
RESEARCH ARTICLE

Association between human coronaviruses’ epidemic
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Abstract
Environmental factors could influence the epidemic of virus in human; however, the association remains intricate, and the
evidence is still not clear in human coronaviruses (HCoVs). We aimed to explore and compare the associations between
HCoVs’ epidemic and environmental factors globally. Four common HCoVs’ data were collected by a systematic literature
review, and data of MERS, SARS, and COVID-19 were collected from the World Health Organization’s reports. Monthly
positive rates of common HCoVs and incidence rates of MERS, SARS, and COVID-19 were calculated. Geographical coordi-
nates were used to link virus data and environmental data. Generalized additive models (GAMs) were used to quantitatively
estimate the association of environmental factors with HCoVs’ epidemic. We found that there are wide associations between
HCoVs and environmental factors on a global scale, and some of the associations were nonlinear. In addition, COVID-19 has the
most similarities in associations’ direction with common HCoVs, especially for HCoV-HKU1 in four environmental factors
including the significantly negative associations with average temperature, precipitation, vegetation coverage (p<0.05), and the
U-shaped association with temperature range. This study strengthened the relevant research evidences and provided significant
insights into the epidemic rules of HCoVs in general. The similarities between COVID-19 and common HCoVs indicated that it
is critically important to strengthen surveillance on common HCoVs and pay more attention to environmental factors’ role in
surveillance and early warning of HCoVs’ epidemic.
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Introduction

Like human beings, viruses are a link in the biological chain.
Human coronaviruses (HCoVs), as the name suggests, were
referred to as coronavirus which can infect human. To date, a

total of seven HCoVs, classified into alpha coronavirus
(alpha-CoVs, including NL63 and 229E) and beta coronavirus
(beta-CoVs, including SARS-CoV-2, MERS-CoV, SARS-
CoV, HKU1, and OC43), have been found globally since
HCoV-229E was detected in America in 1962 (Hamre and
Procknow 1966). Among them, SARS-CoV-2, SARS-CoV,
and MERS-CoV are well known because of their high death
rate, while NL63, 229E, HKU1, and OC43 are seldom men-
tioned and concerned by public due to the similarly clinical
symptoms to common cold, such as runny nose, headache,
fever, and cough (Su et al. 2016; Wevers and Lia 2009), even
though theymore often cause mild to moderate upper or lower
respiratory tract illnesses all over the world.

HCoVs, similar as other viruses, is well known to survive
and reproduce inside the cells, but many studies disclosed that
some virus can survive for hours or even days in suitable
environmental conditions outside the host. Infective H1NI
virus could survive on most kinds of environmental surfaces
at 4h, but the viral RNA could be detected over 24h at tem-
perature of 17–21°C and relative humidity of 23–24%
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(Greatorex et al. 2011). And infective virus of influenza B
persisted for 2 h at room temperature and under daylight con-
ditions, while the virus was still infectious after 1 day when
mixed with respiratory mucus (Thomas et al. 2008). The sur-
vival time in environment of coronaviruses is relatively lon-
ger. SARS-CoV could retain viability for over 5 days at tem-
peratures of 22–25°C and relative humidity of 40–50% on
smooth surfaces (Chan et al. 2011). MERS-CoV could sur-
vive for 48 h at temperature of 20°C and relative humidity of
40% on plastic or steel surfaces (van Doremalen et al. 2013).
For SARS-CoV-2, it remained viable up to 21 days on most
kinds of environmental surfaces under winter conditions
(Kwon et al. 2021). Unlike other HCoVs, because SARS-
CoV-2 mutated rapidly (Leung et al. 2021; Zhao et al. 2021;
Tang et al. 2020), its ability to survive and spread in the en-
vironment might be more diverse.

Previous studies have showed the association of HCoVs
with some kinds of environmental factors. As for common
HCoVs (i.e., NL63, 229E, HKU1, and OC43), E.
Anastasiou et al. (2021) found that low temperature, low rel-
ative humidity, high cloud cover, and high precipitation were
linked to increased coronavirus detection rates in Essen,
Germany. du Prel et al. (2009) showed similar negative asso-
ciation between temperature and the common HCoVs’ detec-
tion rate in pediatric patients of Mainz, Germany; however,
there was positive association for relative humidity with the
rate, which was opposite to E. Anastasiou et al.’s (2021)
study. And Li et al. (2020) indicated that relative lower tem-
perature combined with higher relative humidity could con-
tribute to higher common HCoVs’ activity by using the liter-
ature data of 21 countries. In addition, wind speed was found
to be positively associated with the common HCoVs’ detec-
tion rate (du Prel et al. 2009).

For the three HCoVs that caused highly pathogenic respi-
ratory infections, previous evidence showed that the optimum
environmental temperature for SARS’s epidemic was be-
tween 16 and 28 °C, and sharp change of temperature contrib-
uted to an increase of SARS cases in Hong Kong, Guangzhou
(capital of Guangdong Province), Taiyuan (capital of Shanxi
Province), and Beijing in China (Tan et al. 2005). And Cai
et al. (2007) indicated that daily average temperature, relative
humidity, and wind speed were negatively associated with
secondary attack rate of SARS in mainland China. G.
Gardner et al. (2019) indicated that low temperature, low hu-
midity, high visibility, and low minimum daily wind speed
and high maximum wind speed were associated with in-
creased MERS cases in Saudi Arabia. Another study conduct-
ed in Riyadh Region, Saudi Arabia, showed opposite findings
that high temperatures were associated with higher MERS
incidence, while low relative humidity and low wind speed
were associated with lower MERS incidence (Altamimi and
Ahmed 2020). During the pandemic of COVID-19, environ-
mental factors also showed close association. Most of the

studies indicated that temperature was negatively related to
the spread of COVID-19 (Irfan et al. 2021; Haque and
Rahman 2020; Rosario et al. 2020; Sarkodie and Owusu
2020), while Xie et al. found a positive association of temper-
ature and COVID-19 infection (Xie and Zhu 2020). However,
nonlinear relationship between temperature and COVID-19
was also found, for an inversed U-shaped association reported
by Srivastava (2021). Moreover, Ma et al. (2020) indicated a
positive association of temperature variation and the death of
COVID-19 inWuhan, China. As for humidity, thoughmost of
the studies showed the negative association of humidity and
transmission of COVID-19 (Srivastava 2021; Diao et al.
2020; Islam et al. 2021; Haque and Rahman 2020), Rahimi
et al. (Rahimi et al. 2021) indicated that humidity yielded a
positive relationship sometimes. In the study conducted in 116
countries by Nazrul Islam et al. (2021), higher wind speed was
associated with lower COVID-19 incidence. Sarkodie and
Owusu (2020) observed that precipitation was negatively as-
sociated with the spread of COVID-19. COVID-19’s epidem-
ic was also associated with the air quality (Domingo et al.
2020). Some studies found that the low exposure of popula-
tion to air pollutants, such as PM10, PM2.5, SO2, NO2, and CO,
could reduce fatality rate in the COVID-19 pandemic (Coccia
(2021a); Bashir et al. 2020). Moreover, studies indicated that
high levels of air pollution with low wind speed were associ-
ated with more COVID-19 infection and death (Coccia 2021a,
b, c, d, 2020a, b, c). Previous study indicated that visibility can
also reflect air quality comprehensively (Chen and Xie 2013).
Chen et al. (2020) indicated a negative association of COVID-
19 transmission and visibility. In addition, You and Pan
(2020) showed that increased urban vegetation could slow
down the spread of COVID-19 in the USA.

Moreover, due to the global pandemic caused by COVID-
19, governments have adopted various prevention and control
policies, which have had a great impact on COVID-19 trans-
mission, such as non-pharmaceutical interventions (Candido
et al. 2020). Therefore, some social factors, such as high
healthcare expenditures (Coccia (2021e)), longer period of
lockdown (Coccia (2021f)), and quick and thorough vaccina-
tion plan in society (Coccia (2021g)), could mitigate COVID-
19’s epidemic. Also, the above policies influenced the envi-
ronmental factors, such as the reduction of concentration of air
pollutants (Shen et al. 2021; Xu et al. 2020). Therefore, it is in
need to consider the society and policy factors that influence
the control of COVID-19 when exploring the environmental
factors’ effect on COVID-19’s epidemic.

In summary, although it is clear that environmental factors
could influence the epidemic of HCoVs, the association re-
mains intricate, and the evidence is still inconclusive. On the
one hand, the environmental factors included in the previous
studies were limited, especially for precipitation’s association
with SARS-CoV and MERS-CoV, visibility’s association
with common HCoVs and SARS-CoV, and vegetation
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coverage’s association with most HCoVs except SARS-CoV-
2. And the associations between a specific environmental fac-
tor and coronavirus were often contradictory in different stud-
ies. On the other hand, study was lacking in the comparison of
similarities and differences in association with environmental
factors among different HCoVs.

In this study, we systematically explored and creatively
compared the association between the seven HCoVs’ epidem-
ic and environmental factors (includingmeteorological factors
and vegetation coverage) on a global scale, which could fill in
some gaps in the relevant research evidences and provide
significant insights into the epidemic rules of HCoVs in gen-
eral. And the similarities and differences between common
HCoVs and other HCoVs that caused highly pathogenic re-
spiratory infections (i.e., MERS-CoV, SARS-CoV, and
SARS-CoV-2) in their association with the environmental
factors could provide guidance for further prevention and con-
trol of severe human coronavirus diseases.

Materials and methods

Sample and data

In this study, we collected HCoVs’ data and environmental
data to explore the potential associations. HCoVs’ data includ-
ed data of common HCoVs, MERS, SARS, and COVID-19.
Environmental data included meteorological data and vegeta-
tion coverage data. The data sources and collection processes
were as follows (Fig. 1).

Common HCoVs data were collected through a systematic
literature review. We searched PubMed, Embase, and Web of
Science for literatures which reported data on laboratory-
confirmed cases of common HCoVs infection on 1
July 2020. The detailed search strategy was shown in
Appendix 1. After removing the duplicates, a two-stage study
selection process was conducted by two reviewers (ZKW and
XCW). At the first stage, the two reviewers independently
reviewed the title and abstract to exclude articles irrelevant
to the systematic review. We focused on studies reporting
the number of laboratory-confirmed positive tests of human
infection with at least one of the common HCoVs, including
HCoV-NL63, HCoV-229E, HCoV-HKU1, and HCoV-
OC43. Studies focused on SARS-CoV, MERS-CoV, SARS-
CoV-2, or other irrelevant topics were excluded. And only
journal articles with available full text in English would be
included at this stage (Fig. 1). Then, the two reviewers inde-
pendently read full texts of articles included in the initial stage.
Articles that met one of the following exclusion criteria were
excluded (Fig. 1):

(1) Studies whose coronaviruses data were not extractable.

(2) Studies without reporting study sites or the period of
HCoVs data (daily, weekly, monthly, or yearly).

(3) Studies without reporting diagnostic test methods or in
which coronavirus were not laboratory-confirmed.

(4) Studies lack of age distribution of subjects.
(5) Studies reporting secondary data or a subset of data

which were available in other included studies.

Two reviewers (ZKW and XCW) extracted data from in-
cluded literatures independently. General information of each
study was collected, including study sites, coronaviruses spe-
cies (NL63, 229E, HKU1, or OC43), laboratory or diagnostic
test methods, age distribution of subjects, underlying comor-
bidity of subjects, period of data availability, number of pos-
itive tests, and number of total specimens. When two or more
studies were available for the same type of coronavirus data
from the same study site during the same period, we only
extracted and included the one with the largest number of
tested specimens. All differences of opinion regarding article
selection and data extraction were resolved through
discussion.

MERS data were collected from the World Health
Organization (WHO)’s case reports from 2012 to 2020
(WHO 2021a, b) (Fig. 1). We extracted the sites (at least
accurate to the country level) of these cases, and the relative
date, including date of notification to the WHO, date of symp-
toms onset, date of hospitalization (because ofMERS), date of
laboratory confirmation, and date of outcome. Because of dif-
ferent ways of finding MERS cases and delays in reporting
them, as well as the incomplete epidemiological investigation
of the cases, we could not extract all the above five dates
among majority of these cases. As an alternative, we used
the earliest date of the above relative dates provided as cases’
date of MERS onset. Each country’s total population from
2012 to 2020 from the website of the United Nations for
calculation of the incidence rate was also extracted (United
Nations 2019).

SARS data of China at province level from 2003 to 2004
were collected from the China Ministry of Health (National
Health Commission of the People's Republic of China 2003),
while the case reports of SARS in other countries except
China were collected from the website of the WHO (WHO
2015, 2021c)(Fig. 1). The SARS data in China were collected
at province level because SARS cases were rarely reported in
other countries; the province-level data could help us better
understand the associations of SARS with environmental fac-
tors in different conditions considering the different climatic
zones in China. For case reports that we could extract detailed
case information, the date of SARS onset of the cases was
chosen by a same process as MERS date mentioned before;
while for the reports that only reported the case numbers at a
specific period, the reporting date was used as the date of
SARS onset of these cases. The total population of each
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country from 2003 to 2004 was also extracted from United
Nations (United Nations 2019), and the total population of
each province in China was extracted from China Statistical
Yearbook(National Bureau of Statistics of the People's
Republic of China 2005).

COVID-19 data were daily numbers of new COVID-19
cases reported at country level from January 20, 2020, to
December 31, 2020, which were extracted from the WHO’s
dataset (Hannah et al. 2020)(Fig. 1). Because the detailed case
information, such as date of symptoms onset, was unavailable,
we could only use the reporting date of each country as the
date of COVID-19 onset of these cases. Each country’s total
population of 2020 was also extracted from the United
Nations as mentioned before (United Nations 2019).
Considering that the COVID-19’s epidemic was closely rela-
tive to non-pharmaceutical interventions, behaviors change,
and other policies, we also extracted the government response
index from the Oxford COVID-19 Government Response
Tracker (OxCGRT) for further adjustment. The overall gov-
ernment response index from OxCGRT is a comprehensive

indicator (range from 0 to 100) that reflects the level of gov-
ernment action, which integrates 23 indicators from contain-
ment and closure, economic, health system, and vaccine pol-
icies (University of Oxford 2020).

Meteorological data were provided by the China
Meteorological Administration (Fig. 1). The data covered
nearly 9000 monitoring sites around the world, which includ-
ed the following daily indicators: average temperature (°C),
maximum temperature (°C), minimum temperature (°C),
dewpoint temperature (°C), average wind speed (m/s), precip-
itation amount (mm), and visibility (km). In addition, we also
calculated daily temperature range (°C) and relative humidity
(%) based on the above data (Appendix 2).

Vegetation coverage data were leaf area index (LAI) data
provided by the China Meteorological Administration, which
referred to the multiple of the total plant leaf area per unit land
area (Fig. 1). It is a complex index to indicate the density and
structure of vegetation. The global LAI data was collected by
Moderate Resolution Imaging Spectroradiometer based on
satellite remote sensing technology and was provided as raster

Fig. 1 Study profile flowchart
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data with 500-m(m) pixel size. Because the LAI was updated
every 16 days, we assumed that the LAI was same during the
date of one update to the next update. In addition, the LAI in
2020 has not been updated yet, therefore, we used the LAI
data in 2019 to represent that in 2020 as an alternative.

Measures of variables

The following definitions and calculations of variables were
used in this study:

(1) Positive rate of common HCoVs: We defined the com-
mon HCoVs’ positive rate as the rate of positive tests in
each study site during reported periods. And the positive
rate was calculated as the formula below:

P ¼ number of positive testsit
number of total specimens testedit

� 100% ð1Þ

where P was coronaviruses’ positive rate, i denoted the study
site, and t denoted the study period. We calculated overall
positive rate for common HCoVs (POverall) and the positive
rate for each species (PNL63, P229E, PHKU1, POC43). For the
calculation of POverall, number of positive tests equals to the
sum of positive specimens for any species of common
HCoVs. For the calculation of PNL63, P229E, PHKU1, or
POC43, number of positive tests equals to the sum of positive
specimens for each species. And the most detailed time scale
of the positive rate was the monthly positive rate of the com-
mon HCoVs.

(2) Incidence rate of MERS, SARS, and COVID-19: To
increase the comparability of MERS, SARS, and
COVID-19 data with common HCoVs’ positive rate,
the monthly incidence rate of MERS (IMERS), SARS
(ISARS), and COVID-19 (ICOVID-19) of each country
was calculated as the formula below:

I ¼ number of new cases per monthit
number of total populationit

� 100% ð2Þ

where I was the incidence rate, i denoted the study site (the
country of MERS, SARS, or COVID-19 cases), and t denoted
the specific month. For MERS and SARS data, the number of
new cases of one geographical unit (province or country) in a
specific month was the sum of the MERS, SARS, or COVID-
19 cases of that geographical unit in the month based on each
case’s date of disease onset. And because it was difficult to
obtain the monthly number of total populations, we used an-
nual total population of each country as an alternative.

(3) The monthly average meteorological factors, LAI, and
government response index (for COVID-19 only) in spe-
cific geographical areas were also calculated for further
analyses.

Method of inquiry and data analysis procedure

The geographical coordinates were used as the linkage of
virus data and environmental data. For common HCoVs data
collected from the literatures, specific sites among included
studies were located to city level at least and some to specific
hospital or laboratory. We extracted the geographical coordi-
nates for each study site using Microsoft Bing Maps (https://
cn.bing.com/maps). Based on the geographical coordinates of
each study site, we extracted meteorological data in the study
site’s nearest monitoring stations and LAI data in the raster
that the study site was in. Then, we linked the HCoV data and
environmental data at the same study periods. In addition, the
monthly average of government response index in each
country was also linked with the COVID-19 data.

In the descriptive analyses, we calculated the median and
interquartile range (IQR) for common HCoVs’ positive rate
and monthly incidence rate of MERS, SARS, and COVID-19
because of non-normal distribution. For the normal distribu-
tion data including meteorological factors and LAI, we de-
scribed with mean, standard deviation (SD), and range.

Generalized additive models (GAMs) with a Quasi-
Poisson regression and adjustment of time effect were used
to estimate the effects of environmental factors on POverall,
PNL63, P229E, PHKU1, POC43, IMERS, ISARS, and ICOVID-19. As
for the establishing of mult ivariable GAMs, the
multicollinearity of the environmental factors and the devi-
ance explained (the higher the better) of models were taken
into consideration together to select better models (Appendix
2). Finally, the average temperature, temperature range, aver-
age wind speed, relative humidity, precipitation, visibility, and
LAI were included in the multivariable models. For COVID-
19, government response index was adjusted in the multivar-
iable GAM. To avoid overfitting, optimal estimated degrees
of freedom (edf) and the number of knots on smoothing terms
were selected according to the lowest generalized cross vali-
dation (GCV) score (the lower the better). We also calculated
relative risks (RRs) and 95% confidence intervals (CIs) to
quantitatively estimate the association of environmental fac-
tors with positive rates of common HCoVs and incidence rate
of MERS, SARS, and COVID-19. The similarity of two
HCoVs’ association with one environmental factor was iden-
tified if association in the same direction was observed within
a similar range of that environmental factor.

Subgroup analysis was done to explore the similarities and
differences in common HCoVs’ association with the environ-
mental factors among different age groups and underlying
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medical conditions. And to make the COVID-19 data more
comparable, a sensitivity analysis was conducted that only
countries provided common HCoVs’ positive rates were in-
cluded in the analysis of exploring environmental factors’ as-
sociation with COVID-19.

All data analyses were conducted in R software (version
4.0.3). GAMs were implemented using “mgcv” package (ver-
sion 1.8-33), and RRs with their 95%CIs were calculated
using the “oddsratio” package (version 2.0.1). A two-sidedp-
value of less than 0.05 was considered statistically significant.

Results

A total of 251 studies, among which the earliest study was
published in 1972, were included in the data extraction of
common HCoVs (Fig. 1, Appendix 1). There were 263 study
sites distributed in 63 countries of six continents around the
world (Fig. 2, Appendix 3 Table S1). A total of 1,424,751
specimens were collected among these studies, with a median
positive rate of 3.39% (1.11–6.67%) (Fig. 3a, Table 1).MERS
cases distributed in 27 countries with a median monthly inci-
dence rate of 0.03 per million (0.03–0.39 per million), and
majority of MERS cases were in the Middle East area, espe-
cially in the Kingdom of Saudi Arabia and the United Arab
Emirates (Fig. 3b). There were 27 countries that reported
SARS cases from 2003 to 2004; the worldwide median
monthly incidence rate of SARS was 0.07 per million (0.04–
0.53 per million) (Fig. 3c). COVID-19 had a wider pandemic
globally than SARS and MERS with a median monthly inci-
dence rate of 12.72 per million (0.88–24.80 per million) (Fig.
3d). For the environmental factors, because MERS cases were
mainly in the Middle East area, the average temperature for
MERS (26.19 ± 8.22°C) was relatively higher than other
HCoVs; while the relative humidity (35.82 ± 20.98%) and
LAI (1.42 ± 2.29) were relatively lower (Appendix 3
Table S2).

Average temperature was associated with all the seven
coronaviruses. When the average temperature was above
5.0°C, the similar significantly negative association with av-
erage temperature was found among ICOVID-19 (RR5–27°C:
0.24, 95%CI: 0.23–0.26, p<0.05), POverall (RR<13°C: 0.51,
95%CI: 0.50–0.51, p<0.05), PNL63 (RR: 0.36, 95%CI: 0.18–
0.70, p<0.05), and PHKU1 (RR: 0.82, 95%CI: 0.75–0.91,
p<0.05) (Fig. 4, Tables 2 and 3, Appendix 3 Fig. S1). In
addition, negative association was also found between aver-
age temperature and P229E when temperature was below
10.0°C (RR: 0.66, 95%CI: 0.54–0.82, p<0.05), but positive
association when temperature was between 10 and 24°C
(RR: 2.35, 95%CI: 2.16–2.54, p<0.05). When average tem-
perature was below 14.0°C, the increase of temperature could
contribute to the decrease of POC43 (RR: 0.23, 95%CI: 0.17–
0.32, p<0.05); however, the increase of temperature could

contribute to the increase of ISARS on the contrary (RR: 2.94,
95%CI: 1.07–8.05, p<0.05). For the association between av-
erage temperature and IMERS, the increase of temperature
could significantly contribute to the increase of IMERS when
average temperature was below 27.0°C (RR: 1.94, 95%CI:
1.23–3.04, p<0.05) (Fig. 4, Tables 2 and 3, Appendix 3
Fig. S1).

Similar inversed U-shaped association with temperature
range was found among IMERS, POverall, PNL63, and P229E, of
which the association was not significant in POverall and PNL63

(p>0.05). When the temperature range was under 11°C, the
IMERS (RR: 2.28, 95%CI: 1.45–3.59, p<0.05) and P229E (RR:
3.62, 95%CI: 1.57–8.35, p<0.05) increased when the temper-
ature increased. On the contrary, U-shaped association with
temperature range was found among ICOVID-19 (RR<13.5 °C:
0.51, 95%CI: 0.40–0.65, p<0.05; RR≥13.5 °C: 1.79, 95%CI:
1.15–2.79, p<0.05) and PHKU1 (p>0.05). And a linear positive
association was found between temperature range and POC43,
while significantly negative association was found in ISARS.
(Fig. 4, Tables 2 and 3, Appendix 3 Fig. S1).

ISARS, POverall, and PNL63 had similar negative associations
with relative humidity (p<0.05). And the shape of exposure
response curves among P229E, PHKU1, and POC43 were also
similar, of which significant negative associations were ob-
served in PHKU1 when the relative humidity was between
66.0 and 80.0% (RR: 0.58, 95%CI: 0.47–0.02, p<0.05) and
in POC43 when the relative humidity was between 51.0 and
73.0% (RR: 0.39, 95%CI: 0.26–0.59, p<0.05), respectively.
When the relative humidity was under 42.0%, the increase
of relative humidity could contribute to the increase of
IMERS (RR: 1.46, 95%CI: 1.38–1.55, p<0.05); however, when
the relative humidity was above 42.0%, the increase of rela-
tive humidity could contribute to the decrease of IMERS (RR:
0.27, 95%CI: 0.09–0.79, p<0.05). In addition, ICOVID-19 in-
creased with the increase of relative humidity (RR: 2.26,
95%CI: 1.56–3.28, p<0.05) (Fig. 4, Tables 2 and 3,
Appendix 3 Fig. S1).

With the increase of wind speed, ICOVID-19 (RR: 0.73,
95%CI: 0.60–0.90, p<0.05) and POverall (RR: 0.70, 95%CI:
0.62–0.80, p<0.05) decreased gradually; on the contrary,
P229E (RR2.0–5.0m/s: 2.92, 95%CI: 2.71–3.15, p<0.05) and
POC43 (RR: 2.09, 95%CI: 2.03–2.16, p<0.05) showed an in-
creased trend. There was similarity in the shape of exposure
response curves among PNL63, ISARS, and IMERS, of which
significantly positive association was observed in ISARS when
the wind speed was below 2.6m/s (RR: 17.88, 95%CI: 5.07–
63.06, p<0.05) and in IMERS when the wind speed was below
2.8m/s (RR: 3.49, 95%CI: 1.03–11.85, p<0.05); and signifi-
cantly negative association was observed in PNL63 when the
wind speed was between 2.0 and 4.0m/s (RR: 0.43, 95%CI:
0.40–0.45, p<0.05) and in IMERS when the wind speed was
above 2.8m/s (RR: 0.01, 95%CI: 0.00–0.04, p<0.05), respec-
tively. In addition, with the increase of wind speed, the PHKU1
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significantly decreased when the wind speed was below 2.8m/
s (RR: 0.20, 95%CI: 0.12–0.33, p<0.05) and then increased
when the wind speed was between 2.8 and 4.6m/s (RR: 3.12,
95%CI: 2.86–3.41, p<0.05) (Fig. 4, Tables 2 and 3, Appendix
3 Fig. S1).

Similar negative association with precipitation was found
among ICOVID-19, ISARS, P229E, PHKU1, and POC43(Fig. 4,
Tables 2 and 3, Appendix 3 Fig. S1). On the contrary, IMERS

(RR: 3.45, 95%CI: 0.52–22.95, p>0.05), POverall (RR8.0–

33.0mm: 4.22, 95%CI: 0.82–21.76, p>0.05), and PNL63 (RR:
9.81, 95%CI: 2.24–42.94, p<0.05) showed positive associa-
tionwith precipitation (Fig. 4, Tables 2 and 3, Appendix 3 Fig.
S1).

Inversed U-shaped nonlinear association with visibility
was observed among ICOVID-19, ISARS, and POverall. Positive
association was shown when visibility was below 14.0km for
ICOVID-19, below 13.0km for ISARS, and below 14.0km for
POverall, respectively. And negative association was shown
when visibility was higher than the above cutoff point
(RRCOVID-19(14.0–33.0km): 0.33, 95%CI: 0.26–0.41, p<0.05;
RRSARS: 0.14, 95%CI: 0.02–0.86, p<0.05; RROverall: 0.31,
95%CI: 0.09–1.09, p>0.05) (Fig. 4, Tables 2 and 3,
Appendix 3 Fig. S1). Similar negative association with visi-
bility was showed among PNL63, P229E, PHKU1, and POC43. In
addition, with the increase of visibility, IMERS decreased when
the visibility was below 8.5km (RR: 0.48, 95%CI: 0.42–0.54,

Table 1 Common human coronaviruses’ positive rate by characteristics

Total specimens n (%) Overall common HCoVs’ positive
rate median (IQR) (%)

Number of study sites Number of studies

Total 1,424,751 3.39 (1.11~6.67) 263 251

Age (years)

0~18 257,650 (18.08) 3.41 (0.00~8.13) 152 145

19~64 58,372 (4.10) 5.42 (3.38~9.24) 39 32

65~ 20,664 (1.45) 4.32 (2.36~6.61) 18 15

Others* 1,088,065 (76.37) 3.43 (1.47~6.00) 145 129

Underlying medical conditions

Immune dysfunction 1611 (0.11) 6.06 (2.13~15.28) 5 5

Cardiopulmonary anomaly 5357 (0.38) 6.44 (1.16~12.17) 10 10

Organ transplant 6547 (0.46) 2.35 (2.04~3.87) 5 5

Cancer 583 (0.04) 2.88 (1.66~6.19) 3 3

Intestinal diseases 783 (0.05) 7.73 (5.73~10.98) 3 3

General population 1,409,870 (98.96) 3.35 (1.90~7.33) 236 179

Note: HCoV human coronavirus

IQR interquartile range

*Others included studies that specific age groups could not be distinguished

Fig. 2 Global distribution of common human coronaviruses’ study sites

14339Environ Sci Pollut Res (2022) 29:14333–14347



p<0.05), increased when the visibility was between 8.5 and
16.0km (RR: 6.01, 95%CI: 4.09–8.82, p<0.05), and then de-
creased when the visibility was above 16.0km (RR: 0.32,
95%CI: 0.12–0.83, p<0.05) (Fig. 4, Tables 2 and 3,
Appendix 3 Fig. S1).

Similar significantly negative association with LAI was
found among ICOVID-19 (RR<35.0: 0.66, 95%CI: 0.68–0.69,
p<0.05), POverall (RR: 0.37, 95%CI: 0.18–0.78, p<0.05),
PNL63 (RR: 0.18, 95%CI: 0.07–0.48, p<0.05), P229E (RR:
0.30, 95%CI: 0.17–0.54, p<0.05), and PHKU1 (RR: 0.47,
95%CI: 0.24–0.90, p<0.05) (Fig. 4, Tables 2 and 3,
Appendix 3 Fig. S1). For the association between LAI and
POC43, the increase of LAI could contribute to the increase of
POC43 when the LAI was below 23.0 (RR: 2.40, 95%CI: 2.39–
2.42, p<0.05); however, when the LAI was above 23.0, the
increase of LAI could contribute to the decrease of POC43 (RR:
0.24, 95%CI: 0.09–0.67, p<0.05). And with the increase of
LAI, ISARS increased when the LAI was below 10.5, de-
creased when the LAI was between 10.5 and 20.0, and then
increased when the LAI was above 20.0 (p<0.05) (Fig. 4,
Tables 2 and 3, Appendix 3 Fig. S1).

The sensitivity analysis of COVID-19’s incidence also
showed similar results with the main analysis in the association
with average temperature, wind speed, precipitation, visibility,
and LAI (Appendix 3 Fig. S2, Table S3). And the negative
association in the sensitivity analysis was partly similar to the
main analysis of COVID-19 data when the temperature range

was below 13.5°C (RR: 0.10, 95%CI: 0.09–0.10, p<0.05), while
the sensitivity analysis showed a U-shaped association between
relative humidity and ICOVID-19; however, the associationwas not
significant (p>0.05) (Appendix 3 Fig. S2, Table S3).

In the subgroup analysis of common HCoVs’ positive rate
with environmental factors, heterogeneity was shown among
different age groups in the associations of HCoVs’ positive
rate with average temperature, temperature range, relative hu-
midity, visibility, and LAI. However, similar negative associ-
ations and similar positive associations were observed among
the three age groups in the associations of the positive rate
with wind speed and precipitation, respectively (Appendix
3). In addition, the similar significantly negative association
of common HCoVs’ positive rate with average temperature
and relative humidity were observed in people with underly-
ing diseases and general population (p<0.05). However, the
significant associations were opposite in some parts of the
value range of precipitation, visibility, and LAI among people
with underlying diseases or not (p<0.05) (Appendix 3 Fig. S3,
Table S4).

Discussion

In this study, we have demonstrated that there are wide asso-
ciations between HCoVs and environmental factors on a glob-
al scale. And to our knowledge, this study is the first to

Fig. 3 Global epidemic of human coronaviruses. a Common HCoVs
positive rate (NL63, 229E, HKU1, and OC43), b MERS incidence rate,
c SARS incidence rate, dCOVID-19 incidence rate. (HCoV, human

coronavirus, while the NL63, 229E, HKU1, and OC43 were the four
kinds of HCoVs. MERS, Middle East respiratory syndrome. SARS, se-
vere acute respiratory syndrome. COVID-19, coronavirus disease 2019)
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Table 3 Association of environmental factors with MERS, SARS, and COVID-19

Factor MERS SARS COVID-19 #

Range RR (95%CI) Range RR (95%CI) Range RR (95%CI)

Average temperature (°C) 8.56~27.00 1.94 (1.23~3.04)* −3.07~14.00 2.94 (1.07~8.05)* −20.43~5.00 7.60 (2.58~22.42)*

27.00~39.17 0.87 (0.60~1.25) 14.00~31.40 0.18 (0.13~0.26)* 5.00~27.00 0.24 (0.23~0.26)*

27.00~38.89 1.09 (0.64~1.86)

Temperature range (°C) 5.72~13.50 2.28 (1.45~3.59)* 3.39~10.00 0.06 (0.02~0.17)* 2.74~13.50 0.51 (0.40~0.65)*

13.50~18.61 0.89 (0.59~1.32) 10.00~12.00 1.06 (0.99~1.12) 13.50~19.03 1.79 (1.15~2.79)*

12.00~20.36 0.00 (0.00~0.04)*

Relative humidity (%) 8.38~42.00 1.46 (1.38~1.55)* 22.27~94.11 0.01 (0.00~0.02)* 10.39~93.27 2.26 (1.56~3.28)*

42.00~90.92 0.27 (0.09~0.79)*

Wind speed (m/s) 0.10~2.80 3.49 (1.03~11.85)* 0.80~2.60 17.88 (5.07~63.06)* 0.40~9.30 0.73 (0.60~0.90)*

2.80~6.60 0.01 (0.00~0.04)* 2.60~7.40 0.01 (0.00~138.62)

Precipitation (mm) 0.00~16.00 3.45 (0.52~22.95) 0.00~13.00 0.00 (0.00~0.01)* 0.00~42.00 0.30 (0.12~0.76)*

Visibility (km) 4.28~8.50 0.48 (0.42~0.54)* 0.00~13.00 9.49 (2.92~30.81)* 3.59~14.00 1.71 (1.51~1.94)*

8.50~16.00 6.01 (4.09~8.82)* 13.00~29.15 0.14 (0.02~0.86)* 14.00~33.00 0.33 (0.26~0.41)*

16.00~19.79 0.32 (0.12~0.83)* 33.00~43.71 1.09 (0.51~2.31)

Leaf area index 0.34~15.38 0.45 (0.07~3.03) 0.80~10.50 23.26 (17.67~30.62)* 0.43~35.00 0.69 (0.68~0.69)*

10.50~20.00 0.10 (0.04~0.25)* 35.00~63.68 1.10 (0.85~1.44)

20.00~29.63 89.23 (62.53~127.33)*

Note: MERS Middle East respiratory syndrome. SARS severe acute respiratory syndrome

COVID-19 coronavirus disease 2019

RR relative risk. CI confidence interval
#The government response index from the Oxford COVID-19 Government Response Tracker (OxCGRT) was adjusted in the model

*p<0.05

Fig. 4 Comparison of association between environmental factors and
human coronaviruses. (HCoV, human coronavirus, while the NL63,
229E, HKU1, and OC43 were the four kinds of HCoVs. MERS,

Middle East respiratory syndrome. SARS, severe acute respiratory
syndrome. COVID-19, coronavirus disease 2019)
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compare the association between the seven HCoVs’ epidemic
and environmental factors. For the temperature, an inversed
U-shaped association with daily average temperature was ob-
served in the commonHCoVs,MERS-CoV, SARS-CoV, and
SARS-CoV-2, which was partly consistent with the negative
association reported in most of the previous studies when the
environmental temperature was above zero (du Prel et al.
2009; Notari 2021; Poirier et al. 2020). Laboratory studies
have proved that temperature can influence the viral stability,
viability, and activity, and viruses tend to survive longer in
relative lower temperature, which could support the negative
association (Pica and Bouvier 2012; Xu et al. 2021). Our
finding also indicated that the sub-zero environmental temper-
ature in the cold winter might also cause the inhibition of virus
activity and slow down the epidemic, which needs further
exploration. Humidity is also an important factor that influ-
ences the survival and spread of the virus. In the environment
with lower relative humidity, especially combined with lower
temperature, the viruses survived better and had higher virion
stability because the salts in the aerosol crystallize more easily
and droplets stay suspended longer in the air (Yang et al.
2012). In addition, the hosts’ nasal epithelium inhibits
mucociliary clearance and viral phagocytosis when the air is
drying, which increases the susceptibility of the hosts (Eccles
2002; Salah et al. 1988; Casanova et al. 2010). Therefore,
consisted with previous studies (Qi et al. 2020; Poirier et al.
2020; Ma et al. 2020), humidity was negatively associated
with HCoV-NL63 (RR: 0.11, 95%CI: 0.10–0.11) and
SARS-CoV (RR: 0.01, 95%CI: 0.00–0.02). However, another
finding of previous study is that higher humidity (80%) had a
protective effect on HCoVs’ survival (Casanova et al. 2010).
And in our study, similar trend that humidity of over 80%
contributed to the increasing positive rate of HCoV-229E,
HCoV-HKU1, HCoV-OC43, and COVID-19’s incidence.

The relatively higher wind speed showed a positive effect
on decreasing the incidence rate of COVID-19 (RR: 0.73,
95%CI: 0.60–0.90), which was consisted with previous evi-
dence, and the reason was that higher wind speed could cause
the shorter suspending time of SARS-CoV-2 in the air due to
better dilution and removal effect of wind (Ma et al. 2020).
However, the inversed U-shaped associations between wind
speed and incidence rates of MERS and SARS were partly
consistent with previous studies that Altamimi and Ahmed
(2020) and Cai et al. (2007) reported the only negative asso-
ciations of wind speed with MERS and SARS, respectively.
While for the precipitation, the negative association with pre-
cipitation was found on COVID-19 (RR: 0.30, 95%CI: 0.12–
0.76, p<0.05), which was consistent with previous study
(Altamimi and Ahmed 2020). Overall, our findings in these
associations could be supported by evidence from previous
studies; however, there remain some differences. The differ-
ences of the findings between previous studies and our study
might come from three aspects. Firstly, many studies were

regional in a particular city or country (Anastasiou et al.
2021; du Prel et al. 2009; Tan et al. 2005; Gardner et al.
2019; Altamimi and Ahmed 2020; Ma et al. 2020), while
our study focused on the global scale, which made the evi-
dences we provided more comprehensive. Secondly, many
studies were conducted at the beginning of the disease’s epi-
demic, especially for COVID-19(Wu et al. 2020), which
narrowed the variability of environmental factors. At last,
the differences might also be caused by the different types of
outcome and the different methods used to explore the asso-
ciations among studies; for example, some studies used the
number of cases as the outcome (Wu et al. 2020), and the
statistical methods they used could not provide piecewise as-
sociations, such as linear regression (Pan et al. 2021).

Comparing with previous related studies, we creatively ex-
plored visibility and vegetation coverage’s associations with
the seven HCoVs. And similarly, negative associations were
observed in the whole or at least a significant part of the
exposure response curve between the two environmental fac-
tors and the seven HCoVs. It has been proven the drop in the
concentration of air pollutants (i.e., PM10, PM2.5, NO2, etc.)
will improve visibility (You and Pan 2020; Chen and Xie
2013). The negative association between visibility and
HCoVs showed the improvement of air quality could decrease
the transmission of HCoVs. The possible reasons were as
follows. Firstly, the reduction of particulate matter in the air
reduces the attachment and duration of the virus in the air
(Frontera et al. 2020). Secondly, higher visibility could im-
prove the penetration of sunlight through the air; ultraviolet
rays from sunlight are proven to have the ability to kill viruses
in the air and environmental conditions, which were proved
by Cherrie et al. (2013). In addition, better air quality has
positive effects on human’s immunity, which could reduce
susceptibility to some extent (Horne et al. 2018; Xie et al.
2019; Xu et al. 2016). For the vegetation coverage, our finding
was consisted with You et al.’s study (You and Pan 2020),
which showed urban vegetation slows down the spread of
COVID-19 in the USA. Indeed, areas with high vegetation
coverage, such as the forests, might cluster many animal hosts
of coronavirus. However, the human-to-human transmission
was the main transmission route of HCoVs during the epidem-
ic periods; the role of animals during the pandemic period of
HCoVs was less important for most of the HCoVs. As one of
the indexes to evaluate urban construction and quality of life
in urban, vegetation in urban landscapes is critically important
because it benefits city dwellers and the environment for its
improvement in ecosystem functions to strengthen resistance
to natural disasters caused by extreme weathers and improve
the air quality (Kim 2016; Zitkovic 2008; Seitz and Escobedo
2014). Urban green spaces as a kind of public service, which
could help city dwellers reduce stress, relax, and improve
mental health, then improve health and quality of life (van
Den Berg and Custers 2011; Ulrich 1984; Cecily Jane
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2009). Therefore, relatively higher urban vegetation coverage
could help city and city dwellers improve resistance to the
emerging infectious diseases.

Another novelty of this study is that after analyzing the
environmental factors’ association with these kinds of
HCoVs separately, we could clearly compare the similarities
and differences of the associations among these HCoVs.
Recently, the pandemic of COVID-19 is ongoing. And the
incidence rate of COVID-19 was more similar with that of
more than three other HCoVs in the association’s direction
with daily average temperature, precipitation, and vegetation
coverage (Fig. 4). And the most similarities were shown in
COVID-19 and commonHCoVs in the associations’ direction
with environmental factors, especially for HCoV-HKU1,
which is also a kind of beta-CoV, in four factors including
average temperature, temperature range, precipitation, and
vegetation coverage (Fig. 4). This finding indicated that it is
critically important to strengthen the surveillance of common
HCoVs’ epidemic and explore the global epidemic regularity
of common HCoVs in depth, which could provide useful sug-
gestions for prevention and control of COVID-19. Among the
three HCoVs that caused highly pathogenic respiratory infec-
tions, few similarities were found between COVID-19 and
MERS in their associations with environmental factors. The
reason might be that majority of the MERS cases were from
the Middle East area, which has unique environmental char-
acteristics, such as higher temperature, lower relative humid-
ity, and LAI; however, the values of these environmental fac-
tors included in the analysis of COVID-19 were more evenly
integrated across the globe.

However, there were some limitations of this study. Firstly,
there were differences in the positive rates of commonHCoVs
and the incidence rates of MERS, SARS, and COVID-19,
which might cause bias in the comparison of environmental
factors’ effects on different HCoVs. However, country-level
surveillance data for the common coronavirus is not available
for most countries; data from literature sources are the best
reflection of the epidemic of common HCoVs on a global
scale under current conditions. Secondly, some control mea-
sures for common HCoVs were not included in the analysis,
because no particular world-level or country-level control
measures was conducted for common HCoVs, which mainly
caused the common cold. In the further studies, it is in need to
strengthen country-level and worldwide surveillance of com-
mon HCoVs, in order to better understand the charac-
teristics of common HCoVs’ epidemic around the world
and provide more solid data. And more variables of air
quality and air pollution can be considered in the
modeling process in future studies. In addition, this
study provides a perspective for researchers that moni-
toring of environmental factors is particularly important
for the surveillance and early warning of infectious dis-
eases’ epidemic, and the epidemic regularity of viruses

in the same family has a strong reference value for the
prevention and control of emerging viruses.

Conclusion

In this study, we systematically explore and compare the as-
sociations between seven HCoVs’ epidemic and environmen-
tal factors globally. Wide associations were found between
HCoVs’ epidemic and environmental factors on a global
scale; some of the associations were nonlinear. And
COVID-19 has the most similarities in associations’ direction
with common HCoVs, especially for HCoV-HKU1 in four
environmental factors including average temperature, temper-
ature range, precipitation, and vegetation coverage. These
findings indicated that it is in need to strengthen the important
role of environmental factors in infectious disease surveil-
lance, and the focus of environmental factors should go be-
yond meteorological factors and need to be expanded to in-
clude more vegetation coverage, air quality, and other factors.
And the similarities between COVID-19 and commonHCoVs
in the association of environmental factors indicated that it is
critically important to strengthen surveillance on common
HCoVs in further research and management for better preven-
tion and control of severe human coronavirus diseases.
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