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Abstract
This study sought to identify the spatial, temporal, and spatiotemporal clusters of COVID-19 cases in 366 cities in mainland
China with the highest risks and to explore the possible influencing factors of imported risks and environmental factors on the
spatiotemporal aggregation, which would be useful to the design and implementation of critical preventative measures. The
retrospective analysis of temporal, spatial, and spatiotemporal clustering of COVID-19 during the period (January 15 to February
25, 2020) was based on Kulldorff’s time-space scanning statistics using the discrete Poisson probability model, and then the
logistic regression model was used to evaluate the impact of imported risk and environmental factors on spatiotemporal aggre-
gation. We found that the spatial distribution of COVID-19 cases was nonrandom; the Moran’s I value ranged from 0.017 to
0.453 (P < 0.001). One most likely cluster and three secondary likely clusters were discovered in spatial cluster analysis. The
period from February 2 to February 9, 2020, was identified as the most likely cluster in the temporal cluster analysis. One most
likely cluster and seven secondary likely clusters were discovered in spatiotemporal cluster analysis. Imported risk, humidity, and
inhalable particulate matter PM2.5 had a significant impact on temporal and spatial accumulation, and temperature and PM10 had
a low correlation with the spatiotemporal aggregation of COVID-19. The information is useful for health departments to develop
a better prevention strategy and potentially increase the effectiveness of public health interventions.
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Introduction

The new coronavirus disease (COVID-19), which first ap-
peared in Wuhan, is an infectious disease caused by a corona-
virus called severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) (Lu et al. 2020), and it is widespread through-
out the country and endemic in many countries and regions
worldwide. COVID-19 represents another serious public
health emergency since the outbreak of SARS. As of

December 22, 2020, a total of 76,250,431 cumulative cases
and 1,699,230 deaths have been reported globally, including
95,916 cumulative cases and 4772 deaths in China (“https://
covid19.who.int/table”). The disease was confirmed to be
highly contagious from humans to humans, and human
activity is the main cause of its spread (Coccia 2020b). In
addition, short-term exposure to environmental pollutants
has been recently studied to accelerate the spread of SARS-
CoV-2(Coccia 2020a; Coccia 2021a). Most infected patients
have the common symptom of high fever, and some have
dyspnea with chest radiograph results showing invasive le-
sions in both lungs (Chan et al. 2020; Huang et al. 2020).
The novel coronavirus epidemic also involves a continuous
process of epidemic focus, which is based on both the growth
over time and the spread of space.

The occurrence of COVID-19 is regular in space, time, and
space-time. The cluster patterns of COVID-19 are the focus of
our research establishing the risk factors involved in the
spread of COVID-19 to effectively intervene and control
COVID-19. Obviously, scan statistics are excellent methods
to solve multiple testing problems when two dimensions of

Responsible Editor: Lotfi Aleya

* Wei Wu
wuwei@cmu.edu.cn

1 Department of Epidemiology, School of Public Health, China
Medical University, Shenyang, Liaoning, China

2 Liaoning Provincial Center for Disease Control and Prevention,
Shenyang, Liaoning, China

3 Department ofMathematics, School of Fundamental Sciences, China
Medical University, Shenyang, Liaoning, China

https://doi.org/10.1007/s11356-021-16600-9

/ Published online: 30 September 2021

Environmental Science and Pollution Research (2022) 29:13386–13395

http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-021-16600-9&domain=pdf
https://covid19.who.int/table%E2%80%9D
https://covid19.who.int/table%E2%80%9D
mailto:wuwei@cmu.edu.cn


spatial area and/or time interval are evaluated simultaneously.
The scan statistics software SaTScan is mainly applied to per-
form temporal, spatial, and spatiotemporal analyses for many
infectious diseases including schistosomiasis (Yu-Wan et al.
2019); malaria (Yan-Feng et al. 2019); dengue fever (Lai et al.
2018); hand, foot, and mouth disease (Tian et al. 2018); and
hemorrhagic fever with renal syndrome (Wu et al. 2011).

In previous studies, spatiotemporal analysis methods have
been widely used in the epidemiology of infectious diseases
(Fang et al. 2009; Fosgate et al. 2002). Spatiotemporal analy-
sis methods can reveal the time trends and spatiotemporal
patterns of diseases from different spatial scales and can more
intuitively clarify the epidemiological characteristics and epi-
demiological laws of infectious diseases. However, to the best
of our knowledge, no specific research has been conducted on
the spatiotemporal pattern of COVID-19 in mainland China.
A better comprehension of the spatiotemporal distribution of
COVID-19 would benefit the identification of the cities, pop-
ulations, and times at highest risk, which would aid in the
effective implementation of relevant preventative measures.

Many studies have shown that meteorological factors are
closely related to the occurrence and spread of infectious dis-
eases (Irfan et al. 2021; Islam et al. 2021). For example, tem-
perature and humidity are related to the spread of severe acute
respiratory syndrome (SARS)(Rahimi et al. 2021; Rosario
et al. 2020; Sarkodie and Owusu 2020); some scholars believe
that the spread of influenza will increase around cooler, drier
air (Haque and Rahman 2020; Shen et al. 2021), and other
scholars believe that the high wind speeds that cause atmo-
spheric instability seem to reduce the number of infected peo-
ple and promote the spread of air pollution (Mario Coccia
2021; Coccia 2021b). In addition, air pollution has been also
widely considered to be an important factor in increasing the
risk of adverse health outcomes (Du et al. 2021; Tian et al.
2021), such as ischemic heart disease, chronic obstructive
pulmonary disease, and respiratory infection (Manisalidis
et al. 2020; Tian et al. 2021; Wu et al. 2016). Emerging evi-
dence suggests potential links between exposure to polluted
air and the epidemic of COVID-19(Chen et al. 2021; Chen
et al. 2020; Konstantinoudis et al. 2021). Research has shown
that the airborne transmission is highly virulent (Srivastava
2021), particulate matter can be used as a carrier to carry
viruses to spread it everywhere (Vlachogiannis et al. 2021;
Yao et al. 2020), and respiratory infectious disease viruses
that are efficiently transmitted through particulate matter can
remain stable for a longer period of time.

In this study, geographic information system (GIS)–based
analyses were conducted to characterize the spatiotemporal
patterns of COVID-19 in mainland China using surveillance
data from January 15 to February 25, 2020, to identify spatio-
temporal clusters of COVID-19 cases at the city level and to
explore the influences of short-term exposure to environmen-
tal factors (PM2.5, PM10, temperature, and humidity) and

imported risk on the cumulative numbers of confirmed cases
of COVID-19 in agglomerated and non-aggregated regions. It
is of great significance for understanding the epidemiological
distribution characteristics of COVID-19, providing clues on
the causes of changes in the type of epidemic areas, delineat-
ing key prevention areas, and promoting the prevention and
control of COVID-19.

Materials and methods

Sample and data

Records on COVID-19 cases between January 15 and
February 25, 2020, were obtained from local health commis-
sions on the official websites. Particulate matter ≤ 2.5 μm
(PM2.5), particulate matter ≤ 10 μm (PM10), and average tem-
perature and relative humidity data were obtained from the
AQI platform website (https://www.aqistudy.cn) and the
China Meteorological Date Sharing Service System (http://
cdc.cma.gov.cn). The demographic data of each city during
the study period were obtained from the statistical yearbook of
each city. The population migration indexes of other regions
in mainland China were obtained from Baidu Migration
(https://qianxi.baidu.com). In our research, all COVID-19
cases were confirmed by the Chinese Center for Disease
Control and Prevention with the diagnostic criteria of
COVID-19(Wu et al. 2020a).

Measures of variables

The calculation of the COVID-19 imported risk index as-
sumes that the migrant population conforms to the population
distribution in the source region, and the risk of disease is
consistent with the incidence rate of the source region. The
imported risk of COVID-19 caused by population migration
can be expressed by the scale of migration, the number of
patients in the source region, and the population. The calcula-
tion formula for the imported risk index is as follows:

Riskin;t ¼ ∑
casei;t
popi

� iMI i;t � 1000

� �

where Riskin,t represents the imported risk index on day t,
casei,t represents the number of new cases in city i on day t,
popi represents the population of city i, and iMIi,t represents
the population size index of immigration from city i on day t.

Data analysis procedure and tests

Our study used SaTScan10.0 software to conduct scan statis-
tics on the spatial, temporal, and space-time distributions of
COVID-19. Using ArcGIS10.0 software, the number of
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COVID-19 cases in 366 cities in mainland China was
geocoded through management codes and matched with
city-level polygons.

The analysis was performed in four stages. First, Moran’s I
index was used to evaluate whether a global spatial autocor-
relation existed among 366 cities. A positive value ofMoran’s
I implies a clustered distribution, whereas a negative value
indicates a scattered distribution. Moran’s I value close to 0
indicates a random distribution in space. Second, the discrete
Poisson probability model was used to conduct Kulldorff’s
space-time scan statistics to explore the temporal, spatial,
and spatial-temporal clusters of COVID-19. The principle of
spatiotemporal scanning statistics is to use thousands of over-
lapping cylinders to detect spatiotemporal clusters, and each
scanning window is regarded as a possible spatiotemporal
cluster. The bottom of the cylinder represents the geographic
area, and the height of the cylinder represents the possible
duration of the outbreak. Monte Carlo calculations are per-
formed through the Poisson model, and the log likelihood
ratio and relative risk pair of each scanned cylinder are calcu-
lated. The null hypothesis of the Poisson model is that the
incidence of new coronary pneumonia inside and outside the
cylinder is the same. When the scan reveals that the incidence
rate inside the cylinder is greater than that outside the cylinder,
the invalid hypothesis can be rejected (Song and Kulldorff
2003). The spatiotemporal clusters with the largest log likeli-
hood ratio (LLR) in the scan result are the most likely spatio-
temporal clusters, whereas the other clusters are the secondary
spatiotemporal clusters (Desjardins et al. 2020). Considering
the human population density and the size of each city, the
maximum cluster size was set to 20%. Finally, we conducted
logistic regressionmodeling to examine the associations of the
environmental factors and imported risk according to the re-
sults of the space-time clusters of COVID-19 cases. Logistic
regression analysis adopts forward stepwise (conditional) for
variable screening, the entry equation level is 0.05, and the
elimination level is 0.10, taking particulate matters concentra-
tion and imported risk index as independent variables, and
spatiotemporal aggregation as dependent variables.

Results and discussion

In mainland China, a total of 77,658 COVID-19 cases were
reported from January 15 to February 25, 2020. The average
incidence rate of COVID-19 varied from 0.37/100,000 to
120.31/100,000 at the city level. The scanning results indicat-
ed that COVID-19 cases geographically differ across China.
The central areas of China exhibited an increased overall risk
with the central region of China showing the highest overall
risk (Fig. 1).

We created a Moran scatter plot and evaluated the signifi-
cance of the average incidence of COVID-19 through global

spatial autocorrelation analysis. Moran’s I values ranged from
−0.004 to 0.453. The global Moran’s I of the cumulative
number of COVID-19 cases in 366 cities in mainland China
passed the significance test (all P < 0.05), indicating that the
spatial distribution was regular from January 23 to February
25, 2020. However, the spatial distribution was not significant
from January 15 to January 22, 2020 (Table 1).

The results of the spatial analysis revealed the spatial dis-
tribution characteristics of COVID-19 and identified one most
likely cluster and three secondary clusters in 366 cities in
mainland China (Table 2 and Fig. 2). Twenty cities were in-
cluded in total, and most cities were located in Hubei Province
of China. The most likely cluster included ten regions with an
overall relative risk within the cluster of 96.87 (LLR =
124,907.02, P < 0.001). The secondary cluster with a total
of 8 areas was adjacent to the most likely cluster, and the
relative risk was 4.51 (LLR = 3616.12, P < 0.001). The re-
maining two spatial clustering regions were located in Xinyu
and Wenzhou, and the relative risks were 2.49 and 1.24, re-
spectively (P< 0.05). In our study, most of the confirmed cases
were in Wuhan, and the outbreak coincided with the Spring
Festival holidays, which is an annual period of large-scale
migration (Yang et al. 2020a, 2020b). Therefore, the number
of newly confirmed cases in China has increased rapidly in a
short period of time. In addition, the cities with more cases
were all in the nearby areas adjacent to Wuhan, and there was
no obvious spatial clustering in cities far away from Wuhan.
This finding reflected that the population outflow from
Wuhan has a great impact on the epidemic situation in the
surrounding areas.

Distribution of reported COVID-19 cases based on tempo-
ral clustering indicated that COVID-19 was not random in
time. One most likely cluster was identified, and the overall
relative risk within the cluster was 3.10 (LLR = 8629.09, P <
0.001). No secondary clusters were identified (Table 3). The
COVID-19 incidence in our identified COVID-19 cluster was
84.3% of the total number of cases. This finding indirectly
indicates that the scanning method has high sensitivity.

Spatiotemporal cluster analysis of COVID-19 cases
during the study period showed that COVID-19 cases
were statistically significant in space-time and identified
one most likely cluster and seven secondary clusters
(Table 4 and Fig. 3). The most likely cluster contained
10 cities in the province of Hubei and the high-risk time
was from January 29 to February 18, 2020, which
accounted for 47.83% of the total cumulative disease
cases during the study period (LLR = 123,564.50, RR =
125.17, P < 0.001). The other seven secondary clusters
included 83 cities, which were mainly distributed in the
central, eastern, southern, southeastern, and northeastern
regions of mainland China. The overall relative risk with-
in the cluster was statistically significant, indicating a
nonrandom pattern of disease distribution (P < 0.001).
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The results of the logistic regression model showed that
environmental factors (PM2.5, PM10, temperature, and humid-
ity) and the imported risk index were strongly associated with
the space-time clusters of COVID-19 cases in mainland China
(P < 0.001), and in the current model, it can explain 18.3% of
the variation (pseudo-R2=0.183) (Table 5). Among them, tem-
perature and PM10 exhibited a negative association with the
space-time clusters of COVID-19 cases (PM10: [OR], 0.959;
95% CI, 0.952–0.965; temperature: [OR], 0.987; 95% CI,
0.978–0.995); imported risk index, humidity, and PM2.5 were
significant effectors on the space-time clusters of COVID-19
cases (imported risk index: [OR], 2.443; 95% CI, 2.240–
2.665. PM2.5: [OR], 1.035; 95%CI, 1.028–1.043; humidity:
[OR], 1.025; 95%CI, 1.019–1.031).

Kulldorff’s retrospective scan statistics are one of the most
effective methods using routinely collected data to explore the
geographical and temporal distribution (Alemu et al. 2013;
Rao et al. 2017). This method dynamically supplements the
pure spatial statistical method, and is used for the prediction
and detection of disease outbreaks. Prevention strategies fo-
cusing on regions of highest risk could help enhance the ef-
fectiveness of the public health interventions (Wu et al. 2011).
Disease clusters were detected by using this method world-
wide (Ge et al. 2016; Wang et al. 2016; Zhang et al. 2014;
Zhao et al. 2013). The appropriate selection of the spatial

scanning window and temporal scanning window plays an
important role in model identification in the temporal and
spatial models. The temporal scanning window was usually
the default setting as 50% of the whole research time, but
some evidence suspected whether it was reasonable (Wang
et al. 2013). A simulation study by Ma et al. found that if
the window covers 50% of the population, it may be too large
to cover low-risk areas, which possibly causes a high false
positive rate (Ma et al. 2016). Similarly, if the scanning win-
dow was too small, it would be difficult to discover the real
high-risk regions, potentially resulting in a high false negative
rate (Rao et al. 2017). To identify the cluster areas with less
overlap, Ge and Zhang used the irregular scan statistic to
choose an appropriate window (Ge et al. 2016). Therefore,
we learned from their experiences and used these findings as
a reference in our research. The maximum temporal window
was set as 20%, and the spatial window covered 20% of the
population at risk. Finally, the identified high-risk clusters had
no overlap.

Although some studies in China have explored the distri-
bution of COVID-19 cases, these studies were limited to a
certain province or region or a national study conducted only
at the provincial level instead of at the city level (Yang et al.
2020a). When assessing the country, we could either obtain
the clustered provinces or determine the clustering in a

0 1,000 2,000 kilometer500
N

Fig. 1 Spatial distribution map of cumulative cases of COVID-19 in mainland China from January 15 to February 25, 2020
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specific city in the province and further analyze the impact of
particulate matter and imported risk on the clustering area. In
the current study, we investigated the temporal, spatial, and

spatiotemporal distributions of COVID-19 cases and explored
the potential effects of imported risk and particulate matter on
spatiotemporal aggregation. We also used spatial scanning
statistics to identify regions with a high prevalence of
COVID-19 and clustering patterns. Our study indicated that,
during the entire period from January 15 to February 25, 2020,
the geographic, temporal, and spatiotemporal distribution pat-
terns of COVID-19 cases inmainland China were not random.

Compared with separate spatial clustering analysis and
temporal clustering analysis, spatiotemporal scanning statis-
tics completely utilize the temporal and spatial information in
infectious disease surveillance data and improve the timeli-
ness and effectiveness of cluster detection (Tang et al.
2017). This analysis indicated that the COVID-19 epidemic
focus had shifted from Hubei Province to other provinces of
China. In addition to high population mobility, which provid-
ed favorable opportunities for the rapid spread of the virus, a
number of observations point to the role of environmental
factors in the survival and transmission of novel coronavirus
(Bashir et al. 2020; Fattorini and Regoli 2020; Li et al. 2020).
We observed that imported risk, humidity, and PM2.5 were the
main risk factors affecting space-time accumulation.
Conversely, temperature and PM10 became a protective factor
against the spatiotemporal accumulation of COVID-19. The
results of our research are partially consistent with the findings
of Jiang et al. (2020) and Li et al. (2020), and we believe this
phenomenon is related to the diameter of the particles. Studies
have shown that when the diameter of particulate matter does
not exceed 5 μm, it can reach type II alveolar cells, which
harbor SARS-CoV-2 cell entry receptor (ACE2)(Copat et al.
2020). Although all particulate matter could facilitate viral
attachment, PM2.5 can deliver SARS-CoV-2 into the target
cells in the alveoli whereas PM10 cannot (Lee et al. 2014).
This factor might also explain our research why PM2.5 is pos-
itively correlated with the accumulation of new coronary
pneumonia, whereas PM10 is negatively correlated. In our
research, temperature is a protective factor for new coronary
pneumonia, and high temperature inhibits the clustering of
confirmed cases of COVID-19 in Chinese cities. Some epide-
miological studies also show that under low-temperature con-
ditions, the spread of SARS-CoV-2 is more efficient and more
stable (Haque and Rahman 2020). Humidity, as a risk factor,
increases the possibility of temporal and spatial accumulation
of new coronary pneumonia. This conclusion is similar to the
research results of Jiang et al. (2020). However, many studies
have inconsistent and conflicting results regarding the impact
of meteorological factors on the new coronary pneumonia
(Zheng et al. 2021). Therefore, further verification is
necessary.

Conclusion Under the conditions of no imported cases from
abroad, our paper identified significant spatial, temporal, and
spatiotemporal clusters of COVID-19 cases at the city level in

Table 1 Spatial autocorrelation analysis for the incidence of COVID-19
in mainland China from January 15 to February 25, 2020

Date Moran’s I index Z-score P-
value

2020/1/15 0 0.000 0.001

2020/1/16 −0.004 −0.7164 0.187

2020/1/17 −0.004 −0.7164 0.187

2020/1/18 −0.004 −0.7164 0.187

2020/1/19 −0.004 −0.7164 0.187

2020/1/20 0.045 3.1692 0.086

2020/1/21 −0.005 −0.4097 0.303

2020/1/22 0.011 1.3146 0.083

2020/1/23 0.079 4.3922 0.006

2020/1/24 0.143 4.6559 0.010

2020/1/25 0.453 13.6188 0.001

2020/1/26 0.395 13.8856 0.001

2020/1/27 0.088 12.7601 0.001

2020/1/28 0.311 12.8725 0.001

2020/1/29 0.353 12.7145 0.001

2020/1/30 0.399 16.9738 0.001

2020/1/31 0.235 11.2698 0.001

2020/2/1 0.218 10.6122 0.002

2020/2/2 0.216 12.2352 0.001

2020/2/3 0.166 12.2391 0.001

2020/2/4 0.136 12.6101 0.001

2020/2/5 0.143 12.1884 0.002

2020/2/6 0.131 14.3133 0.001

2020/2/7 0.101 14.3221 0.001

2020/2/8 0.102 12.7055 0.001

2020/2/9 0.074 13.5565 0.001

2020/2/10 0.068 12.9272 0.001

2020/2/11 0.105 14.7768 0.001

2020/2/12 0.078 13.6042 0.001

2020/2/13 0.062 13.9512 0.001

2020/2/14 0.062 14.8846 0.001

2020/2/15 0.031 11.3099 0.002

2020/2/16 0.025 10.7537 0.002

2020/2/17 0.026 12.2438 0.001

2020/2/18 0.017 10.5532 0.001

2020/2/19 0.018 8.6605 0.001

2020/2/20 0.030 1.4041 0.010

2020/2/21 0.030 8.1838 0.005

2020/2/22 0.016 8.9281 0.002

2020/2/23 0.021 8.3750 0.003

2020/2/24 0.013 8.0830 0.003

2020/2/25 0.017 7.8499 0.003
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Table 2 Space clusters of COVID-19 cases in mainland China from January 15 to February 25, 2020

Type Location Cases Expected Relative risk P-value

Most likely Wuhan City, Huanggang City, Ezhou City, Xianning City,
Huangshi City, Xiantao City, Qianjiang City, Tianmen City,
Xiaogan City, Suizhou City

43,503 1496.82 96.87 0.001

Secondary Shennongjia forestry district, Shiyan City, Yichang City,
Xiangyang City, Jingmen City, Ankang City, Enshi City,
Jingzhou City

5158 1224.16 4.51 0.001

2nd secondary Xinyu City 130 52.22 2.49 0.001

3rd secondary Wenzhou City 504 407.01 1.24 0.01

0 1,000 2,000  kilometer500

N

Spatial Cluster

Fig. 2 Spatial distribution of clusters of COVID-19 cases in mainland China from January 15 to February 25, 2020

Table 3 Temporal clusters of
COVID-19 cases in mainland
China from January 15 to
February 25, 2020

Type Time frame Cases Expected Relative risk P-
value

Most likely 2020/2/2–2020/2/9 25,919 11,715.81 3.10 0.001

Secondary - - - - -
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Table 4 Spatiotemporal clusters of COVID-19 cases in mainland China from January 15 to February 25, 2020

Type Time frame Coordinates/radius N Cases Expected Relative risk P-
value

Most likely 2020/1/29–2020/2/18 (30.52 N, 114.31 E) 160.56 km 10 37309 748.41 125.17 0.001

Secondary 2020/1/30–2020/2/8 (30.78 N, 106.08 E) 597.91 km 54 3957 2385.55 1.70 0.001

2nd secondary 2020/1/31–2020/2/20 (35.38 N, 116.59 E) 0 km 1 201 8.74 23.06 0.001

3rd secondary 2020/1/29–2020/2/5 (22.62 N, 114.07 E) /0 km 1 251 109.18 2.30 0.001

4th secondary 2020/1/28–2020/1/30 (29.86 N, 121.56 E) 223.82 km 12 439 283.25 1.55 0.001

5th secondary 2020/2/4–2020/2/12 (18.25 N, 109.50 E) 0 km 1 36 7.30 4.94 0.001

6th secondary 2020/2/5–2020/2/6 (45.77 N, 131.02 E) 98.47 km 3 38 8.20 4.64 0.001

7th secondary 2020/1/30–2020/2/6 (23.16 N, 113.23 E) 0 km 1 205 124.92 1.64 0.001

Spatial temporal cluster

Non cluster

Most likely cluster

Secondary likely cluster

2nd secondary likely cluster

3rd secondary likely cluster

4th secondary likely cluster

5th secondary likely cluster

6th secondary likely cluster

7th secondary likely cluster

0 1,000 2,000500  kilometer

N

Date: 2020/01/29-2020/02/18

Date: 2020/01/28-2020/01/30

Date: 2020/01/30-2020/02/06

Date: 2020/02/04-2020/02/12

Date: 2020/01/29-2020/02/05

Date: 2020/01/31-2020/02/20

Date: 2020/02/05-2020/02/06

Date: 2020/01/30-2020/02/08

Fig. 3 Spatiotemporal distribution of clusters of COVID-19 cases in mainland China from January 15 to February 25, 2020

Table 5 The association between
the space-time clusters of
COVID-19 cases and environ-
mental factors and imported risk
index

Variables Regression
coefficient

Odds
ratio

95% confidence
interval

P-
value

Pseudo-
R2

Imported risk
index

0.893 2.443 2.240–2.665 0.001 0.183

PM2.5 0.035 1.035 1.028–1.043 0.001

PM10 −0.042 0.959 0.952–0.965 0.001

Humidity 0.025 1.025 1.019–1.031 0.001

Temperature −0.013 0.987 0.978–0.995 0.002
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mainland China. In addition, the impacts of environmental
factors and imported risks on spatiotemporal clustering were
also revealed. Hubei province and its surrounding cities were
the most likely clustering areas with the migration of popula-
tion and the impact of climate factors. A significant correlation
is noted between imported risk, humidity, and PM2.5 and the
spatiotemporal accumulation of COVID-19, whereas temper-
ature and PM10 are negatively correlated with the spatiotem-
poral clustering of COVID-19.

The cluster analysis in this study is an ecological study, the
quality of data over time and from different places may be
quite variable, and the ecological fallacy is usually interpreted
as a major weakness. Therefore, these results cannot be ex-
trapolated to the individual level. Another weakness is the
limitations of some traditional statistical methods in our re-
search. The occurrence and development of new coronary
pneumonia are complicated, and there are often correlations
between observation indicators. When constructing the logis-
tic linear regression equation, it appears as collinearity be-
tween variables, which may cause some important indicators
to be screened out. However, due to its strong versatility, high
fitting accuracy, and wide application value, the results are
still convincing. And cluster analysis does help to visualize
epidemiological data and detect and evaluate hot spots or
clusters. The results may improve disease surveillance and
effectively manage control plan resources.

In addition, the pandemic of new coronary pneumonia and
the mutation of viral factors have caused many socio-
economic problems (Coccia 2021c). Because it is a new path-
ogen that is highly infectious and concealed, humans general-
ly lack immunity to it. Therefore, the primary response strat-
egy in mainland China is to adopt physical isolation, and
nucleic acid testing was used to detect and strip the source
of infection early for isolation and centralized treatment.
These measures not only prevent the virus in the discovered
patient from spreading to the uninfected person, but also pre-
vent the virus discharged by the asymptomatic personwho has
not been found to be positive with the virus to enter the next
susceptible person and be inactivated in the environment. The
new coronavirus will no longer exist in the area until after one
or at most two incubation periods. Secondly, with the success-
ful development of vaccines, it is necessary to do our best to
complete the whole course of COVID-19 vaccination in the
largest range and in the shortest time, so as to achieve the
effect of herd immunity. Moreover, because cases continue
to appear in our country, great uncertainties remain in the late
stage of the epidemic. The incidence of COVID-19 cases
should be closely monitored on a continuous basis, and
targeted prevention and control strategies should be developed
to effectively control the epidemic of COVID-19.
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