, Benzidine,
Chlornaphazine, Diethylstilbestrol, Melphalan, and many
others), hormones (Estradiol), fibers (Asbestos, Erionite),
components of soot, tar, etc.(Little et al. 2009; Botelho et al.
2014). These mutagens are present abundantly in our sur-
roundings, like in tobacco smoke, air pollution, and even are
generated by processes involving the peroxidation of lipids.
Mostly these chemical agents are potential carcinogens that
react with bases of the DNA to form mutagenic adducts and
are used as a biomarker for diseases related to neurodegener-
ation, metal storage disorders, and may even cause inflamma-
tion or cancer, etc. (Sanchez et al. 2021a; Kaur et al. 2021).
Even alcohol consumption is a prime factor related to induc-
ing carcinomas of the head, neck as well as esophagus. The
mechanism of alcohol-induced cancer is not known, but the
aldehyde products of alcohol oxidation interfere with DNA,
resulting in adduct formation, which can lead to several mu-
tations. Importantly, past studies have shown that aldehyde-
derived DNA adducts like N2-ethyldeoxyguanosine, N6-
ethyldeoxyadenosine, and N4-ethyldeoxycytidine are known
to have genotoxic effects in humans(Guidolin et al. 2021).
Thus, performing high-performance liquid chromatography-
tandem mass spectrometry (HPLC/MS/MS) for the detection
of exocyclic DNA adducts confirms about the DNA damage
caused due to alcohol exposures play a critical role in cancer
etiology. These chemicals, their mechanism of action, and
cancer they induce have been summarized in Table 2.

Generally, the chemical mutagens are classified into differ-
ent categories (base analogs, intercalators, alkylating agents,
etc.) based on their mode of action. Base analog mutagens are
the chemicals that resemble normal bases structurally; they
take part in DNA replication as these are misread by repair
mechanisms as normal bases only. The 5-bromo-deoxyuridine
(5BU), a synthetically synthesized compound that resembles
the thymine, is the most studied base analog whose keto form
(T mimic) and pairs with “A” typically (CASPARI et al.
1965). This potent mutagen is capable enough to cause point
mutations resulting in deleterious alterations in genetic infor-
mation. Certain other chemicals such as Azidothymidine
(AZT) and 2-aminopurine (2- AP) also belong to the category
of base analogs (Ma et al. 2017.; Persing et al. 1981), and each
of these chemicals mutagenizes over time because of their
resemblance with the normal bases. After undergoingmultiple
rounds of replication, these mutations are stabilized.

The chemical mutagens also comprise influential mutagens
known as alkylating agents, deaminating agents, and DNA
intercalating agents. The alkylators such as ethyl methane sul-
fonate (EMS) and nitrosoguanidine (NTG, NG, MNNG) are

agents which cause alkylation of DNA by reacting with the
nucleotide bases. These mutagens are inclined towards G-rich
regions and react to form modified “G” residues, thereby un-
dergoes depurination. Thus, the alkylation of DNA leads to
many reactions like the formation of unstable triesters, which
release the alkyl group and hinders the DNA replication ma-
chinery. Even these phosphate triesters, when hydrolyzed,
lead to the breakage of the DNA backbone(Jones et al.
2010). Many other chemicals also act as mutagens like hy-
droxylamine, sodium azide, and nitrous acid, which cause
oxidative deamination and cause fatal base pairing. Unlike
other mutagens, nitrous acid directly modifies a base into a
miscoding form and converts adenine to hypoxanthine, cyto-
sine to uracil, and finally guanine to xanthine(Hartman et al.
1994). Among others, DNA-intercalating agents include acri-
dine orange, ethidium bromide (EtBr), and daunorubicin
which lead to distort the DNA helix and cause frameshift
mutations either by adding or deleting certain bases. These
compounds seemingly mutagenize by intercalating between
bases present adjacent to one other, conceivably making repair
systems reflect as if there is an alternative base at that position.
The heterocyclic nitrogen mustard gas is a well-known exam-
ple of it. Even some dyes like acridine orange, proflavine, and
acriflavine have structures similar to those of purines and py-
rimidines, and thus, they insert themselves in DNA. These
intercalating agents distort DNA structure, lead to wrong base
pairing, and are associated with single nucleotide-pair inser-
tions, frameshift mutation (deletions) (Hoffmann et al. 2003)
soot. In contrast, some studies have shown the pharmacolog-
ical effect of Proflavin as it inhibits human osteosarcoma via
apoptosis and autophagy (Karthika et al. 2021; Zhang et al.
2015a). Similarly study by Lin et al. showed that Acridine
orange exhibits photodamage via disrupting acidic organelles
and induces bladder cancer cells death underneath blue light
exposure (Lin et al. 2017).

Radiation-induced mutation and DNA damage

The U.S. Environmental Protection Agency (EPA) states that
all radionuclides are carcinogens under the Comprehensive
Environmental Response, Compensation, and Liability Act
of 1980 (CERCLA). The carcinogenicity of radiations de-
pends on their type, exposure, and penetration power. There
are different types of radiation like (a) ionizing radiation such
as X-rays, gamma rays, and alpha particles; (b) ultraviolet
radiations (UV) with wavelength above 260 nm; and (c) ra-
dioactive decay, such as the decay of 14C incorporated in
DNA into nitrogen. In a living cell, radiation can damage
proteins, lipoproteins, DNA, carbohydrates, etc., either by di-
rectly ionizing or exciting or indirectly by generating highly
reactive species by radiolysis of the cellular water. These ra-
diations perpetuate genetic effects, and, thus, the cellular re-
pair system is largely ardent to its well-being. The radiations
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are a type of environmental mutagen that leads to immediate
changes in a cell’s DNA like the ionizing radiation (i.e., X-
rays) break DNA sequences; UV rays (mainly UV-B 280–
315 nm), penetrate through cellular and nuclear membranes
resulting in DNA damage, UV-radiation induced free radical
generation, and formation of dimers. ROS leads to damage to
lipids, proteins, and cell structure, and DNA, resulting in ox-
idative stress involved in many cancer (Rastogi et al. 2010).

Broadly, there are two types of ionizing radiation, and one
comprises corpuscular rays like alpha, beta, protons, etc. The
alpha particles are a type of low penetrating radiation that shall
consist of two protons and two neutrons. Whereas the beta
particles more penetrating and less ionizing, consisting of
electrons or positrons. These beta rays, alpha rays, fast and
thermal neutrons are also known to cause chromosomal break-
age and gene mutations (Loucas et al. 2013; Roychowdhury
and Tah 2013; Yusuff et al. 2015; Kumawat et al. 2019).
According to the epidemiological evidence, there are many
health risks associated, including cancer risks at several ana-
tomical sites (lungs, bones, liver, etc.) with radionuclides
emitting these particles (El Ghissassi et al. 2009; Graf et al.
2014). In contrast, the other type of ionizing radiation includes
electromagnetic rays like X-rays, gamma rays. The mecha-
nism of action of X-rays and γ rays both are the same as they
are penetrable, non-is particulate in nature, thereby causing
double-strand breaks (DSBs) in DNA. These DSBs in the
DNA lead to either deletion or rearrangement and may be-
come lethal in some cases too, and every DSB possesses the
same tendency of inducing a cell transformation, and each
transformed cell has the potential to develop into cancer
(Kirby-Smith and Daniels 1953). Simultaneously, it has also
been observed that sometimes the bases get oxidized due to
the ionizing radiations. For instance, guanine (G) gets oxi-
dized to form Oxo G, which can base pair with both A as well
as C, and it pairs with A then it causes transversion mutation
(GC base pair changes to AT).

Another common mutagen is UV radiation, responsi-
ble for transforming healthy cells into cancerous (espe-
cially skin cancers) as they inactivate apoptosis
(Laikova et al. 2019). These UV radiations excite the
DNA molecule and cause crosslinking, single-strand
breaks (SSBs), leading to the formation of pyrimidine
dimer. Generally, cytosine (C) and thymidine (T) are
more vulnerable to UV radiations and form dimers.
These dimers distort the helical conformation of the
DNA, weaken H-bonds, and inhibit the advancement
of the replication fork (Rastogi et al. 2010). Moreover,
UV radiation’s ability to induce and promote malignant
melanoma was conjointly shown in many animal
models. It also alters cytokines such as TNF-α and in-
terleukins (ILs), which indirectly affects matrix metallo-
proteinases (MMPs) synthesis, thereby promoting mela-
noma metastasis and invasion (Anna et al. 2007).

The radioactive materials after undergoing the decay pro-
cess also induce mutagenesis, for instance, Sulfur-35 decays
into Chlorine, Strontium-90 decays into Yttrium-90, and
Barium-140 decays into Lanthanum-140, all of them interact
and bind with DNA and results in DNA damage as well as
genetic mutations (Chen 2013). Also, some studies suggest
that iodine-131 used to treat thyroid cancer may lead to leu-
kemia (Carhill and Vassilopoulou-Sellin 2012; Gilabert and
Prebet 2012; Alsaud et al. 2020). Thus, in different ways,
radiations are known to cause mutations depending upon their
penetration power, dosage, and energy it possesses.

Infectious agents mediated mutagenesis

Some mutagens of biological origin are also known to cause
mutations. These agents are sources of DNA from elements
like transposons, bacteria, parasites, and viruses. The transpo-
sons are commonly known as jumping genes. These are non-
coding sequences of DNA that relocate and replicate autono-
mously. The insertion into a DNA sequence of transposons
can disrupt traditional gene functions (Woodford and
Ellington 2007). The transposable elements can act either as
oncogenic factors (e.g., HRas proto-oncogene, Myc onco-
gene, etc.) leading to genomic instability (deletions, inser-
tions, Chromosomal mutations), or interfere with transcription
factors and non-coding RNAs whose dysregulation further
leads to carcinogenesis (Anwar et al. 2017). Lately, scientists
have found on comparing adenomatosis polyposis coli tumor
suppressor (APC) genes in healthy and colon cancer suffering
cells on later consists of transposes. This further testifies the
fact that transposes in somatic cells in mammals have some
role in the development of colorectal cancer (Miki et al. 1992;
Chenmala et al. 2021). Viruses are a common infectious agent
that can induce mutagenesis as they can insert their DNA into
the host genome and disrupt the gene functionality. Once in-
side the host, viruses use the host machinery to replicate,
translate, and express their viral proteins. These viral muta-
tions can be point mutations, including base substitutions and
deletions and insertions(Shapiro et al. 1984). Some viruses are
also known to cause cancers, and these are known as onco-
genic viruses. These viruses’mechanism of action is that they
insert a viral oncogenic gene into the host, which further aug-
ments already existing proto-oncogene, which becomes onco-
gene. Examples of such viruses include Hepatitis B, Hepatitis
C, Kaposi sarcoma-associated herpesvirus (KSHV), Epstein-
Barr virus, Human papillomavirus, etc. (Zur Hausen 1991).
The viruses and their mechanism of action have been ex-
plained in detail further in this paper.

A few microscopic organisms like the bacteria
Helicobacter pylori (H. pylori) can cause inflammation during
which oxidative species are released, thereby leading to DNA
harm and lessening the DNA repair system’s productivity to a
high mutational rate. H. pylori is a human carcinogen known
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to cause mutations in the gastric mucosa and finally leading to
cancer (Rahman et al. 2019; Sheh et al. 2010). Some studies
suggest H. pylori infection causes prolonged inflammation,
and it is evident from the overexpression of cytokine (IL-1)
in the stomach transgenic mice(Tu et al. 2008). These organ-
isms later advance into erratic gastric inflammation and cancer
as the inflammatory response may have predisposed cells in
the stomach lining to become cancerous. The augmented cell
turnover consequential due to the ongoing cellular damage
possibly will increase the likability of harmful mutations.
The other bacteria associated with causing cancer include
Salmonella typhi (S. typhi), a potent agent for gallbladder can-
cer, Streptococcus bovis (S. bovis), a risk factor for colon
cancer development, and Chlamydia trachomatis is known
to cause cervical cancer(Mager 2006). Certain parasites like
Opisthorchis viverrini (O. viverrini) and Clonorchis sinensis
(C. sinensis) which reside inside the human body are also
known to increase the risk of cancer. C. sinensis is a prime
parasite with a 1.86% prevalence rate in Korean population,
mainly linked to liver and biliary disorders, especially cholan-
giocarcinoma (CCA) (Kim et al. 2016). The exact mechanism
contributing to cancer caused by C. sinensis is not clear but is
analogous to carcinogenesis induced by O. viverrine. These
parasites mainly cause inflammation, release parasite-derived
products as well as ROS, which causes physical damage, ad-
duct formation, and anticipate in carcinogenesis(van Tong
et al. 2017). Another class of agents that can induce cancer
is genotoxins released by certain strains of Escherichia coli
(E. coli) known as colibactin. This colibactin induces tumor
growth by regulating the SUMOylation process in the mice
model, while colibactin damaged colorectal cells in humans
by causing alkylation of DNA, leading to DSBs. These DSBs
a r e ho t spo t s o f mu t a t i on s i nvo lved i n human
carcinogenesis(Dalmasso et al. 2015).

Furthermore, food that we consume is also known to be
carrying potential mutagens and accounts for over 99% of the
carcinogenic and toxic chemicals to which humans are ex-
posed. Likewise, the feeding onto the processed meat
(Group 1 carcinogen) and red meat (Group 2A carcinogen)
are also categorized as human carcinogens according to the
International Agency for Research on Cancer. The epidemio-
logical data has confirmed the same, but the underlying mech-
anism for mechanisms of genotoxicity and how cancer is in-
duced is still unclear, particularly the extent to which DNA
damage is caused. The literature studies suggest that meat
consumption can cause DNA breaks, adduct formation
(Pelland-St-Pierre et al. 2021).

Moreover, thesemutagens are further classified as naturally
occurring compounds, some formed during heating, and
others include additives and contaminants (pesticides). The
class of mutagenic plant-derived compounds includes pyr-
rolizidine present in some herbal teas and medicines. These
indirect-acting mutagens and their interaction with other

molecules induce DNA strand chromosomal breakage and
mutations (Schoental 1968). PAHs are widespread chemical
carcinogenic pollutants that are exposed to humans by con-
suming contaminated food. The dietary PAHs are known to
induce colorectal cancer (CRC), but the underlying mecha-
nism remains unclear (Poirier et al. 2019). Even the toxins
produced by fungi growing on foodstuffs are also an essential
source of mutagenic contaminants referred to as mycotoxins.
Some examples of mycotoxins are fusarin, ochratoxin,
deoxynivalenol, ochratoxin, etc. They are generally found
growing on crops, meat products, milk and eggs, nuts and
peanuts, fruits, and many other food items. These mycotoxins
produced inhibit DNA and RNA synthesis and induce apo-
ptosis (Ferrante et al. 2012). Also, some mycotoxins can in-
tercalate between the bases of the DNA double helix, which
hinders the replication process. As the replication of DNA is
affected, it produces teratogenic and mutagenic effects.
Furthermore, mycotoxins induce mutations in genes responsi-
ble for controlling the cell cycle, leading to cancer develop-
ment (Claeys et al. 2020). In support of this, nearly ten inves-
tigations have found an association between aflatoxin (type of
mycotoxin) and liver cancer (Rahman et al. 2020), while two
studies reveal an association between ZEN (Zearalenone) and
breast cancer (Pillay et al. 2002; Belhassen et al. 2015).
Interestingly, the AFB1 itself cannot directly interact with
DNA, only the bio-transformed version (AFB1-8, 9-epoxide
via cytochrome p450 enzymes) is capable of generating high-
ly mutagenic DNA adducts by irreversibly attaching to gua-
nine residues. Thereby, most countries have put strict regula-
tions about the levels of aflatoxin in food items as high
amounts result in DNA adducts formation (Engin and Engin
2019).

Hypoxia-induced DNA damage

The hypoxia (a hallmark of cancer) is a sub-region in the
tumor microenvironment (TME) along with nutrient depriva-
tion, low extracellular pH, and high interstitial fluid pressure.
The hypoxic condition arises when oxygen consumption by
cells exceeds that of supply (Vaupel and Harrison 2004). The
hypoxic region is characterized as heterogeneous in nature,
with regions of chronic and acute hypoxia, altered pH, and
immune infiltration (Hughes et al. 2019). In a hypoxic TME
(e.g., 0.2 to 1% O2), tumor cells slowly adapt to hypoxic
conditions where they continue to grow and proliferate with
altered/amended cellular biology. In contrast, another micro-
environment is known as permanent anoxic (e.g., close to 0%
O2). Tumor or normal cells are leading to cell death (Luoto
et al. 2013). A multitude of researches has concluded intrinsic
hypoxia biomarkers as HIF-1α, vascular endothelial growth
factor (VEGF), carbonic anhydrase IX (CAIX), osteopontin
and glucose transporters 1 and 3 (GLUT1, GLUT3), and the
extrinsic biomarkers: drugs that specifically accumulate or
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become bio-reduced to form adducts within hypoxic cells
such as pimonidazole (PIMO), EF5 and CCI-103 F
(Ljungkvist et al. 2007; Le and Courter 2008). Hypoxia cells
have defective DNA repair, increased mutation rate, and hyp-
oxia has the capacity to accelerate genomic instability through
increased chromosomal rearrangement and decreased centro-
some function, increased unrepaired DSBs and replication
errors, increased gene amplification, and inaugural of intra-
chromosomal fragile sites (Coquelle et al. 1998; Bristow
2008; Luoto et al. 2013). The study by Kumareswaran et al.
found that under hypoxia state, aberrant or compromised
DNA-DSB repair of G1-associated DNA-DSBs as a potential
factor responsible for increased genetic and/or chromosomal
instability (Kumareswaran et al. 2012).

Hypoxia instigates HIF and inducible nitric oxide synthase
(iNOS), which results in upregulation of intracellular RNS
and ROS, leading to DNA damage in progression with poor
prognosis (Kawanishi et al. 2017; Rahman et al. 2020). A
consequence of hypoxia in causing genomic instability has
been shown beautifully in Figure 2. Still now, how hypoxia
links with increases ROS production is still a matter of debate.

One theory supports this hypoxia act on complexes I, II, and
III of the electron transport chain (ETC) in mitochondria
which drive increased ROS production (Hamanaka and
Chandel 2009). ROS plays a pivotal role in stabilizing and
activating HIF1α, which activates survival, proliferation, me-
tastasis, and a tumor cell’s metabolic changes. ROS induces
intracellular signaling mechanisms involving mitogen activat-
ed protein kinase (MAPK) that depends on nuclear factor
kappa B (NF-κB). It can directly activate MMPs synthesis
and tissue inhibitor of metalloproteinases (TIMPs), leading
to proliferation and invasion of tumor cells(Li et al. 2011).
This concludes that ROS continuously or perpetual assist di-
rectly or indirectly, to each step of carcinogenesis, from the
initiation to the tumor transformation and progression (Singh
et al. 2021.; Tafani et al. 2016). Moreover, when hypoxic cells
acquire reoxygenated state, this results in further DNA dam-
age due to a sudden burst of free radicals (Hammond et al.
2003). HIF1α is crucial for tumor adaption to hypoxic, and it
is also a key prognostic tumor factor (Fukushima et al. 2017;
Han et al. 2019). Its overexpression has been linked with a
poor disease outcome and increased patient mortality in

Fig. 2 Schematic of the hypoxia-mediated genetic instability: Cancer cell
exposed to acute hypoxia causes DNA damage or compromised DNA
replication also known as replication stress which activates ATM–ATR-
mediated cell cycle checkpoints to arrest the cell to repair any DNA
damage caused by ROS. Due to impaired DNA repair enzyme or non-
repaired DNA breaks causes genomic instability, which results in
tumorigenesis. Further acute hypoxia causes activation and stabilization
of HIF-1α, promote angiogenesis and which results in radio and

chemotherapy resistance. Whereas chronic hypoxia also gains genetic
instability through decreased DNA repair enzymes, leading to increased
mutation. It also upregulates the expression of HIF-2α. ATM, ataxia
telangiectasia mutated; ATR, ataxia telangiectasia- and Rad3-related
kinase; ROS, reactive oxygen species; BER, base-excision repair;
CHK2, checkpoint kinase 2; HR, homologous recombination; MMR,
mismatch repair; PARP, poly (ADP-ribose) polymerase
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various cancer such as bladder, brain, breast, cervix, colon,
endometrium, lung, oropharynx, pancreas, skin, and stomach
cancers (Semenza 2010; Wilson and Hay 2011; Jun et al.
2017; Barrak et al. 2020). Loss of HIF-1α control can enhance
tumorigenesis and genomic instability via cooperation with
oncogene c-MYC (c-Myc expression is downregulated in
low-oxygen regions of solid tumors) (Okuyama et al. 2010;
Li et al. 2020). Moreover, the study by Wang et al. showed
that HIF-2α, another transcriptional regulator of hypoxia,
plays a crucial role in regulating the c-Myc expression in
chronic hypoxia, and consequently influences 5-FU sensitiv-
ity in colorectal cancer by regulating or altering altered the G1/
S checkpoint (reason for chemoresistance) (Wang et al. 2016).
Furthermore, DNA damage can also be induced by telomeric
shortening, or replication stress instigated by oncogene acti-
vation and loss of function of tumor suppressor genes (Bartek
et al. 2007).

A plethora of studies showed that chronic hypoxia leads to
downregulation of DNA damage response (DDR) effectors
proteins, such as RAD51 and BRCA1, in cancer. (Bindra
et al. 2004, 2005; Meng et al. 2005). Hypoxia also induces
replication arrest, which activates DNA damage response
through ATR- and ATM-mediated signaling thus leads to in-
duction of p53-dependent apoptosis (Olcina et al. 2010).
Alteration in hypoxia affects DNA damage response path-
ways, including HR, NHEJ, miss-match repair(MMR), nucle-
otide excision repair (NER), base excision repair (BER), and
the Fanconi anemia pathways (Begg and Tavassoli 2020;
Kaplan and Glazer 2020). For instance, the downregulation
of the NHEJ pathway could sensitize cells to DNA damage
following ionizing radiation (IR). In contrast, the HR path-
way’s downregulation could sensitize cells to DNA
crosslinking agents (Chan et al. 2009). Studies suggest that
iNOS-dependent 8-nitroguanine formation by HIF-1α and
NF-κB plays an essential role in tumor progression, and 8-
nitroguanine can be a potential biomarker for inflammation-
related cancer (malignant fibrous histiocytoma) (Hoki et al.
2007). Furthermore, results show that HIF-1α and iNOS have
the probability of activating or influencing each other to han-
dle fixed DNA damage, resulting in accumulation of muta-
tion, acquiring tumor invasiveness, and poor prognosis
(Kawanishi et al. 2017).

A study by Young and et al. found that hypoxia induces
aberrant DNA synthesis, leading to DNA over replication and
promoting metastasis (Young et al. 1988). Another study by
Englander and his co-workers suggests that cerebral hypoxia
causes mitochondrial and nuclear DNA damage in the rat
hippocampus and cortex (i.e., rat brain) (Englander et al.
1999). Moreover, HIF-1 and HIF-2 in severe tumor hypoxia
condition involved in the replication-associated generation of
gamma- histone variant 2AX (γH2AX) in endothelial cells,
which leads to neovascularization, and accumulation of
γH2AX enhances a tumor cell’s scope to repair DNA

damage, contributing to chemoresistance (Economopoulou
et al. 2009; Wrann et al. 2013). Recently, a study by Riffle
et al. mentioned the involvement of ATMkinase, but not ATR
responsible for γ-H2AX formation (also known as DNA dam-
age marker) in the hypoxic tumor spheroids, which mimic
tumor microenvironments of A673 spheroids by hypoxia-
induced phosphorylation of H2AX (Riffle et al. 2017).
Indeed, hypoxic cells or cells growing in the hypoxic micro-
environment acquire gene amplification, point mutations, and
increased numbers of DNA strand breaks periodic hypoxia
and reoxygenation cycle. These genetic changes cause further
activation of oncogenes or inactivate tumor suppressor genes,
resulting in a mutator phenotype (Chan et al. 2009)

Mutagenic sensitivity: a biological marker
of cancer susceptibility

Comprehensive studies of tumor biology with different
methods, including chemical carcinogenesis, molecular biol-
ogy, developmental biology, biochemistry, and tumor virolo-
gy, have highlighted the contributing role of genetic and epi-
genetic mechanisms in tumor development and progression.
Carcinogens are the agents which promote cancer growth by
altering and interfering with major cellular activities. Recent
technological advancements, such as gene expression profil-
ing, next-generation sequencing, and multi-omics analysis,
are significant breakthroughs in the molecular characterization
of tumors and associated mechanisms as modulated by the
carcinogens (Perera and Weinstein 2000). Genetic and epige-
netic alterations in the cellular pathways related to growth,
differentiation, and death represent the fundamental cause of
cancer. Interestingly, genetic and epigenetic mechanisms
work sequentially to trigger tumorigenic processes, and these
processes can be targeted therapeutically to suppress the can-
cerous affected region completely. The following sections will
shed light on various genetic and epigenetic alterations in-
duced by carcinogens.

Genetic effect of environmental mutagens and
carcinogens

Cancer is characterized by continuous genetic alterations, in-
cluding mutations, DNA damage, copy number variations,
gene amplification, chromosomal abnormalities, and gene fu-
sions (Adeola et al. 2021). These genetic aberrations can be
specified to a particular segment of DNA or span the whole
length of it and ultimately lead to either oncogene activation or
tumor suppressor gene inactivation (Chakravarthi et al. 2016).
Genetic and chromosomal stabilities are the characteristic fea-
tures of most cancers, and progress has been achieved in in-
vestigating therapeutic options to cure cancer. Moreover, stud-
ies have revealed that genetic alterations in non-coding RNA

62119Environ Sci Pollut Res (2022) 29:62111–62159



also promote tumorigenesis by altering promoters' activities,
enhancers, and other regulatory elements. MicroRNA
(miRNA), the single-stranded RNA molecules, are extensive-
ly researched and known to be dysregulated in a variety of
cancers (Melo and Esteller 2011). Both genotoxic and non-
genotoxic carcinogens are responsible for gene expression
changes and support tumor growth and proliferation.

Carcinogenic agents that do not require anymodification or
activation to cause genetic effects are termed activation-
independent carcinogens. These agents, for instance, radia-
tions, nitrosamines, and alkylating agents, can directly interact
with DNA and induce disarrangement of genetic material and
the formation of DNA adducts. On the contrary, activation-
dependent agents, such as, polycyclic aromatic hydrocarbons
(PAHs), mycotoxins, and aromatic amines, require phase I or
II type metabolic reactions to exert their genotoxic effects
(Barnes et al. 2018). Several reactive oxygen species, like
hydroxyl radicals and reactive nitrogen species like
peroxynitrite, are known for their genotoxic effects. ROS-
induced damage is the major contributing factor to base mod-
ifications, generation of apurinic/apyrimidinic sites, and pro-
duction of single-strand DNA breaks. Interestingly, ROS-
induced damage produces various modified bases, which gets
accumulated and promote genetic defects and instability
(Kryston et al. 2011). Oxidative damage generated by reactive
free radicals further induce DNA-crosslink (DPCs) formation.
A couple of studies have confirmed that environmental expo-
sure to ROS/RNS developing substances, such as NiCl2, sul-
fur dioxide, arsenite, and benzopyrene, triggers DPCs forma-
tion, which further causes interruptions in DNA replication
and transcription processes (Kojima and Machida 2020).

Heavy metals like Cr, As, nickel, mercury, and aluminum are
considered the ambassadors of mutagenic changes. For instance,
pentavalent Cr makes a complex with a guanine base and induces
conversion of the base to 8-Oxoguanine that will further cause G
to T transversions (Jadoon and Malik 2017). In a study in human
recombinant hepatoma cells, chromate (VI) was found to induce
transcriptional activation of 13 different promoters that ultimately
caused activation of various signal transduction pathways (Tully
et al. 2000). Besides this, the carcinogenic effect of nickel was
established by many studies as the metal induces DNA damage
through DNA binding and production of ROS. The metal also
interferes with DNA repair mechanisms, including nucleotide re-
pair, BER, mismatch repair, and homologous and non-
homologous recombinational repair pathways (Guo et al. 2019).
Surprisingly, nickel was found to regulate the gene expression of
various genes such as telomere marker gene, hypoxia-regulated
gene Cap43, and several other genes related to mitogenesis
(Beyersmann 2002). Additionally, As has also been investigated
for its carcinogenic and cytotoxic effects. As is known to promote
mutations in tumor protein p53 (T53), interference with DNA
repair activities, inhibition of poly ADP-ribosylation, suppression
of the transcriptional activity of zinc finger proteins, such as XPA

and PARP1, and ubiquitin-mediated proteolysis of DNA repair
enzymes (Muenyi et al. 2015).

Epigenetic effect of environmental mutagens and
carcinogens

Epigenetic alterations have a prominent role in triggering
cancer-specific characteristics and acquisition of tumor devel-
opment. Genomic hypo-methylation, hyper or hypomethyla-
tion of DNA, and histone proteins’ modifications are the ma-
jor epigenetic features associated with neoplastic cells (Jones
and Baylin 2007). Studies have revealed that tumorigenesis is
the result of the cumulative effect of various epigenetic mod-
ifications. For instance, acetylation of histone proteins H3,
H4, methylation of H3K9, and cytosine methylation are ob-
served during gene silencing (Richards and Elgin 2002). DNA
methylation, histone methylation, and histone acetylation are
reported as the major epigenetic regulatory mechanisms asso-
ciated with cancer. DNA methylation is a unifying feature of
cancers and contributes to the inactivation of transcriptional
events and chromatin architecture (Klutstein et al. 2016).
Similarly, histone modifications, including mainly acetylation
and methylation and phosphorylation, glycosylation carbon-
ylation, SUMOylating, and ribosylation, both at the promoter
and targeted level, have a contributory role in tumor develop-
ment (Kurdistani 2007).

Cumulating shreds of evidence have suggested that both
genotoxic and non-genotoxic carcinogens contribute to epige-
netic abnormalities associated with cancer (Pogribny and
Rusyn 2013). The carcinogenic potential of heavy metals such
as aluminum, Cr, nickel in inducing epigenetic changes like
the silencing of DNA and tumor suppressor genes have been
reported in many studies. Both short and long exposures to
arenite cause modifications in DNA methylation patterns.
Research with mice exposed to arenite has shown that the
increased metal concentration was associated with altered
DNA methylation, silencing of cytochrome P450 family
members, and upregulation of glutathione S-transferase fam-
ily members(Xie et al. 2007). Likewise, in lung cancer cells,
nickel transformation was linked with the silencing of DNA
repair gene O6-methylguanine DNA transferase (MGMT)
correlated with hypermethylation of MGMT promoter along
with chromatin condensation (Ji et al. 2008). Furthermore, the
epigenetic potential of trivalent chromium is validated by a
study where the metal has induced hypermethylation of
CYP1a1 promoter and also silencing of CYP1a1 gene expres-
sion by recruiting histone deacetylase 1 (HDAC1) and DNA
methyltransferase (DNMT) enzyme (Wei et al. 2004).

Besides heavy metals, gaseous olefin 1,3-butadiene, a
monomer used in rubber production, is also known for its
carcinogenicity and induced epigenetic alterations. The gas
induces genomic instability, chromatin de-compaction, and
activation of transposons. Interestingly, it was found that the
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loss of methylation at H3K9 and H4K20 was the primary
factor responsible for chromatin de-compaction and transcrip-
tional repression (Koturbash et al. 2011). In addition to this,
several pharmaceutical compounds, for instance, diethylstil-
bestrol, a synthetic nonsteroidal estrogen, is a known human
carcinogen that causes demethylation and transcriptional si-
lencing of several critical genes related to tumorigeneses such
as lactoferrin (Lf), c-fos, and nucleosomal binding protein 1
(Nsbp1) (Pogribny and Rusyn 2013). In parallel, phenobarbi-
tal, a non-genotoxic carcinogen, also induces epigenetic
abnormalities. It has been reported that the compound
induces DNA methylation in genes related to the cyto-
chrome P450 family in experimental tumor mice model
(Lempiäinen et al. 2011).

Moreover, many biological carcinogens, such as aflatoxins
isolated from Aspergillus flavus (A. flavus) and Aspergillus
parasiticus (A. parasiticus), are also potent epigenetic regula-
tors. In a study, Zhang et al. demonstrated that exposure to
aflatoxin B1 (AFB1) is responsible for hypermethylation me-
diated inactivation of several tumor suppressor genes
RASSF1, MGMT, and p16. They validated their hypothesis
by showing a positive correlation between AFB1-DNA levels
and methylation patterns of associated genes (Zhang et al.
2002). Similarly, several epigenetic modulations caused by
H. pylori have been disclosed in gastric cancer studies.
H. pylori infection is the source of aberrant DNA methylation
of several cancer-related genes, including lipoxygenase
(LOX), thrombomodulin (THBD), actin-related protein 2/3
complex, subunit p41 (p41ARC), and tumor suppressor
p16INK4A (Nakajima et al. 2009).

Relationship between DNA adduct and tumor
occupation

DNA adduct is a small piece of DNA that binds to a chemical
covalently and causes DNA damage and abnormal DNA rep-
lication. The process of adduct formation is considered the
initiation of mutational events, and thus DNA adducts serve
as potential biomarkers for cancer diagnosis(Rajalakshmi
et al. 2015). Early studies in cell culture models have ex-
plained that many chemical carcinogens generate DNA ad-
ducts and induce mutagenesis. Further, Maher and
Mccormick’s study validated the hypothesis of DNA adducts
as they found a strong correlation between the concentration
of carcinogens, DNA adduct formation, mutagenesis, and tu-
mor formation (Maher and Justin McCormick 1984). Several
studies are available in the literature to define the role of DNA
adducts in tumorigenesis. One of the notable examples is
aristolochic acid. This chemical induces DNA damage by
7-(deoxyadenosine-N6-yl)-aristolactam I (dA-AL-I) adduct
formation as measured in the urothelial tissues of the exposed
individuals (Chen et al. 2012). Similarly, UV irradiation-

induced DNA damage in human cancers is another ex-
ample highlighting the role of DNA adducts. UV-
induced damage results in the production of cyclobutane
pyrimidine dimers and 6-4 photoproducts that induce
CC to TT mutations (Cadet and Douki 2018). Besides,
methylating agents, Cisplatin, cigarette smoke, aflatoxin,
malondialdehyde, and 4-hydroxynonenal are the well-
known DNA adducts (Garner 1998).

The human diet contains several mutagenic and carcino-
genic ingredients; therefore, several research groups are inter-
ested in investigating the process of DNA adduct formation in
diet-related carcinogenic pathways (Hemeryck and
Vanhaecke 2016). Mycotoxins, including aflatoxins,
fumonisin, sterigmatocystin, and others, have been studied
for their carcinogenic potential; however, only AFB1 has been
categorized as a human carcinogen. Exposure to AFB1 causes
the formation of DNA adducts like AFB1-N7-G through lipid
peroxidation, as revealed from studies in hepatocellular carci-
noma (Wogan et al. 2004) (Wang and Groopman 1999).
AFB1 first transformed itself into carcinogenic AFB1-8,9-ep-
oxide and AFB1-Fapy-Dg, which further reacts with
guanine residues to produce mutagenic DNA adducts,
which in turn induce cell cycle checkpoint deterioration
(Engin and Engin 2019)

Moreover, ptaquiloside found in bracken fern has been
associated with the occurrence of bladder and gastrointestinal
tumors. Exposure to this carcinogen leads to the formation of
DNA adducts ptaquilosin and ptaquilosin dienone with
alkylating properties (Hodge 1973). Like so, flavoring sub-
stances estragole and methyleugenol are also linked with
DNA adduc t fo rmat ion and carc inogenes i s . 18
N2-(transisoestragol-3’-yl)-G, N2-(estragole-1’-yl)-G,
7-(transisoestragol-3’-yl)-G, and 8-(trans-isoestragol-3’-yl)-G
are the DNA adducts generated from estragole (Paini et al.
2012) while [N6-(transmethylisoeugenol-3’-yl)-A and
N2-(trans-methylisoeugenol-3’-yl)-G are DNA adducts re-
sulted from methyleugenol (Smith et al. 2002b).

DNA adducts can be analyzed and measured with different
methods, and in the past three decades, various ever-
improving ways have been documented. The classical ap-
proach is the use of radioactive carcinogens. The method uses
either carbon-14 or tritium-based labels and can measure 1
DNA adduct per 106 or 107 nucleotides. The most sensitive
physio-chemical method of adduct detection is 32P-post label-
ing method/immunoaffinity method. The procedure does not
require prior knowledge of the adduct structure and helps
detect a wide range of high molecular weight chemical carcin-
ogens such as polycyclic aromatic hydrocarbons, cigarette
smoking, and dietary mutagens (Watson 1987). Gas or liquid
chromatography-mass spectrometry, based on ionization tech-
niques, is another specific method of adduct measurement.
The technique requires hydrolysis or derivatization of carcin-
ogen before quantifying the adduct levels (Gavina et al. 2014).
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For instance, a recent study has highlighted the relevance of
the high-performance liquid chromatography-tandem mass
spectrometry (HPLC/MS/MS) technique to quantify 1,N2-
propanodGuo adducts generated by reaction between alde-
hyde and DNA bases (Sanchez et al. 2021b). Fluorescence-
based methods have also been exploited as adduct measure-
ment techniques to provide better specificity and sensitivity. A
more sensitive version of the technique utilizes fluorescent
dyes such as BODIPYFL, and the adducts are separated and
then detected by laser-induced fluorescence (Jang et al. 2006).

Additionally, immunoassays with antibodies have been
used widely as a method of DNA adduct quantification.
Competitive quantitative assays and dot blot assays are the
most commonly used immunoassays. A fascinating feature
of immunoassays is their sensitivity as they can detect 1 ad-
duct/108 nucleotide; sometimes, the detection will be as spe-
cific as 2-3 adducts/109 nucleotides. Another essential feature
of these assays is their specificity as the antisera are designed
to a particular adduct and can recognize structurally similar
adducts related to the same or even different carcinogens clas-
ses. The technique has been used widely to measure adducts
present in human tissues and blood samples (Brown 2012)
(Santella 2018). Recent work described how technological
advancements had improved the evaluation of DNA adducts.
The advancement of next-generation sequencing (NSG)
methods has significantly opened up new avenues for DNA
adductome analyses. In this approach, the first step is LC-MS-
based analysis followed by validation of biological activities
and analysis of mutational signatures. The last step is to mea-
sure DNA adduct levels in blood or tissue samples (Totsuka
et al. 2021).

Crosstalk between DNA damage
and inflammation in multiple steps
of carcinogenesis

Inflammation, including both acute and chronic, is induced by
multiple factors, including environmental carcinogens (al-
ready explained above in review), infectious agents, TME
components, and hypoxia. Abundance studies support that
inflammation produces free radicals resulting in DNA dam-
age, and free radicals damage healthy cells and causes inflam-
mation (Pham-Huy et al. 2008). Inflammation also results in
oxidative stress, which upregulates cancer developments in
organs. 8-hydroxy-2-deoxyguanosine has the potential to be
used as a biological marker for oxidative stress. Under the
exposure of UV radiation or free radical damage, oxidative
nucleotide such as glycol, dTG, and 8-hydroxy-2-
deoxyguanosine is found to be increased during oxidative
damage to DNA (Hattori et al. 1996). In cancer, failed DNA
repair mechanism causes unrepaired DNA lesion, which
causes a mutation in the genome and further leads to

microsatellite instability and genome instability (Negrini
et al. 2010). Studies showed cancer cells, after undergoing
apoptosis, release immunogenic cell death (ICD), which acti-
vates the host’s immune systems (Pham-Huy et al. 2008).
How inflammation mediates DNA damage and their crosstalk
mechanism and the inflammatory microenvironment's in-
volvement have been explained in upcoming subsections.

Inflammation-mediated DNA damage

Acute inflammation has been linked with a defense mecha-
nism. In contrast, chronic inflammation has been associated
with carcinogenesis, including cellular transformation, pro-
motion, survival, proliferation, invasion, angiogenesis, metas-
tasis, autoimmune, neurological disease, diabetes, etc.
(Coussens and Werb 2002; Mantovani 2005). In 1987, the
study by Lewis and et al. reported that inflammation and the
release of genotoxic oxidants might be one mechanism for
carcinogenesis (Lewis and Adams 1987). Under chronic con-
dition not only epithelial cells but also inflammatory cells such
as lymphocytes, macrophages, and plasma cells produces re-
active oxygen/nitrogen species (ROS/RNS) or reactive oxy-
gen and nitrogen species (RONS), which in turn causes (a)
DNA damage including nucleobase oxidation, deamination,
halogenation, and alkylation, as well as strand breaks of the
phosphodiester backbone, (b) carbonylation (an irreversible
and irreparable protein modification induced by oxidative
stress) in organs, leading to cancer. A plethora of studies
showed that numerous RONS is a potent oxidizing agent.
RONS oxidized guanine (known to be the most easily oxi-
dized DNA base) to produce mutagenic 8-oxo-guanine
(8oxoG) and 8-nitro-guanine (which is unstable and quickly
becomes an abasic site) (Steenken and Jovanovic 1997;
Lonkar and Dedon 2011). Thus 8oxoG can lead to G➔T
transversions mutation, and this is more susceptible to oxida-
tion than its parent guanine, leading to the production of var-
ious more stable and mutagenic secondary products such as
spiroiminodihydantoin (Sp), guanidinohydantoin (Gh),
oxazolone (Oz), oxaluric acid (Oa), and cyanuric acid (Ca)
(Cheng et al. 1992; Uppu et al. 1996). Murata’s review talked
about the presence of mutagenic DNA lesions, such as 8-oxo-
7,8-dihydro-2′-deoxyguanosine (8-oxodG) and 8-nitro-
guanine in inflammation-related Cancer (Murata 2018;
Singh et al. 2019). In addition to oxidation, RONS can deam-
inate DNA bases, and deaminated products are mutagenic in
nature. Spontaneous deamination of the methylated form of
cytosine (5meC) leads to a change base into uracil or thymine
(causing C➔T transitions). This molecular signature has been
found in many cancers. The amount of mutation correlates
with the cancer diagnosis stage; thus, this supports cancer-
associated inflammation causes deamination and accumula-
tion of mutations (Marusawa et al. 2011). Further, inflamma-
tory cells also secrete hypohalous acids, which react with
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DNA during inflammation to form the adducts. For example,
neutrophils secrete the myeloperoxidase enzyme to produce
hypochlorous acid (HOCl), and eosinophils secrete eosinophil
peroxidase to produce hypobromous acid (HOBr). Inevitable,
the halogenated nucleobase, 5-chlorocytosine (5ClC), has a
greater possibility to accumulates than oxidative deamination,
and thus 5ClC has been assigned a biomarker for chronic
inflammation (Kay et al. 2019). DNA damage causes inflam-
mation contributes to genomic instability (a hallmark of can-
cer) (Negrini et al. 2010), and both inflammation and genome
instability share a complex relationship. A positive feedback
loop occurs where DNA damage can trigger cell cycle arrest,
apoptosis, senescence, and necrosis, of which the latter two
can aggravate inflammation (Aoshiba et al. 2013). This feed-
back loop is deliberately regulated by DNA repair pathways,
transcription factors, and cellular signals. Failure of DNA re-
pair mechanism or unrepaired DNA damage from inflamma-
tion helps develop cancer by increasing mutagenesis. A study
by Jaiswal et al. reported that inflammatory cytokines (such as
IL-1β, IFN-γ, and TNF-α) induce DNA damages and com-
promise DNA repair activity via a nitric oxide(NO)-dependent
mechanism (Jaiswal et al. 2000). NO at a concentration less
than 400 nM act as signaling molecules, but innate immune
cells produce high levels of superoxide (O*2

-) and enzymes
that contribute to RONS production along with radicals (e.g.,
superoxide, hydroxyl radical *OH, and nitrogen dioxide
NO*2) , anions (e .g . , peroxyni t r i te ONOO-, and
nitrosoperoxycarbonate ONOOCO2

-), anhydrides (e.g., ni-
trous anhydride N2O3), hypohalous acids (e.g., hypochlorous
acid HOCl and hypobromous acid HOBr), and hydrogen per-
oxide (H2O2). Moreover, pro-inflammatory cytokines ener-
gizing intracellular RONS production (Kay et al. 2019).
ROS (being secondary messenger), hypoxia, and DNA dam-
age contribute to the signaling cascade of receptors (e.g.,
members of the Toll-like receptors (TLRs) or nucleotide-
binding oligomerization domain (NOD)-like receptors
(NLRs) that instigate pro-inflammatory innate immune re-
sponse through an array of functionally diverse down-stream
signaling elements (e.g., NF-κB, STAT1, IRF-3, and caspase-
1 activation) (Pálmai-Pallag and Bachrati 2014) also cytokines
such as IL6, STAT3, and TNF-α (Kidane et al. 2014).
Moreover, damaged DNA leads to upregulation of IRF7 and
phosphorylation of IRF3, resulting in its translocation to the
nucleus from the cytoplasm, where it functions as the tran-
scription factor. IRFs lead to the production of type IFNs
and pro-inflammatory factors (Brzostek-Racine et al. 2011).
Besides this, DNA damage influences activation of ATM and
a series of consecutive post-translational modifications such
as SUMOylation, phosphorylation, and ubiquitination of
NEMO in the nucleus, which are vital for signal transduction
to activate NF-κB (McCool and Miyamoto 2012). Other stud-
ies showNF-κB activates the human IFN-λ1 gene, IRF-1, and
IRF-7 that can further impact the expression of IFN-α and

IFN-λ genes (Brzostek-Racine et al. 2011). NF-κB, transcrip-
tion factor regulates expression of several pro-inflammatory
gene products such as TNF and its family, IL-1a, IL-1b, IL-6,
IL-8, IL-18, chemokines, MMP-9, VEGF, COX-2, and 5-
LOX, leading to tumorigenesis by inhibition of apoptosis,
proliferation, angiogenesis, invasion, and metastasis.
Numerous studies support tumor-producing inflammation
can stimulate NF-κB, resulting in iNOS -dependent DNA
damage. Moreover, studies also showed that hypoxia induces
hypoxia-iNOS, which increases intracellular RNS and ROS
free radicals concentration, resulting in DNA damage with
poor prognosis (Janssens and Tschopp 2006; Kawanishi
et al. 2017). The growing evidence of studies in the inflam-
mation area suggests that carcinogens (such as cigarette
smoke), tumor promoters, carcinogenic viral proteins, chemo-
therapeutic agents, and γ-irradiation induces NF-κB
(Aggarwal et al. 2006). Anti-inflammatory drugs have the
ability to target NF-κB and its regulated genes, and thus have
the potential for targeting cancer (Yu et al. 2020). A study by
Sokolova and Naumann mentioned human pathogen
H. pylori, immune cells, and epithelial cells create inflamma-
tory environments by promoting oxidative stress (stimulate
the production of RONS) that results in DNA damage, apo-
ptosis and cell proliferation in gastric mucosa, which leads to
intestinal metaplasia and gastric carcinogenesis. Further, bac-
teria H. pylori can stimulate RONS production in immune
cells. RONS is toxic to mitochondrial DNA (mtDNA), caus-
ing genome instability and loss of homeostasis (Calvino-
Fernández et al. 2008; Sokolova and Naumann 2019).
Released extracellular or intracellular oxidamaged mtDNA
(mtDNAox) fragments released from cells act as mediators
of immune response via DAMP that further activates TLR9
receptor signaling. Other researchers have also studied
the relationship between DNA damage and chronic in-
flammation in human cancer (Kawanishi et al. 2017).
Prolonged inflammation hampers the DNA repair mech-
anism (downregulates MMR and BER mechanism),
which eventually leads to cancer.

Tumor microenvironment-induced inflammation
followed by DNA damage

Tumor cells generate an inflammatory microenvironment that
encourages tumor cell proliferation and survival, ECM degra-
dation and remodeling, abnormal vasculature, immune cell
infiltration. These collaboratively facilitate growth which en-
ables cancer progression (Coussens and Werb 2002). The sol-
id tumor shows inflammation in the inflammatory microenvi-
ronment; immune cells like neutrophils, macrophages release
NO, and superoxide (O2

-). During injury or inflammation
sites, neutrophils and macrophages migrate and produce ex-
tracellular ROS and RNS. Moreover, at the infection site,
neutrophils and macrophages generate an array of including
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superoxide (O2
-), H2O2, HOCl, NO*, and NO2* radicals

(Mittal et al. 2014). ROS and RON are chemicals components
of inflammatory with free radicals, containing one unpaired
electron (Biswas et al. 2017). UV-A or γ-irradiation, drugs,
heavy metals, etc., are the exogenous source and oxidative
metabolism, apoptosis, bystander cells, or enzymatic activity
are an endogenous source of oxidative stress mediating ROS
production (Pálmai-Pallag and Bachrati 2014). NO is long-
lived free radicals that diffuse through the extracellular matrix
(ECM). They enter the nucleus by crossing through the plas-
ma membrane and the cytoplasm of epithelial cells; in con-
trast, O2− is barely long-lived to react with DNA inside the
epithelial cells’ nucleus. Alternatively, inflammatory cells also
secrete cytokines (TNF-α) to induce O2− accumulation in
neighboring epithelial cells (Grivennikov et al. 2010).

Ning and a co-worker mentioned the presence of powerful
DNA lesions in cancer and inflammatory cells in the stroma of
nasopharyngeal carcinoma (NPC) patients. Further, iNOS ex-
pression was spot in the cytoplasm of cancer cells positive for
8-nitroguanine (Ma et al. 2008). Another essential component
of TME is hypoxia, which is a characteristic feature of both
tumors and inflammation. HIFs are the indispensable regula-
tor of tumor inflammation (Mamlouk and Wielockx 2013;
Triner and Shah 2016). The hypoxic condition leads to high-
mobility group box-1 protein (HMGB1) translocation of
HMGB1 to the cytoplasm from the nucleus (Kang et al.
2013). HMGB1 also release in the extracellular environment
by two mechanisms, including active and passive release.
Activated immune cells (e.g., macrophage and monocytes)
actively release, whereas damaged or necrotic cells participate
in the passive release of HMGB1 in the environment. Active
HMGB1 release encourages neutrophil recruitment, activation
of dendritic cells, and the release of pro-inflammatory cyto-
kines, such as TNF-α and IL-6, frommacrophages (Yun et al.
2021). Extracellular secreted HMGB1 from cells encourage
various cellular functions, including proliferation, inflamma-
tion, and angiogenesis, along with hampering host anti-cancer
immunity, which together contributes to tumorigenesis
(reviewed in (Wang and Zhang 2020)). Besides, HMGB1
activates the pro-inflammatory signaling pathway and is in-
volved in forming an inflammatory bone-marrow microenvi-
ronment (Yuan et al. 2020). The interplay of HMGB1 with
RAGE, TLR2, TLR4, and TLR9 (receptor for HMGB1 CpG-
DNA complex) transduces cellular signals through a custom-
ary pathway that instigate the NF-κB pathway, and it also
interacts with CXCL12/CXCR4 to activate the NF-κB path-
way and thus facilitating the adhesion and survival of malig-
nant cells (Ibrahim et al. 2019). The CXCL12 (SDF-1)/
CXCR4 axis is associated with tumor progression, angiogen-
esis, metastasis, and survival by stimulating various signaling
pathways, such as ERK1/2, Ras, p38 MAPK, PLC/MAPK,
and SAPK/JNK (Zhou et al. 2017). Numerous studies showed
that ROS and RNS induce ICDs in cancer cells, which further

enhance HMGB1 expression and HMGB1-DNA forms a
complex leading to NO generation 8-nitroguanine formation
(Sokolova and Naumann 2019). Indeed, the HMGB1 and
TIM-3 interaction promotes VEGF secretion and thus pro-
motes tumor angiogenesis. This interaction can be a potential
target for tumor immunogenic chemotherapy and develop-
ment (Yasinska et al. 2018). Moreover, data by Parker et al.
allude HMGB1 facilitates MDSCs differentiation in the bone
marrow and hampers the activation of antigen-driven CD4+
and CD8+ T cells (Parker et al. 2014; Tachibana 2018). More
importantly, NF-κB is an essential player in inflammation,
which also regulates iNOS expression. Abundant pub-
lished evidence suggests that pro-inflammatory cyto-
kines such as TNF-α and IL-6 induce iNOS expression,
leading to the formation of mutagenic DNA lesions and
carcinogenesis under the inflammatory microenviron-
ment (Sokolova and Naumann 2019).

Another type of inflammation developed in response to
anti-cancer therapies (chemotherapy, radiotherapy, immuno-
therapy, targeted therapy, etc.) is therapy-induced inflamma-
tion. Dying cells release DAMPs such as ATP, calreticulin,
and HMGB1, which stimulate immune-stimulatory cytokines
and enhance the release of tumor neo-antigens which activate
de novo anti-tumor T cell responses or may be responsible for
immunosuppression. This response is context-dependent and
varies with individual and cancer types. Different cells present
in TME, such as myeloid cells and fibroblasts and infiltrating
cells, produce cytokines and growth factors such as TNF,
EGF, IL-6, Wnt ligands. These growth factors may lead to
chemoresistance as they are responsible for therapy efficiency
used for treatment (Greten and Grivennikov 2019). TNF-α is
probably an essential EMT-promoting cytokine and contrib-
utes to invasion in many cancers (Sistigu et al. 2017).

A recent study by Srivatsa and co-workers suggested that
enhanced expression of EGFR in myeloid cells from colorec-
tal fibroblast is a significant factor in therapy resistance and
linked with tumor progression and reduced survival time of
colorectal cancer patients (Srivatsa et al. 2017). This is also
supported by another study by Halbrook et al., where they
have mentioned how the release of pyrimidines such as
deoxycytidine from tumor-associated macrophage (TAM) in-
hibits gemcitabine therapy and is responsible for developing
gemcitabine resistance in patients with pancreatic ductal ade-
nocarcinoma (PDA) (Halbrook et al. 2019). Further, the pleth-
ora of studies showed that inflammation influences EMT on
several levels (because the microenvironment is composed of
inflammatory cells and inflammatory mediators, such as cyto-
kines and chemokines, which strongly contribute to the EMT
program) (Jing et al. 2011; Suarez-Carmona et al. 2017).
Moreover, EMT has also been mediated and activated by (a)
stimuli triggered by stromal cells and ECM components of the
surrounding microenvironment, (b) soluble factors [epidermal
growth factor (EGF), fibroblast growth factor (FGF),
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hepatocyte growth factor (HGF), PDGF, TGF-β and VEGF,
and (c) morphogens Wnt, Notch and Sonic hedgehog, and
pro-inflammatory cytokines (i.e., IL-6, IL-8, TNF-α)
(Sistigu et al. 2017), also, inflammatory microenvironment
(Sistigu et al. 2017). Various cytokines, such as TNF and
IL-1β, can alter the expression of transcription factors Twist
and Slug involved in EMT (Ricciardi et al. 2015; Suarez-
Carmona et al. 2017). A study by Labelle and his colleague
showed direct interaction of cancer cells with platelets,
resulting in EMT and synergistically activating the
TGFβ/Smad and NF-κB pathways in cancer cells, promoting
invasion metastasis (Labelle et al. 2011).

In solid tumors such as breast, head and neck, pancreatic,
lung, brain, prostate, and cervix, DSB repair mechanisms get
profoundly influenced by TME cellular and non-cellular factors
including hypoxia, inflammation, genotoxic stress, cellular me-
tabolism, and the immune system. The role of the TME and its
relationship with DNA damage is emerging as an essential
consideration in developing anti-cancer therapy that targets
DNA repair-deficient cancer cells. This tumor-TME-DNA
damage relationship needs new insights. It is a critical area of
investigation to treat cancer (Lama-Sherpa and Shevde 2020)
effectively. The interrelationship between inflammation, ROS
generation, cellular physiology, and pathology in tumor cells
and their microenvironment is described in Figure 3.

Expanding focus on DNA damage in cancer
immunotherapy: a sting in a tail

Numerous exogenous and endogenous insults result in DNA
damage, and multiple DNA repair mechanisms are available
in humans. DNA damage and repair mechanisms have been
investigated in various cancers and play an essential role in
carcinogenesis. Cancer cells have relaxed DNA repair mech-
anisms and are characterized by the property of resistance to
cell cycle checkpoints that allow continuous proliferation and
tumor formation. The concept of DNA damaging chemother-
apeutics in various cancers has a long history. For example,
the first compounds as DNA damaging agents that entered the
market were DNA intercalating alkylating agents such as
Carmustine, Lomustine, and Semustine, which modify DNA
bases by forming cross-linkages (Nikolova et al. 2000).
Similarly, other compounds inducing DNA damage effect
are platinum compounds such as Carboplatin, Cisplatin,
Oxaliplatin induce DNA damage by forming DNA crosslinks
(Hato et al. 2014); antimetabolite DNA antagonists like 5-
Fluorouracil, Gemcitabine, Floxuridine, 6-mercaptopurine,
Fludarabine, Cladribine induce DNA damage by generating
replication interference (Tiwari 2012); and topoisomerase in-
hibitors such as Etoposide, Doxorubicin, Daunorubicin, inter-
fere with DNA function by inhibiting the DNA-protein com-
plex stability (Buzun et al. 2020) (Cheung-Ong et al. 2013).

Although chemotherapeutic DNA damaging agents have been
investigated for their anti-cancer properties in various cancers,
several adverse outcomes are also reported. The problems
associated with chemotherapeutic agents have moved the fo-
cus of cancer therapy towards an immunotherapeutic
approach.

Recent investigations have suggested an interplay exists be-
tween DNA damage repair and the immune system. This
crosstalk has opened up the possibilities of modulating DNA
by targeting immune system-related mechanisms, as explained
in Figure 4. Studies have reported that DDR defects activate the
host immune system by activating the STING pathway, which
results in interferon production and amplification in T cell re-
sponse. Studies in DDR-deficient breast cancers have found ac-
tivation of cGAS/STING/TBK1/IRF3 pathway with enhanced
interferon production, increased production of tumor-infiltrating
lymphocytes (TILs), and upregulation in the activity of TANK-
binding kinase 1 (TBK1) (Parkes et al. 2017). One of the essen-
tial mechanisms regulated by the DNA damage repair system in
tumor cells is neo-antigen production. The mutations that arise
due to failed DNA damage and genomic instability trigger the
production of tumor-specific neo-antigens presented on cell sur-
faces that will be recognized by T cells and produce an anti-
tumor response (Yarchoan et al. 2017). DDR deficiencies in
cancers promote the frequency and occurrence of non-
synonymous mutations that lead to a new peptide formation.
For instance, the high somatic mutational rates and abnormal
chromosomal numbers promote neo-epitope formation in
BRCA1/2 tumors (Strickland et al. 2016). Another crucial mech-
anism to be considered is the activation of immune responses by
apoptotic signals produced by damaged cancer cells. The apo-
ptotic cells secrete HMGB1 proteins, which in turn stimulate T
cell immunity by promoting myeloid differentiation factor 88
(MyD88)/Toll-interleukin 1 receptor domain-containing adaptor
inducing INF-β (TRIF) signaling (Apetoh et al. 2007).

Furthermore, the cellular DDR machinery also induces the
release of pro-inflammatory cytokines within the tumor mi-
croenvironment. A study has shown that DNA damage causes
the release of pro-inflammatory cytokines TNF-α and IL-6
(Karakasilioti et al. 2013). Studies in DDR-deficient breast
cancer cells have also shown enhanced production of
chemokines CXCL10 and CCL5, creating a pro-
inflammatory environment in cells (Parkes et al. 2017).
Additionally, DNA repair also regulates the expression of
programmed death-ligand 1 (PD-L1) through the STAT-
IRF1 pathway. For instance, loss of DNA repair proteins
was associated with increased PD-L1 expression after radio-
therapy and chemotherapy treatment. Similarly, activation of
the STING pathway after DNA damage has also been associ-
ated with increased PD-L1 expression. STING pathway acti-
vation increases the transcriptional activity of type-I IFN and
other cytokines after DNA damage (Grabosch et al. 2019). A
study has also demonstrated the role of DSBs in
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regulating PD-L1 expression in cancer cells in an ATM/
ATR/Chk1-dependent manner, and activation of Chk1 is
the critical step in regulating PD-L1 expression. The

study has also reported that activation of canonical
STAT1/STAT3 and IRF1 pathways are associated with
DSB mediated PD-L1 upregulation (Sato et al. 2017).

Fig. 3 Schematic presentation of interrelationship between inflammation,
ROS generation and cellular physiology and pathology in tumor cells and
its microenvironment: Inflammatory cells (such as macrophage) secrete
cytokines such as TNF-α in the tumormicroenvironment to stimulate O2

−

formation via Nox where it reacts with NO, which is generated by
especially iNOS to form ONOO−. This causes DNA lesions (8-
nitroguanine, 8-oxodG) in epithelial cells, which damage DNA. NO
and ROS suppress the DNA repair mechanism, which results in genetic
alteration (i.e., genomic instability) and epigenetic changes. Moreover,
the epithelial cell containing damages DNA undergoes apoptosis, where
HMGB1 (a nuclear protein), act as DAMPs translocate to extracellular
space from nucleus. It is a crucial pro-inflammatory cytokine in its

secretory form. Extracellular HMGB1 binds to different receptors
include RAGE and TLRs. The effects of HMGB1 are executed through
multiple signaling pathways, including NF-κB (p65) and MAPK.
Various cytokines IL-8, IL-6, IL-1β, TNF-α release in environment
and resulted in tumorigenesis and chronic inflammation. Moreover,
macrophage also produces NO (sufficiently long-lived to diffuse
through the extracellular matrix) and enter epithelial cells to mediate
DNA damage. In addition, IL-8 mediates HMGB1-induced tumor
angiogenesis and EMT. Together all lead to cancer. iNOS, inducible
nitric oxide synthase; DAMPs, damage-associated molecular patterns;
HMGB1, high mobility group box 1 protein; EMT, epithelial-
mesenchymal transition
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The immune mechanisms governed by DNA damage and
associated mechanisms have developed a recent interest in
developing immunotherapeutic anti-cancer agents. Several
combinatorial therapeutic regimens involving DNA-
damaging agents and immune-checkpoint inhibitors (ICIs)
are being developed. This strategy may help to enhance geno-
mic instability and immune system activation. As per the work
published by Brown et al., about 200 clinical trials are

ongoing for various cancers with DNA damaging agents and
ICIs (Brown et al. 2018). Some studies have shown that defi-
ciency in DNA repair pathways is associated with immune
checkpoint blockade (ICB) response. Similarly, studies have
shown that tumors with mismatch repair deficits have shown
enhanced neo-antigen production and immune system activa-
tion when treated with PD-1 inhibitors (Le et al. 2017).
Various poly adenosine diphosphate-ribose polymerase

Fig. 4 Role of DNA damage in
anti-tumor immune response. (A)
DNA damage leads to abnormal
transcription and translation that
leads to the formation of peptides
known as neoantigens. The
neoantigens, after their synthesis,
are transported to the cell surface
and are presented in the HLA-
neoantigen complex. This
complex interacts with T cell
surface receptors and promotes T
cell activity against tumor cells.
(B) The double-stranded breaks
produced during DNA damage
regulate PD-L1 expression in
ATR/Chk1/STAT/IRF1-
dependent manner. The PD-L1
expresses on tumor cells and
interacts with PD-1 on the surface
of T cells, and induces T cell
anergy. (C) In response to DNA
damage events, the DNA sensor
cGAS binds to the DNA
encapsulated in micronuclei and
catalyzes the synthesis of cGAMP
from ATP and GTP. cGAMP
then activates the STING
pathway and induces IRF3
expression by regulating TBK1
kinase. This leads to the synthesis
of Type-I interferons (IFN-1).
This further improves dendritic
cell (DC) cross-presentation to
enhance T cell activation
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(PARP) inhibitors have been investigated in experimental and
clinical studies to show the PD-L1 inhibitory effect. For ex-
ample, Olaparib, a PARP inhibitor, has increased PD-L1
blockade in BRCA-deficient tumor cells, and Rucaparib also
improved anti-PD-L1 treatment in BRCA mutant tumors
(Lamberti et al. 2020). In a recent clinical study named
KEYNOTE-365, the efficacy of DDR inhibitor combined
with immunotherapy has been explored. The study was based
on the intervention of Pembrolizumab, a PD-1 inhibitor, along
with Olaparib, a PARP inhibitor. The therapy’s primary re-
sponse reduced serum prostate-specific antigen (PSA) levels
(Yu et al. 2019). Besides PARP inhibitors, several other DDR
inhibitors, such as ATM, ATR, CHEK, and WEE1, have also
been studied in combination with immunotherapeutic agents.
A summary of various ongoing clinical trials has been provid-
ed in Table 1.

Impact of DNA repair on mutational
signatures of environmental mutagens

Base excision repair in mammals and related
signaling

DNA lesions arising from various endogenous and exogenous
mutagens in the environment cause loss of DNA bases due to
hydrolytic cleavage, modification of the bases due to oxida-
tion, methylation of non-enzymatic origin, leading to chemi-
cal alteration in the integrity of nucleic acid (Nature 2003).
Frequent alteration in the DNA is necessary to be rectified,
therefore, achieved using base-excision repair pathway BER.
BER is an important asset in governing genomic stability and
embroils various diseases such as cancer, aging prompting the
establishment of various neurodegenerative disorders ([CSL
STYLE ERROR: reference with no printed form.]). Purified
enzymes such as DNA-glycosylase specific to DNA recog-
nize the damaged DNA bases and cause cleavage of the
glycosylic bond (linking DNA bases to the phosphate back-
bone) (Lindahl 1979). Another enzyme that adds to the
repairment machinery of BER includes a DNA polymerase,
AP endonuclease1 (APE1), and a ligase (Mitra et al. 1997).
AP endonucleases’ activity generates a 3-OH and a 5' termi-
nus containing a deoxyribose phosphate (deoxyRP) to 5'-to
the abasic site, resulting in a DNA single-strand break
(SSB). Further, DNA polymerase β (Pol β), XRCC1, and
DNA ligase IIIα (Lig III) add up by filling the gap generated
in between the nucleotide due to the removal of the base that
was affected with a lesion (Dianov 2011). In short, patch BER
(single nucleotide BER), DNA Polβ embeds the missing base
with the subsequent nick fixed by DNA ligase III complexed
to XRCC1, therefore accomplishing DNA repair.

In contrast, in long patch BER, a polymerase (β, δ, ε) fills
within a base gap. It keeps synthesizing DNA, whereas

replacing the DNA downstream of the initial damage site pro-
duces a flap (2-13 nucleotides gap) of DNA removed by flap
endonuclease-1 (FEN-1) in a PCNA-dependent manner. This
long patch BER is sealed by DNA ligase I. The choice of
whether or not repair is accomplished via short, or long patch
BER chiefly depends on whether or not the abatic sugar is
altered or reduced, as Pol β cannot eliminate a changed sugar.
If the 5′ sugar is modified, it is not removed by Pol β, and a
long patch BER is initiated (Dianov 2011; Torgovnick and
Schumacher 2015). OGG1 (8-oxoGuanine DNA glycosylase
1) and MYH (MutY DNA glycosylase) are most studies of
nuclear glycosylases because of their involvement in recog-
nizing and removing ROS-induced oxidative DNA lesions (8-
oxoGuanine) (Fayyad et al. 2021). Loss of OGG1 protein has
been linked with lung, ovarian, and skin cancer. Missense
mutation and a nonsense mutation in OGG1 have been report-
ed in lung and breast cancer, respectively. Whereas increased
expression of APE1 and XRCC1 has linkage with solid tumor
and poor survival (Yuan et al. 2017). Methoxyamine, a small
molecule that targets AP-site and blocks repair by APE1 en-
zymes, leads to the accumulation of DNA damage, hence
introducing apoptosis.

Similarly, E3330 and Gossypol/AT101, NF-κB, and BCL2
inhibitors bind to APE1 and use alone or in combination with
other chemotherapeutic agents for patients with lymphoma,
prostate, lung, and glioblastoma cancers (Grundy and
Parsons 2020). Moreover, Jones et al. study showed that
biallelic mutations in the BER DNA glycosylase “MYH” re-
sult in adenomatous colorectal polyposis with substantial-high
colorectal cancer risk (Oishi et al. 2002). Several research
showed dysfunctional BER mechanisms linked with cancer
(Maynard et al. 2009). On the same note, Lee et al. reported
a deficiency in XRCC1 enzyme in breast cancers and studied
DNA damaging agent ’s involvement in causing
malfunctioning of BER enzyme, which proposed defects in
BER as targets for therapeutic intervention in TNBC (Lee
et al. 2019). In summary, the BER repair pathway components
have been progressively recognized as promising and poten-
tial surrogate biomarkers, therapeutic cancer targets (Kumar
2020).

Environmental mutagens and DNA mismatch repair

Inadvertent incorporation of a nucleotide during the DNA
replicative machinery despite the precise functioning by vari-
ous DNA polymerases (ε and δ) leads to a mismatch in DNA
bases. DNA proof-reading being the first line of defense when
unable to rectify the mis-incorporated base sequences then
causes the activation of the mismatch repair (MMR) pathway.
Inactivation of genes involved in MMR due to interaction of
mutagenic factors then leads to the occurrence of various
mutator phenotypes (Zhang et al. 2005). Mismatch repair is
also known to be associated with mutagenic insults induced
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during DNA damage. These comprise lesions generated due
to oxidative DNA, lesions affecting nucleotides arising from
helix distortion, and nucleotides' synthesis due to methyla-
tions. Six MMR proteins are generally required in the proper
functioning of this repair machinery. Studies have shown that
endogenousmutagens, when they interfere with either of these
MMR-related proteins (MSH6, PMS1, MLH1, MSH2,
PMS2), lead to hereditary nonpolyposis colon cancer
(HNPCC) (Vasen et al. 1996; Aarnio et al. 1999). Mismatch
occurring in any nucleotide sequence is identified by the for-
mation of a heterodimer comprising of MSH2 protein and
MSH3/ MSH6 (Kolodner 1999). The occurrence of mismatch
in the DNA causes a metabolic shift from ADP to ATP that
causes a change in the confirmation of nucleotides, thereby
converting MSH2/MSH6 assembly to a sliding clamp, further
diffusing with the phosphate backbone of DNA in hydrolysis-
independent manner.

Further, heterodimer complex (MLH1 and PMS2) or
MLH1 and PMS1 mediates the foreplay between recognition
of mismatched bases and proteins crucial for MMR. This as-
sembly then binds with the complex containing DNA poly-
merases (δ and ε), proliferative cell nuclear antigens (PCNA),
replication factors (SSD-binding proteins), and a helicase.
MMR is known to be the suppressor of mutagenicity and
elevates the level of checkpoint activation and induction of
apoptosis by various ionizing radiation such as UV. Sites,
where damage due to UV radiation occurs, are then occupied
by the MMR heterodimers (MSH2-MSH6) that selectively
bind to the mismatched bases and not binding with the
matched nucleotides adjacent to the photolesions (Hong
et al. 2008). Other metabolic components of mismatch repair
machinery include SSD-binding protein RPA, HMGB1, and
the RCF protein. RPA seems to be involved in every MMR
stage as it binds with the nicked heteroduplex DNA much
before the mismatched-provoked excision is stimulated by
the Mut-Sα/Mut- Lα. This stimulation protects the ssDNA
gapped sequences from excision and thus facilitates the resyn-
thesis of DNA. Studies have shown that phosphorylation re-
duces the RPA for DNA, unphosphorylated RPA causes stim-
ulation of DNA excision more efficiently as compared to
phosphorylated RPA (Dzantiev et al. 2004; Ramilo et al.
2002).

Damage to the DNA by various alkylating agents such as
N-methyl-N’-nitrosoguanidine (MNNG), procarbazine, and
temozolomide are cytotoxic in nature that can kill cells that
are replicating. As these cells progressively acquire resistance
hence, they become deficient in MMR. Studies have shown
that human colorectal cell lines are resistant to various
alkylating agents and show associated MMR defects.
Further, defects in MMR-related proteins MSH2 and PMS2
lead to resistance from alkylating agents (Hassen et al. 2016;
Peltomäki 2016). Mutagens that cause damage to MMR pro-
teins also impair various activities such as homologous

recombination, somatic hypermutation, immunoglobin class
switching, and trinucleotide repeats expansion (TNR). MMR
mechanism is an important asset in maintaining the fidelity
and integrity of DNA molecules; therefore, MMR-mediated
DNA damage response can be an effective therapeutic target.
A schematic representation is shown in Figure 5 about various
DNA repair mechanisms activated during exposure to envi-
ronmental mutagens (exogenous or endogenous mutagens).

Nucleotide-excision repair mechanism in mammals
and related signaling

Distortion in the helical structure of DNA by various lesions
caused due to various environmental mutagens like exposure
from UV irradiations and various chemical toxins is generally
eliminated using nucleotide excision repair (NER) (Gillet and
Schärer 2006). This repair mechanism plays a pivotal role in
maintaining genomic integrity; therefore, defects in this
repairment machinery led to the establishment of different
cancers. Two major pathways that govern that induced as a
result of UV-irradiation (Hart et al. 1978). NER is initiated by
recognizing the affected site by DNA lesion, which is gener-
ally recognized by XP-related proteins (DDB2 and XPC).
After successfully identifying lesions on the template strand,
TFIIH and proteins such as s XPA come under action (Repair
2016). XPC-RAD23-CETN2 heterodimers are important in
recognizing DNA lesions when discussing the GG-NER
mechanism in mammals (Volker et al. 2001). GG-NER em-
ploys the XPC-RAD23-CETN2 heterodimer complex that
plays a prominent role in the recognition of lesions that detects
and binds to the DNA sites.

�Fig. 5 Schematic representation of various DNA repair mechanisms
activated during exposure to environmental mutagens that can be either
exogenous or endogenous. (a) Mismatch repair mechanism. Lesion that
arises on the template strand and excision occurs followed by the binding
of various DNA-binding proteins (MUTS α), replication protein A
(RPA). Recognition of the lesion and after excision, the machinery is
taken up by exonuclease 1 (Exo1), Polymerase δ (Pol δ), ligase I, and
ATM or ATR. These proteins then cause synthesis of the repaired base
sequence. (b) Nucleotide excision repair that occurs either in a
transcription-coupled manner and global excision repair. DNA binding
proteins such as DDB2, XPC, and DDB1 bind for damage recognition,
followed by loading of Rad23 and Rad4 proteins. Attachment of RPA
protein then generates nucleotide excision product. (c) Non-homologous
end joining (NHEJ) in which loading of Ku70/80 complex proteins
occurs on the lesion affected region, carried forward by end-processing
by the assembly of artemis and ligation of the processed region by Ligase
XRCC4/XLF/PAXX proteins. These ligand proteins, after excision cause
the synthesis of intact DNA. (d) Mechanism of homologous
recombination after mutagenesis causes recognition of the lesion on the
double-stranded DNA (dsDNA), attachment of the RPA protein to the
lesion binding site proceeded by insertion of RAD51 on the unwounded
region. Formation of a D-loop occurs, and attachment of new repaired
sequence within the D-loop causes successful synthesis of repaired DNA
sequence
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Further, the double helix is distorted, leading to the destabili-
zation of bases (Min 2007). During the occurrence of indirect
damage to the DNA, XPCs bind to the DNA region where there
is a presence of mismatched bases and no presence of any le-
sions. To avoid any erroneous breakdown at the bases, GG-NER
needs to verify that the existence of lesion at that particular bind-
ing region occurs, and to execute this step, DNA-dependent
ATPase/helicase activity of TFIIH is required (Sugasawa et al.

2009). TFIIH is a complex assembly made up of two ATPase
helicase subunits (XPD and XPB), from which XPB is required
during NER and in the transcription mechanism (Oksenych et al.
2009). XPD proteins, on the other hand, have dual activity
(ATPase activity and a 5’ to 3’ helicase activity), important for
NER but not required during transcription. Mutagens targeting
and disrupting the sequence of nucleotides are taken care by the
GG-NER pathway of DNA damage repair.
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Genomic DNA is considerably larger, and the lesion’s
probability of occurrence is unexpectedly higher, causing an
urgent need for a cell-free system. Assuming that there is a
presence of a specialized mechanism assisting XPCs to iden-
tify lesions affected sites apart from whole naked DNA, dif-
ferent mechanisms are proposed. One such mechanism em-
ploys UV-damaged DNA damage binding protein complexes
(UV-DDB). UV-DDB is known to be the assembly of DDB1
and DDB2, shows strong binding affinity and specificity to
UV-damaged DNA (Fujiwara et al. 1999). These factors pre-
sumably bind to the pyrimidine photoproducts, attaching di-
rectly to the photolesions induced by UV and encounters for
the presence of any lesion. But the base adducts that are bulky
in nature, formed by chemical mutagens, are known to be the
poor substrates for these UV-DDBs (Joon Hwang et al. 1999).
Hence, UV-DDB repair mechanisms act to be more preferred
when talking about the CPDs due to the poor recognition
capability of XPCs. Mutagens that are crucial and cause these
types of DNA damage, majorly photolesion due to exposure
to radiations of ionizing origin, NER acts to be the line of
defense and comes into roleplay as soon as a lesion is detect-
ed. Therefore, NER is an important repair mechanism in han-
dling these types of lesions, and from the therapeutic prospect
can be traced when talking photolesion induced DNA damage
caused due to environmental mutagens.

DNA- DSB repair and related signaling cascades:

DSBs induced inDNAas a result of exposure from environmental
mutagens such as the use of radiomimetic medicines such as
neocarzinostatin and bleomycin, ionizing radiations (IR), use of
cytotoxic agents such as camptothecin, doxorubicin, and etoposide
appears to be themost lethal formofDNAdamage (Helleday et al.
2007). This class ofDSBs is known to be biologically important in
nature as repairment of this defect is extremely crucial compared to
any other DNA damage (Ciccia et al. 2010). The mechanism that
holds the repair machinery of DSBs is carried either by homolo-
gous recombination, which occurs during the G2 and S-phase of
cell cycle, or byNHEJ that can happen during any phase of the cell
cycle (Karanam et al. 2012). For efficient regulation and in the
maintenance of genomic instability, a series of signaling cascades
get activated duringDSB (Huang et al. 1996). If theDNAdamage
is severe in the cellular machinery, then activation of The DNA
damage response occurs, which includes activation of cell cycle
checkpoint, DNA repair, or regulation at the transcriptional level,
ultimately leading to apoptosis (Bao 2011; De Zio et al. 2013).
DNADSBs, if not considered for corrections at the right time, lead
to the loss of chromosomal regions and chromosomal transloca-
tions, thereby causing tumorigenesis due to genetic fusion or due
to functional alterations in proto-oncogenes (Nikiforova et al.
2000). Studies convicting the role of these chromosomal arrange-
ments include cancer of lymphatic origin and various non-
lymphatic cancers (Richardson and Jasin 2000). NHEJ acts to be

the simplest form of DSB repair pathway, works by joining the
two ends of DNA in a sequence-independent manner, and is the
preferable form of repair in case of blunt ends, although sequence
alteration may occur at breakpoints due to incompatibility.
Proteins acting as the core of this machinery are DNA-
dependent protein kinases and XRCC4/ligase IV/XLF complex
(van Heemst et al. 2004). A ring-shaped heterodimer (Ku70/80)
binds to this protein kinase, thereby binding to the ends of the
DNA molecules (Weterings and van Gen 2004). This Ku-
XRCC4-DNA ligase IV complex efficiently reconstituted the
blunt ends through the NHEJ pathway. A large fraction of DSBs
induced by different mutagens is repaired by homology-directed
recombination-mediated repair (HRR). The process starts with
resection of 5’ DNA ends catalyzed by a trimeric complex
MRN comprising of MRE11, RAD50, and Xrs/NBS1. The pro-
cess is assisted by endonuclease Sae2/Ctp1/CtIP (Mimitou and
Symington 2009). Further resection is carried out by single-
strand endonuclease DNA2 or EXO, combined with Sgs1/BLM
helicase. The next step is the formation of ssDNA binding protein
RPA-RAD51 recombinase with 3’ single-strand DNA filament.
The mechanism is characterized by the synthesis of specific “dou-
ble Holiday junctions” where the nicks are sealed by DNA ligase
(Chang et al. 2017). An alternative pathway for DSB repair is
alternative (microhomology-mediated) end-joining (alt-EJ/
MMEJ). The pathway initiates with resection of 5’ ends flanking
DSB, followed by DNA end synapsis induced by PARP1. The
polymerization is carried out by DNA polymerase θ (Polθ), while
the DNA ligase III -XRCC1 complex is required for the final
ligation step (Cannan and Pederson 2016).

A comprehensive investigation of DDR gene alterations
across 33 cancer types has revealed that HR is the most fre-
quently mutated repair pathway, while a few cancers are as-
sociated with alteration in the NHEJ pathway (Knijnenburg
et al. 2018).Mutational signatures affecting BRCA1, BRCA2,
RAD51 genes (RAD51B, RAD51C), and BLM are found to
be associated with HR alterations in cancers. A study in solid
tumors has revealed the potential of HRD-targeted therapies
as HR-DDR mutations were seen in 17.4% of tumors (Heeke
et al. 2018). Likewise, a study has identified the role of
MRE11 gene mutations in primary tumors. The gene is in-
volved in DSB repair through NHEJ and HR pathways, and
three different missense mutations are found to be associated
with tumor development (Fukuda et al. 2001). As the failure
of DDR in response to DSBs triggers tumor development,
therapeutics targeting the DSB repair pathway could provide
new treatment opportunities for a wide range of cancers.

Therapeutics avenues targeting cancer
provoked by mutagens

Environmental mutagens cause cancer in humans. A plethora
of studies have been performed to discover treatment avenues

62132 Environ Sci Pollut Res (2022) 29:62111–62159



for targeting cancer from therapeutics and prevention perspec-
tives. Different areas have already been exploring, and still,
new areas are being studied to expand current knowledge
related to cancer. Recent innovations are focused on immune
checkpoint inhibitor biologics, therapeutic vaccines, small
drugs, and CAR-T cell injections (Alard et al. 2020).
Different drugs like NSAIDs have been repurposed for the
prevention and treatment of cancer (Zhang et al. 2018b;
Turanli et al. 2018). On similar notes, infectious agents are
also significant causes of causing cancer. To target cancer due
to viruses and bacteria, anti-viral therapies are being discov-
ered and used in clinics. In addition to therapeutics drugs,
indicative of cancer disease and reason for cause is also essen-
tial. To understand this, the importance of biomarkers study is
necessary to respect diagnostic, prognostic, and predictive
cancer and its treatment (Califf 2018). Biomarkers related to
DNA repairs have been explained in detail in this section.

Inhibitor targeting DNA damage caused due to
environmental mutagens

The DNA damage response entails an orchestrated network
signaling molecules and proteins involved in cell cycle arrest
and repair mechanism. These are crucial for cell viability and
avoid an accumulation of damaged DNA from one generation
to another. In cancer, these responses are dysregulated, lead-
ing to either upregulation, downregulation, or loss of some
other pathways and cause DNA damage, leading to cellular
responses like inducing apoptosis and modulating cell cycle
progression (Gavande et al. 2016). These pathways, being
upregulated, can potentially be resistant to anticancer DNA
damaging agents. Hence, key component inhibitors of the
pathway being dysregulated are plausible to prevent this ther-
apeutic resistance (Curtin 2013). Also, from a pharmacologi-
cal aspect, the repair system’s inhibition promises to enhance
the cytotoxicity of a varied range of anticancer agents.

Moreover, defects in DNA damage responses are depen-
dent on the complex pathways, the inhibition of which will
initiate tumor-specific cell killing. Therefore, inhibitors
targeting DNA damage can enhance the efficacy of chemo-
therapy as well as ionizing radiotherapy involved in DNA
damage. Additionally, studies suggest that chemical inhibitors
developed to exploit synthetic lethal interaction effectively
and can pave the path for promising DNA repair targeted
agents to be used in cancer therapy (Madhusudan and
Hickson 2005). ROS generation commonly causes damage
to nucleobases, spontaneous deamination, and aberrant meth-
ylation due to S-adenosyl methionine and methyltransferase
enzyme activity. To repair this methylguanine DNA methyl-
transferase (MGMT) and prevents cell death caused by
alkylating agents (Pegg 1990), many approaches have been
worked upon to block MGMT using alkylating agents like
temozolomide DTIC (dacarbazine), using pseudosubstrates

[e.g., O6-benzylamine (O6-BG) (Dolan et al. 1990). Some
have been futile to show any considerable activity in cancer
patients and have not progressed clinical trials any further
(Khan et al. 2008; Kefford et al. 2009).

The repair mechanism involved could vary depending on
nature. For instance, the extent of damage, for instance,
nucleobase damages, is frequently repaired by BER, resulting
in removing the damaged base and further repairing SSBs
single-strand break repair (SSBR) pathway. Many studies have
suggested that Methoxyamine, a small molecule, potentiates cy-
totoxicity as it binds to AP sites and targets BER. This further
impact and prevent APE1 processing. APE1 increases tumor
resistance while treating with chemotherapeutic agents, making
it a key target for cancer therapy (Abbotts et al. 2014). The next
class involves PARP inhibitors which include PARPi are NU
1025, NU 1064, AG 14361, AG 14699, GPI 15427, they have
shown to decrease the repair mechanism of SSBs and survival
too after being exposed to DNA methylating agents (Durkacz
et al. 1980; Madhusudan and Hickson 2005). Thus, preclinical
studies have potentiated DNAmethylating agents’ antitumor ac-
tivity (Madhusudan et al. 2005). Moreover, some FDA has ap-
proved drugs that also act as PARPi in treatments, like ovarian
cancer, which can be treated using Olaparib, Niraparib, and other
combinations (LaFargue et al. 2019). These PARPi not only
inhibit proteins involved in various pathways but also increase
tumor-killing abilities. On the other hand, some pathways are in
the development phase, like nonhomologous end-joining inhib-
itors, among which phosphoinositide-3-kinase related protein ki-
nases (DNA-PKcs) have the most promising candidature. They
undergo rough complex autophosphorylations and govern DNA
interaction with proteins involved in repairs like cAbl, HSP90,
PARP1, and H2AX, protect telomere (Zhou et al. 2013). The
overexpression of DNA-PKcs is associated with radio-resistance
in various carcinomas such as lung, esophageal, oral squamous
cell, and other carcinomas (Srivastava et al. 2012), signifying that
the chemical inhibition of DNA-PK can boost homologous re-
combination. The molecules belonging to this class are NU7026
[2-(morpholin-4-yl)-benzo[h]chromen-4-one]; NU7441;
IC87102 (Willmore et al. 2004; Mohiuddin and Kang 2019).
Some of the other emerging targets involve Pentamidine
(Chow et al. 2004), antisense RNA targeting the ERCC1 protein
(Selvakumaran et al. 2003), FA proteins (Ferrer et al. 2004),
small inhibitory RNA molecules (siRNAs), but the long-term
safety of these still need to be proven. Thus, as mentioned above,
be it inhibitor or modulator of DNA repair can target a broad
range of interactions, thereby presenting a new scope for escalat-
ing therapeutics for cancer (Table 2).

DNA damage and repair biomarkers in cancer therapy

The DDR system encompasses eight pathways: MMR, BER,
checkpoint factors, Fanconi anemia, HRR, NER; non-
homologous end-joining; and DNA translesion synthesis.
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Defects in these pathways lead to genomic instability and
hence cancer (Das et al. 2021). Scarbrough et al. identified
three susceptibility DNA repair genes, RAD51B, MSH5,
and BRCA2, and pleiotropic association of DNA repair mech-
anism with lung, ovary, prostate, breast, and colorectal cancer
(Scarbrough et al. 2016). Research over the years has contrib-
uted substantially to our understanding of the importance of
biomarkers as diagnostic, prognostic, and predictive markers
regarding cancer and its treatment. More importantly, the gen-
eration of some biomarkers inside cells, namely micronuclei
(MN), nucleoplasmic bridges (NPB), and nuclear buds
(NPB), can be utilized as an indicator of DNA damage due
to exposure to cytotoxic or DNA damaging agents or any
other environmental carcinogens (Alhmoud et al. 2020). For
early detection of DNA damage, diagnostic biomarkers in-
cluding phosphorylated histone 2Ax (γH2AX), 8-OHdG or
8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG) facilitation
disease detection and prognosis. γH2AX is proven to be one
of the most promising markers for DSB in precision medicine
(Ivashkevich et al. 2012; Reddig et al. 2018). Besides,
γH2AX foci levels have also been used as predictive markers
where they predict the pathological complete response (pCR)
in TNBC patients and cervical Cancer (Vici et al. 2015, 2016)
and monitor cancer progression and treatment because thera-
peutic agents either induce DSBs directly (such as radiation,
other environmental factors) or produce diverse DNA damage
that causes DSBs formation (such as PARP inhibitors,
gemcitabine, platinum drugs) (Sedelnikova and Bonner
2006). Evidence and understanding of DNA repair func-
tion and its correlation with drug response in individual
tumors will be critical to patient selection for DNA
repair targeted therapies.

Genomic and functional assays of DNA repair pathway
activity are being explored extensively as potential prognostic
or predictive biomarkers for targeted therapies. These bio-
markers consider specific alterations in DDR pathways or
genomic signatures resulting from the aberrant repair. For ex-
ample, germline BRCA1 or BRCA2 (BRCA1/2) mutations
(HRR deficiency) and somatic ERCC2 mutations (NER path-
way) in epithelial ovarian cancer patients and urothelial cancer
patients respectively enhance platinum drug sensitivity be-
cause it decreases the capacity to repair platinum-induced
DNA damage (Van Allen et al. 2014; Mylavarapu et al.
2018; Palacios et al. 2020). On a similar note, HRR and
BER deficiencies in cancer cells sensitize them to
topoisomerase-I inhibitors (e.g., topotecan). In contrast,
HRR and NHEJ deficiencies sensitize to topoisomerase-II in-
hibitors (e.g., doxorubicin and etoposide) (Maede et al. 2013).
In addition, BRCA1/2 mutations (HRR deficiency) serve as
an essential biomarker for PARP inhibitors’ sensitivity
(PARPi) response. PARPi is selectively lethal to HRR-
deficient cells. Olaparib was the first FDA-approved drug
for ovarian cancer with BRCA mutation (Farmer et al. 2005;

Matulonis et al. 2016; Golan et al. 2019). Aurora A, a mitotic
kinase, is involved in cell cycle control and has been
overexpressed in many cancers. Aurora A prevents RAD51
from being recruited to DNA DSBs via a process that requires
the checkpoint kinase CHK1 to be inhibited. As a result, HR’s
DSB repair is hampered, and cells are more vulnerable to
PARP inhibitors. More importantly, overexpression of
Aurora A is a potential predictive biomarker of PARP inhib-
itor sensitivity (Michels et al. 2014).

Abundant published evidence suggested that alteration in
tumor DNA repair can be the therapeutic target, and its defi-
ciency is linked with clinical biomarkers (Li et al. 2021)S. For
instance, the most excellent and well-characterized link ally-
ing specific DNA repair alteration and response to a DNA-
damaging alkylating agent is the correlation between O6-
methylguanine MGMT promoter methylation and response
to temozolomide in glioblastoma multiforme (GBM) (Hegi
et al. 2005). Recent studies using next-generation sequencing
next-generation sequencing (NGS)-based methods to expand
the association between specific DNA repair-deficient states
and specific DNA-damaging agents (Nesic et al. 2018). For
example, DNA adducts are created because of DNA-
damaging agents (such as UV light and platinum chemother-
apies) repairs by NER pathways that involve ERCC2 (DNA
helicase). Research by Allen et al. and other groups showed
that somatic ERCC2 missense mutations correspond to
muscle-invasive bladder cancers (MIBC), and alteration (loss
of function) in ERCC2 in tumors reveal improved sensitivity
to cisplatin-based chemotherapy (Van Allen et al. 2014; Liu
et al. 2016).

Moreover, defects in the DDR pathway have been studies
concerning tumor immunogenicity as delayed repair can alter
the tumor genome, which causes an imbalance in the immune
system in the TME (Mouw et al. 2017). Wang et al. data
allude that comutations (defined as co-mut+) in DDR path-
ways of homologous recombination repair and mismatch re-
pair (HRR-MMR) or HRR and BER (HRR-BER) correlates
with biomarkers (such as enhanced tumor mutational burden
(TMB) and neo-antigen load (NAL) and greater levels of im-
mune gene expression signatures) which all together predict
the efficacy of ICB. Other biomarkers such as PD-L1 expres-
sion, highmicrosatellite instability also predict the response of
ICB in patients with cancer (Wang et al. 2018; Zhang et al.
2020; Jiang et al. 2021). Also recently, new anti-cancer drugs
have been produced that blocks the regulatory pathways
governing the DDR response are (a) PARP inhibitors (e.g.,
Niraparib, Olaparib, Talazoparib, Rucaparib, Veliparib); (b)
CHK1 Inhibitors (e.g., GDC-0575, MK-8776, Prexasertib,
SRA-737); (c) ATR inhibitors (e.g ., Ceralasertib,
BAY1895344, Berzosertib, M4344); (d) ATM inhibitors
(e.g., AZD0156, M3541); (e) DNA-PK inhibitors (e.g.,
AZD7648, CC-115, Nedisertib, M9831); (f) WEE1 inhibitor
(e.g., Adavosertib) (Cleary et al. 2020).

62138 Environ Sci Pollut Res (2022) 29:62111–62159



Melanoma patients with BRCA2 mutation respond well to
ICB (Lemery et al. 2017). Thus, DNA repair deficiency has
been explored as biomarkers and also as therapeutic targets for
understanding oncology. Further, in the future, NGS-based
studies will continue to uncover links between DNA damage,
biomarkers, DNA repair pathway function, and response to
chemotherapeutics therapy. Table 3 describes DNA repair
pathways and biomarkers in cancer.

Anti-viral therapy used in combating cancer

Human viruses have been extensively studied over the past 60
years and are responsible for 10-15% of the total world human
cancer burden. According to International Agency for
Research on Cancer (IARC), in 2002 (Parkin 2006) estimated
total of infection-attributable cancer is 1.9 million (17.8% of
the global cancer burden), and in 2018 approximate 2.2 mil-
lion infection-attributable cancer cases were diagnosed world-
wide (13% of global cancer incidence). Currently, eight virus-
es are known to cause chronic infection and also have been
associated with cancer in humans, including DNA viruses:
Hepatitis B virus (HBV), human papillomavirus (HPV),
Epstein–Barr virus (EBV), Kaposi’s sarcoma-associated her-
pesvirus (KSHV) and Merkel cell polyomavirus (MCV) and
the simian virus 40 (SV40) and RNA viruses: hepatitis C virus
(HCV), human T cell lymphotropic virus type 1 (HTLV-1),
(Shah 2007; de Martel et al. 2020; Rositch 2020). Data and
results from different laboratories across globes have shown
that viral load (a marker of virus replication activity in the
human body) and cancer risk are often akin for virus-
associated cancers, for example, HBV and HCV for hepato-
cellular carcinoma (HCC), EBV for nasopharyngeal carcino-
ma (NPC), HPV for cervical cancer, MCC for Merkel cell
carcinoma and SV40 for brain cancer and mesothelioma,
and non-Hodgkin's lymphoma (Vilchez and Butel 2004;
Shih et al. 2014; Carbone et al. 2020). Each virus has a unique
mechanism for promoting carcinogenesis and develops a tu-
mor (Moore and Chang 2010). The viral factor of HPV, EBV,
KSHV, SV40, HCV, and HTLV encodes oncoproteins that
induce genomic instability by inactivating the p53 and retino-
blastoma proteins (pRB), the two important regulators play a
central role in the initiation of human cancers via both somatic
and germline mutations (Levine 2009). Moreover, it also ac-
cumulates mutations, dysregulated cell cycle, DNA damage,
and viral DNA integration into the human genome (Weitzman
et al. 2010). Currently, anti-viral therapy, including therapeu-
tic drugs and vaccines, immunotherapy, RNA –interference-
based therapies, which have been applied on these seven
viruses-associated cancers, have yielded promising results in
cancer prevention and treatment (Table 4). Studies also sup-
port that viral infection also generates free radicals such as
ROS and RNS, which induces oxidative and nitrative DNA
damage that often occurs during inflammation can contribute

to carcinogenesis (Georgakilas et al. 2010; Chen et al. 2014).
Increased concentration of ROS can directly influence NF-κB
activation. Hagen and colleagues demonstrated a connection
between Oxidative stress, DNA damage with HCC (Hagen
et al. 1994). Interestingly, Cerimele and co-workers showed
increased ROS levels and altered NF-κB activation in EBV-
positive Burkitt’s lymphoma cells compared to EBV-negative
Burkitt’s lymphoma cells (Cerimele et al. 2005).

Some viruses are known as oncolytic viruses that include
both naturally occurring viruses and laboratory modified vi-
ruses. These viruses have been used directly to target and kill
cancer cells. In addition, some of these viruses infect tumor
cells and cause oncolysis producing and releasing new virus
progeny to kill nearby tumor cells. It also releases tumor an-
tigen (danger signals) like DAMPS and PAMPS, which will
stimulate an immune response in the body against cancer by
(a) activating and encouraging maturation of dendritic cells
(DCs) in nearby TME by upregulating co-stimulatory
markers, such as CD80, CD83, and CD86; (b) tumor antigens
or debris processed by professional antigen processing cells
(such as mature DC, macrophages, and B cells) which subse-
quent T cell priming; (c) activated B cells produces neutraliz-
ing antibodies, that tag with infected tumor cells for ADCC
and phagocytosis by NK cells and M1 macrophage respec-
tively; (d) direct killing of infected and non-infected tumor
cells by CD8+ T cells and NK cells via releasing
INFg/GranzB and GranzB/Perforins in TME. In 2015, an
oncolytic virus Talimogene laherparepvec (T-VEC;
Imlygic®), a genetically engineered second-generation
oncolytic herpes simplex virus type 1 (HSV-1), had been ap-
proved by FDA for treating the patient with melanoma
(Fukuhara et al. 2016; U.S. Food and Drug Administration
2017). This works by infecting cancer cells to produce the
immune-stimulating GM-CSF protein but does not infect
healthy cells. Although many viruses are being evaluated as
potential cancer treatments in clinical trials, only one has been
approved to date (Hemminki et al. 2020). It appears anti-viral
therapy, including oncolytic viruses, will be part of future
multimodality approaches and data, yielding promising results
in cancer prevention and treatment.

Anti-inflammatory nonsteroidal anti-inflammatory
drugs as chemical cancer prevention

Inflammation is one among the hallmark of cancer (Hanahan
and Weinberg 2011). Therefore, in recent years, extensive
research has focused on using nonsteroidal anti-
inflammatory drugs (NSAIDs) to target inflammation in can-
cer prevention and treatment (Wong 2019; Iovoli et al. 2020).
Few examples of NSAIDs include ibuprofen, mefenamic acid,
celecoxib, aspirin, valdecoxib, and diclofenac, have been used
as cancer therapy. These drugs have the potential to block
cyclooxygenase (COX) or prostaglandin endoperoxide H
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synthase (PGHS) enzymes and hence have the ability to in-
hibit tumorigenesis (Zappavigna et al. 2020). In 1971, Vane
was the first to establish a relationship between the mechanism
of inhibition of COX activity by aspirin and NSAIDs (Vane
1971). Research data suggest that NSAIDs may prove effec-
tive chemoprophylaxis agents in patients with hereditary co-
lorectal cancer syndromes and sporadic colorectal
Cancer (Sangha et al. 2005). In colorectal cancer, the
COX-2/PGE2 signaling pathway has been played a vital
role (Roberts et al. 2011).

Similarly, Lichtenberger and his team in colorectal cancer
showed that modified NSAIDs Aspirin and Indomethacin
with phosphatidylcholine showed higher efficacy when used
in combination. The use of phosphatidylcholine modifies
these drugs gastrointest inal (GI) -safer NSAIDs
(Lichtenberger et al. 2018). In 2020, Cairat and co-workers
reported the use of aspirin or any other selective COX-2 in-
hibitors along with proton pump inhibitor (PPI) in reducing
breast cancer risk in postmenopausal women (Cairat et al.
2020). Few inflammation targets have been studied in com-
bating inflammation linked with cancer are COX, NF-kB,
cytokines/chemokines and their receptors, FGF and its recep-
tor, and VEGF. These targets are seen overexpressed in many
cancers, including breast, colorectal, lung, prostate, head and
neck, cervical cancer. The study by Leahy and et al. men-
tioned overexpressed COX-2, an isoform of COX linked with
angiogenesis, and the use of the drug celecoxib to block COX-
2 reduces angiogenesis, hence proliferation and invasion
(Leahy et al. 2002). NSAIDs drugs and their effects have been
summarized in Table 5. Kostadinov et al. suggest that aspirin
slows down somatic evaluation by lowering DNA mutation
accumulation, thus preventing esophageal adenocarcinoma
(Kostadinov et al. 2013). Liu et al. summarized results from
meta-analysis, where they have found no significant link be-
tween the use of aspirin and other NSAIDs with brain cancer
(Liu et al. 2014). In contrast, new breakthrough studies
result found that liquid aspirin can cross the blood-brain
barrier (BBB) and destroy brain cancer cells with ten-
fold higher efficacy compared with other chemotherapy
drugs (unable to cross BBB).

Also, some NSAIDs enhance chemotherapeutics’ sensitiv-
ity to tumors. For example, indomethacin (NSAIDs drug)
produces a synergetic efficacy effect in combination with
Adriamycin and cisplatin in glioblastoma and colorectal can-
cer (Hattori et al. 2001). Recently, a combination of aspirin
and clopidogrel (antiplatelet drugs) enhanced immunotherapy
(adoptive T cell therapy) for melanoma treatment (Rachidi
et al. 2017). Moreover, existing literature recommends that
NSAIDs prevents cancer from escaping immune surveillance.
Data supported this that aspirin being a COX inhibitor inhibits
the synthesis of PGE2 (increase amount of PGE2 aids cancer
cells to hid by attenuating the immune system), which results
in rejuvenation (re-activation) immune system (Wong 2019).T
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Hence, the application of NSAIDs has been a boom in the
prevention and treatment of cancer. Recent studies also
showed that early use of NSAIDs obstruct and inhibit the
SARS CoV-2 produced inflammation produced by SARS
CoV-2, resulting in the prevention of COVID-19 complica-
tions. In contrast, early use of glucocorticoids (steroids) might
encourage the development of COVID-19 complications
(Kelleni 2021).

Conclusion and future perspectives

A plethora of environmental mutagens, including physical,
chemical, radiations, infectious agents, and endogenous
agents such as hypoxia, free radicals, etc., are capable of in-
ducing DNA lesions in the genome, which results in DNA
damage followed by mutation and consequentially lead to
carcinogenesis. Even though cells have evolved repair sys-
tems and cell cycle checkpoints to combat the detrimental
outcomes of chemical modifications, chromosomal breakage,
and genome instability to restore to a normal state. However,
genetic and epigenetic changes affect many physiological pro-
cesses because of dysfunctional DNA repair mechanisms and
checkpoints’ failure (including cell cycle checkpoints and im-
mune checkpoints).

At present, only mutator genes have been recognized on
the basis of the role they have in human diseases that are
inherited. As numeral genes are involved in the replication,
recombination, and repair process, and thus in the future, it is
likely that many more such genes will be discovered, and that
can further provide some future directives in the pathogenesis
of specific cancers. Also, many new treatment modalities at
present aim at sequencing the DNA which can serve to act as
an influential tool. Moreover, a promising new time of malig-
nancy therapeutics with specialists that repress explicit devel-
opment stimulatory pathways is tracking down another spe-
cialty in our armamentarium in the conflict against disease.
Designated malignancy therapeutics, like cytotoxic chemo-
therapies, refinedmonoclonal antibodies (mAbs), and tyrosine
kinase inhibitors (TKIs), are among the significant therapy
choices for the disease today as well as future. Designated
treatments are more specific for malignancy cells and work
on the personal satisfaction of disease patients going through
treatment. A considerable lot of these medications have been
supported by the FDA, and a few more are being concentrated
in clinical preliminaries. In spite of the fact that the advance-
ment of designated therapeutics has further developed malig-
nant growth therapy altogether, the brutal truth is that the
“Battle on Cancer” actually exists. Significant difficulties ac-
tually exist with the presently advertised inhibitors, incorpo-
rating constraints related to mAbs and TKIs drug types,
gained instruments of medication obstruction that cause pa-
tient to backslide, and cancer heterogeneity. Today, there is a

dire requirement for the advancement of the novel enemies of
growth specialists that are less expensive, stable, can specifi-
cally target disease subordinate pathways without influencing
ordinary cells, and in particular, stay away from the improve-
ment of opposition instruments. Peptide impersonates have
the likely advantages of being exceptionally specific, steady,
modest, and non-harmful. The focal point of this audit is to
talk about the drawbacks related to the utilization of monoclo-
nal antibodies and tyrosine kinase inhibitors. An exceptional
accentuation will be set on endeavors taken in our research
facility to (1) plan peptide antibodies and therapeutics that
target subordinate disease pathways and (2) utilize a blended
approach that will close down elective instruments that lead to
obstruction.

Herein, we have summarized the various sources and types
of DNA damage caused by different mutagenic agents that are
carcinogenic in nature and how they lead to DNA replication
errors, DNA adduct formations, oxidative stress, inflamma-
tion, as well as the failure of immune surveillance. All these
eventually contribute and result in a different type of cancer.
Moreover, we have also explained the genetic and epigenetic
effects caused due to damaged DNA and its association with
immunotherapy. Using these damaged DNA biomarkers as a
tool for diagnosis and prognosis would greatly facilitate and
enhance our capacity to identify the most crucial risk factors
causing cancer. Indeed, to facilitate the development of new
and contemporary preventive and therapeutic approaches, fu-
ture more in-depth research is still necessary continue in order
to enhance our understanding and compact cancer. Advance
studies are needed to fully elucidate which lesions or cell types
are more responsive to cancer prevention or treatment with
anti-inflammatory agents, anti-viral therapies, and other che-
motherapies. Also, additional focus is required to expand the
horizon of Therapeutics Avenue including immune therapies,
viral-related therapies, NSAIDs drugs, and other chemothera-
peutics drugs and inhibitors.

Abbreviations AST, advanced solid tumor; ATR, ATR serine/threonine
kinase; CRPC, castrate-resistant prostate cancer; CTLA-4, cytotoxic T-
lymphocyte-associated protein 4; DDR, DNA damage repair; ICI,
immunocheckpoint inhibitor; NSCLC, non-small cell lung cancer; OC,
ovarian cancer; PARP, poly [ADP-ribose] polymerase 1; PD-1, pro-
grammed cell death-1; TNBC, triple-negative breast cancer; HBV, hepa-
titis B virus; HCV, hepatitis C virus; EBV, Epstein–Barr virus; HPV,
human papillomavirus; HTLV-1, human T cell lymphotropic virus type
1; KSHV, Kaposi’s associated sarcoma virus; MCV, Merkel cell poly-
omavirus; HHV4, human herpesvirus 4; HHV8, human herpesvirus 8;
SV 40, simian virus 40; HCC, hepatocellular carcinoma; AIDS-KS,
AIDS-Kaposi’s sarcoma; ATL, adult T cell lymphoma; PTLD, post-
transplant lymphoproliferative disorder; NPC, nasopharyngeal carcino-
ma; HL, Hodgkin’s lymphoma; MCC, Merkel cell carcinoma; NHL,
non-Hodgkin lymphoma; GBM, glioblastomamultiforme; CRC, colorec-
tal cancer; HAART, highly active antiretroviral therapy; PI-based
HAART, protease inhibitor (PI)-based HAART; NNRTI, non-nucleoside
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reverse transcriptase inhibitor; PGs, prostaglandins; CKGPEC, chitosan-
Kheri gum polyelectrolyte complex; ATM, ataxia telangiectasia mutated;
ATR, Ataxia telangiectasia and RAD3-related; HMGB1, high mobility
group box 1; MITC, 5-(3-methyltriazen-1-yl)-imidazole-4-carboxamide
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