
REVIEW ARTICLE

Environmental risks and toxicity of surfactants: overview of analysis,
assessment, and remediation techniques

Suaibu O. Badmus1 & Hussein K. Amusa2 & Tajudeen A. Oyehan1
& Tawfik A Saleh3

Received: 22 June 2021 /Accepted: 7 September 2021
# The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
This work comprehensively reviewed the toxicity and risks of various surfactants and their degraded products in the environ-
mental matrices, various analytical procedures, and remediation methods for these surfactants. The findings revealed that the
elevated concentration of surfactants and their degraded products disrupt microbial dynamics and their important biogeochemical
processes, hinder plant-surviving processes and their ecological niche, and retard the human organic and systemic functionalities.
The enormous adverse effects of surfactants on health and the environment necessitate the need to develop, select, and advance
the various analytical and assessment techniques to achieve effective identification and quantification of several surfactants in
different environmental matrices. Considering the presence of surfactants in trace concentration and environmental matrices,
excellent analysis can only be achieved with appropriate extraction, purification, and preconcentration. Despite these pre-
treatment procedures, the chromatographic technique is the preferred analytical technique considering its advancement and
shortcomings of other techniques. In the literature, the choice or selection of remediation techniques for surfactants depends
largely on eco-friendliness, cost-implications, energy requirements, regeneration potential, and generated sludge composition
and volume. Hence, the applications of foam fractionation, electrochemical advanced oxidation processes, thermophilic aerobic
membranes reactors, and advanced adsorbents are impressive in the clean-up of the surfactants in the environment. This article
presents a compendium of knowledge on environmental toxicity and risks, analytical techniques, and remediation methods of
surfactants as a guide for policymakers and researchers.
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Introduction

Surfactants are among the most challenging emerging contam-
inants which are continuously discharged into the environment
through wastewater treatment plants (WWTPs). Surfactants
possess both hydrophilic (polar charged or uncharged head
group) and hydrophobic (non-polar hydrocarbon tail) and thus
are regarded as amphipathic molecules (Mungray and Kumar

2009). Surfactants are employed for various domestic and in-
dustrial applications due to their unique physicochemical prop-
erties (Ramprasad and Philip 2016; Collivignarelli et al. 2019).
However, the persistence of the transformed products in an en-
vironment is of great concern to environmental sustainability
and healthy ecosystems (Ivanković and Hrenović 2010;
Nascimento et al. 2019; Liu et al. 2021; Li et al. 2021; Yao
et al. 2021 ; Hao et al. 2021).

In perspective, surfactants are essential for the industrial
production of detergents, textiles, paints, polymers, pharma-
ceuticals, pesticides, paper, and personal care products. These
surfactants could reduce interfacial tension and stabilize foams
and or emulsions; hence, they are significant for certain essen-
tial operations such as oil recovery and mining (Srinet et al.
2017; Zanoletti et al. 2017; Moura et al. 2019). For example,
benzalkonium chloride and alkylbenzene linear sulfonate are
employed to produce laundry detergents, personal care, and
textiles softeners (Watson et al. 2012; Brycki et al. 2017;
Moura et al. 2019). Also, hexadecyltrimethylammonium
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bromide helps in the impregnation of polyelectrolyte multi-
layer films to enhance its antimicrobial efficacy and buffer
constituents for successful DNA extraction (Cloutier et al.
2015; Rawat et al. 2016).

The global market size of surfactants is currently about
42.1 billion US dollars, and it is projected to reach $52.4bn
by 2025 (Fig. 1). This conservative estimate would likely be
exceeded with the global increase in production and use of
hand sanitizers due to the COVID-19 pandemic. As shown in
Fig. 1, ionic (anionic, cationic, and amphoteric) surfactants
constitute 65% of surfactants’ global market size.
Surfactants are categorized into five groups based on the type
of charge on hydrophilic groups, and these include anionic,
cationic, non-ionic, semi-polar, and amphoteric. Cationic sur-
factants possess a cationic functional group, while anionic
surfactants contain negatively charged hydrophilic functional
groups (Zhu et al. 2018). The non-ionic surfactants (TAS)
possess a non-ionized hydrophilic group(s), while the charge
on the hydrophilic sites of amphoteric surfactants changes as a
function of pH (Fei et al. 2018; Collivignarelli et al. 2019).
Fig. 2 shows the chemical structures of standard surfactant
classes and examples. The linear alkylbenzene sulfonate
(LABS), alkyl ethoxy sulphate (AES), alkyl sulphate (AS),
alkylphenol ethoxylate (APE), alkyl ethoxylates (AE), and
quaternary ammonium-based structures (QAC) are the most
sourced and used surfactants globally (Borghi et al. 2011;
Kruszelnicka et al. 2019).

Owing mainly to the extensive applications of surfactants,
their huge concentration from mostly urban or industrial and
domestic wastewater can end up in municipal wastewater
treatment plants (MWTPs) or directly discharge into the envi-
ronment (Bautista-Toledo et al. 2014; Camacho-Muñoz et al.
2014). Several years ago, it was estimated that surfactants in
domestic and industrial wastewater are between 1 to 10 mg/L

and 300 mg/L, respectively (Zhang et al. 1999). There are
chances that surfactants can penetrate drinking water through
MWTPs, thereby posing a health risk to human, animal, and
aquatic lives (Bautista-Toledo et al. 2008). Also, the fate and
chemical structure of surfactants, environmental systems (aer-
obic or anaerobic), and electron acceptors contributes mainly
to the persistence, degradability, and ecological effects of sur-
factants in the environment (Bering et al. 2018; Zhu et al.
2018).

Some of the commercially available surfactants pose a se-
vere environmental and public threat to humans and ecosys-
tems. For instance, anionic surfactants, predominantly linear
alkylbenzene sulfonates (LAS), cause biochemical, patholog-
ical, physiological, and other impacts on aquatic/terrestrial
ecosystems (Petrie et al. 2015; Zhu et al. 2018). Also, LAS
causes skin irritation and respiratory problems (Collivignarelli
et al. 2019) and reduces the resistance of aquatic biota against
environmental stress, reproduction, and growth processes
(Hampel et al. 2012; Moura et al. 2019). Surfactants usually
increase the solubility of contaminants and thus facilitate eu-
trophication (Zanoletti et al. 2017). Also, the increasing hy-
drophobic properties of the surfactants proportionally increase
their toxicity (Borghi et al. 2011). These vast impacts conse-
quently raise public health and environmental concern about
the high concentration of surfactants.

Conventionally, various techniques have been deployed to
decontaminate surfactants from wastewater. Some of these
remediation technologies include physicochemical processes,
membrane filtration and flocculation-adsorption, ultrafiltra-
tion, electrocoagulation, and chemical and electro-oxidation
(Rodriguez Boluarte et al. 2016; Gönder et al. 2017;
Mohammadi et al. 2017; Pinto et al. 2017). However, when
the concentrations of surfactants in wastewaters are high,
nearly all traditional techniques failed to comprehensively
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Fig. 1 The recent and projected
global market of surfactant types
(Sources: marketsandmarkets.
com and alliedmarketresearch.
com)
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remove surfactants contamination (Sirés and Brillas 2012;
Palmer and Hatley 2018). In general, the selection of efficient
treatment technologies largely depends on the influent and
effluent quality.

The physicochemical treatment technologies possess ex-
cellent removal efficiencies with some notable challenges.
For instance, nearly all physical and chemical treatments re-
quire high capital cost and retention time and generate sludges
(Jain et al. 2017; Palmer and Hatley 2018). However, physical
treatment requires fewer chemical and operational inputs,
while chemical treatment generates low sludge. On the other
hand, the ease of operation, low cost, and removal efficiency
position biological treatment unit and cyclic activated sludge
system as a better remediation approach for surfactants
(Taghavi et al. 2017; Zhu et al. 2018; Moura et al. 2019).
However, the high retention time, foam formation, death of
biomass, and massive sludge generation reduce the biological
treatment’s acceptance and applicability (Zhu et al. 2018).
Previous studies have proven that the use of thermophilic
organisms can reduce operational costs and sludge generation
and thus increase the adoption of biological treatment
(Collivignarelli et al. 2017, 2019).

Adsorption is widely accepted due to its excellent efficien-
cy, ease of operation and modification of adsorbents, cost-
effectiveness, and eco-friendliness (Saleh 2021; Saleh
2020a, b, c; Valizadeh et al. 2016; Zanoletti et al. 2017).
Previously, carbon nanotubes (Ncibi et al. 2015), polymer
resin (Gönder et al. 2017), fly ash-TiO2, coal fly ash
(Zanoletti et al. 2017), and amino crosslinked chitosan micro-
spheres (Zhang et al. 2017) were employed in the removal of
surfactants. However, activated carbon remains the most suit-
able candidate among many developed adsorbents for remov-
ing surfactants from wastewater (Valizadeh et al. 2016). Still,
concerted efforts are necessary for developing advanced ad-
sorbents with exceptional surfactants removal efficiencies
without compromising environmental and public health
safety.

This article comprehensively examined the ecotoxicity and
health implications of surfactants and their transformed or

degraded products. Also, various analytical and remediation
techniques were carefully discussed owing largely to the enor-
mous environmental risks and concerns of surfactants. Then,
the research gaps and prospects in surfactants were highlight-
ed for future studies.

Environmental risks and toxicity
of surfactants

Previous studies have shown that a high concentration of sur-
factants, and their degraded products are deposited into vari-
ous environmental compartments due to their extensive appli-
cations (Olkowska et al. 2014). The surfactants can enter the
environment from the effluents generated in agrochemical
products, industrial products, and domestic activities and con-
sequently cause environmental pollution (Li et al. 2018b). For
instance, biocides, herbicides, and pesticides are among the
agrochemicals, while personal care products, emulsifiers, wet-
ting agents, detergents, and coating or softening of fabric,
paper, and carpets are notable industrial products that contin-
uously contribute to the surfactants-aided environmental pol-
lution. Also, laundry, disinfection, and fumigation are major
domestic activities that release surfactants to the environment.

The fate, distribution, and persistence of surfactants in the
environment are mainly influenced by sorption and bio-/
photodegradation (Lara-Martín et al. 2012). These processes
depend primarily on various environmental factors such as
pH, temperature, and salinity.

The municipal wastewater treatment plants usually receive
a high concentration of surfactants but release a low concen-
tration of the surfactants and their degraded products upon
secondary treatment. The proportion of the post-treatment
surfactants and by-products released depends more on the
efficiency of MWWTPs (Lara-Martín et al. 2012; Camacho-
Muñoz et al. 2014; Olkowska et al. 2014).

The transformed products of sulfophenyl carboxylic acids,
nonylphenol ethoxylates, octylphenol ethoxylates, and
nonylphenol carboxylic acids were recently reported (Li

Fig. 2 Chemical structures of
typical surfactants showing the
hydrophilic head and their
corresponding hydrophobic tail. a
Nonylphenol ethoxylate, a non-
ionic surfactant. b Ammonium
lauryl sulphate, an anionic sur-
factant. c Benzethonium (chlo-
ride), a cationic surfactant. d
Lauramidopropyl betaine, a zwit-
terion (amphoteric).
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et al. 2018b). Notably, nonyl- or octylphenol ethoxylates
(NPEOs) are more toxic than their precursors, i.e. alkylphenol
(APs) (Lara-Martín et al. 2012; Jardak et al. 2016). Several
studies have shown severe ecological and health impacts of
toxic surfactants on humans, other vertebrates, soil fauna, mi-
croorganisms, crustacean, and terrestrial plants (Domene et al.
2009; Gheorghe et al. 2013). The critical criteria to assess the
environmental risks associated with the commercially avail-
able surfactants are photo- or biodegradability, toxicity behav-
iour, and sorption efficiency (Gheorghe et al. 2013). For in-
stance, the surfactants’ foam formation and sedimentation de-
teriorate water quality by reducing air or water oxygen transfer
and self-cleaning river capacity, to different extents for differ-
ent surfactant classes (Gheorghe et al. 2013). Also, surfactants
enhance the solubility of persistent organic pollutants (POPs)
in the aqueous phase, and the resultant products of aerosol and
surfactants significantly impact the atmosphere and climate
(Olkowska et al. 2014). The changes in the physiological
and biochemical activities of aquatic organisms by LAS delay
their metabolism and growth, damage cell membrane, and
cause breakage of chlorophyll protein complex (Larson et al.
1993; Koparal et al. 2006)

According to the Registration, Evaluation, Authorisation
and Restriction of Chemicals (REACH) Regulation, the
ecotoxicity of surfactants can be evaluated with micro-
biotests (QSAR, ECOSAR) (Lewis and Lewis 2018). The
procedures employ the tests such as Daphtoxkit F, Daphnia
IQ Test, Rotokit F/M, Ceriodaphtoxit K, Ostracod toxkit,
Algal toxkit F, and Microtoxkit. The past studies showed that
t h e s u r f a c t a n t s t o x i c i t y c o u l d b e i n f l u e n c e d
by physicochemical properties of water (i.e. pH, DO,
suspended matter), surfactants (i.e. type and concentration
and the absorption capacity of surfactants), and biotic factors
(the age and type of species, sensitivity between species and
their acclimatization) (Garcia et al. 2008; Yamane et al. 2008;
Ivanković and Hrenović 2010)

The median effective concentration (EC50) and median
growth inhibition concentration (IC50) respectively determine
the risk and toxicity of surfactants on animals, plants, and
microorganisms. For instance, Ge et al. (2010) discovered that
the 96 h EC50 of acetyl trimethyl ammonium chloride on the
green microalgae Chlorella vulgaris is 145 ± 13.35 μg/L,
while EC50 of benzalkonium to invertebrates is 5.90 μg/L
(Van De Voorde et al . 2012). Also, the IC50 of
benzyldimethyldodecylammonium chloride to bacteria is
170.0 μg/L (Di Nica et al. 2017).

Surfactants can retard microbial growth and increase mi-
crobial mutation andmortality (Ivanković and Hrenović 2010;
Gheorghe et al. 2013). For instance, nonylphenol ethoxylates
(NPEOs) can uncouple energy production which can conse-
quently disrupt microbial growth and nitrification processes
(Argese et al. 1994). Also, anionic surfactants disrupt internal
structures and microbial functions such as environmental

resistance, growth, competitive stress, and reproduction
(Hampel et al. 2012). The absorption of surfactants by a mi-
croorganism can depolarize microbial cell membrane and de-
crease the absorption of nutrients, acceptance of oxygen, and
release of the toxic metabolites (Domene et al. 2009).

Some surfactants have severe health implications on
humans through ingestion or drinking of contaminated food
items. For example, surfactants react with existing protein in
the liver and serum, thus causing long-term metabolic effects
and disruption of the human endocrine (Borghi et al. 2011;
Gheorghe et al. 2013). Likewise, some surfactants have been
reported to cause human skin burning or irritation and eye and
respiratory problems (Ying 2006). Alkylphenol ethoxylates
and carboxylates retard subsurface penetration of pharmaceu-
tical compounds. Nonylphenol ethoxylates have estrogenic
effects on amphibians, mammals, and Pisces (De La Fuente
et al. 2010; Borghi et al. 2011). Some surfactants such as LAS
damage the root cell membrane and change the membrane
structure. Consequently, it impaired the transpiration and
translocation of essential nutrients and water (Jardak et al.
2016) (Table 1).

Analysis of surfactants

Owing to the risks posed by surfactants and their degraded
products to the environment, it is pertinent to determine their
concentrations in environmental matrices. However, laborato-
ry analysis of surfactants could be a difficult task to accom-
plish. The reason is that surfactants are usually found in mix-
tures comprising different components such as isomers, ho-
mologues, and other impurities (Lara-Martín et al. 2012). In
addition to this, surfactants are often present in trace amounts
typically below the analytical instruments’ detectable limits.
The complexity and variety of matrices in which surfactants
naturally occur additionally complicate and hinder their anal-
ysis. To this end, a sophisticated state-of-the-art technique is
required to carry out surfactant analysis in aqueous streams.
Table 2 summarizes the analytical techniques often employed
in the open literature.

One of the strategies to overcome the above-stated analyt-
ical challenges for practical surfactant analysis is to perform
extraction before analysis. Other vital approaches are sample
purification and preconcentration. Extensive independent re-
search and reviews have been conducted on the extraction,
isolation, and preconcentration of surfactants (Kurrey et al.
2019; Yamini et al. 2019; Nasiri et al. 2020). Based on the
literature survey, solid-phase extraction (SPE) is described as
the most versatile pre-treatment method due to its numerous
advantages (Gao et al. 2014, 2020).

Surfactants are usually identified using several techniques
such as spectrophotometry, titrimetry, and chromatography
(Cierniak et al. 2020). If the surfactant is present as a single
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Table 1 Application and
environmental risks of surfactants Surfactants in

environmental
matrix

Classes of
surfactants

Uses/applications Risks Comment

Linear alkyl
benzene
sulfonates

Anionic Detergent formulation
and personal care
products

Non-conservative
behaviour

Excellent
cleaning
properties, low
cost

Perfluorinated
surfactants

Anionic Coating of textile, paper
and carpets,
firefighting chemical,
consumer products like
floor polishes and
shampoos

Persistence,
recalcitrance, and
toxicity

Extensive
production;
required
efficient
treatment
technologies

Quaternary
ammonium
ethoxylates
and
cetrimonium
chloride

Cationic Fabric softening,
disinfectants, hair
conditioning, cosmetic
industry, biocides, and
wetting agents

Very toxic in the
environment

Irreplaceable for
some
industrial uses

Alkylphenol
ethoxylates

Non-ionic
surfac-
tants

Detergent, emulsifier, and
wetting agent

Degraded and
transformed products
(nonyl-/octylphenol
ethoxylates) are toxic
as well as persistent in
the environment

Replaced with
better or
eco-friendly
surfactant
(AEOS)

Alcohol
ethoxylates

Non-ionic
surfac-
tants

Domestic, detergent,
cosmetics, textile,
paper, agricultural
sectors, and petroleum
products

Highly hydrophobic and
impressive adsorptive
capacity on solid
particles and
sediments. Exposure
to aquatic organisms

AEOS has
excellent
biodegradabil-
ity, extensive
use

Table 2 Summary of the
surfactant analysis
methods

Techniques Uses/conditions Advantages Comment

Spectrophotometry This method operates
based on complex
ion formation

Economical, safe handling, and
ease of sample preparation

It uses toxic solvents and possesses
low selectivity

Potentiometry Operate based on the
variation of
electromotive force
(cell)

Ease of operation and high
efficiency

Difficult data reproducibility and
stability issues limit this
technique

ATR-FTIR Uses spectrum
absorbance in the
infrared region to
analyse surfactants

Useful for trace amount
detection, fast and high
sample throughput

ATR-FTIR is an expensive
instrument and
transmission mode requires a lot
of time to prepare pellets and
grind KBr

Titrimetry Work on the principle
of off-line quantifi-
cation of the target
analytes

Ease of operation and does not
require advanced analytical
instruments

It applies to the specific analyte and
coloured matrix

GC/MS Operate at ambient
conditions for the
analysis of volatile
compounds

High resolution, fast method,
and high recovery of
analytes. Identification of
fragments

Limited to low volatile oligomers
and requires derivatization

SFC (HPLC/MS) It involves the use of
stationary and
mobile phases to
determine
surfactants

High selectivity,
environmentally friendly,
shorter analysis time,
repeatability, robustness,
non-toxic, and
non-flammability

Very sophisticated and possesses
high analytical capacity
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component, the spectrophotometric technique could be suffi-
cient. However, when the surfactant is a component of an
environmental matrix, a precipitating (such as titrimetry) or
separating (chromatography) technique would be required.
Because of the capability to specifically identify surfactant
types, chromatographic techniques (mainly HPLC-MS and
GC/MS) are the most common methods usually adopted to
analyse various surfactants (anionic, cationic, non-ionic,
amphiprotic, and semi-polar surfactant groups). With these
techniques, each homologue, ethoxyemers, or isomers are
identified from surfactant blends in numerous environmental
matrices. The following sub-sections give more discussions
on the various analytical techniques employed to identify sur-
factants in an environmental sample.

Spectrophotometric analysis

Spectrophotometric analysis of surfactant ensures a fast and
easy method of surfactant analysis. The most common spec-
troscopic technique is the UV-Vis. UV-Vis spectrophotometer
uses an electronic transmission band in a UV-visible region.
This technique focuses on developing surfactants with
targeted ion-pair reagents and their extraction into acceptable
hydrophobic solvents (Kurrey et al. 2019). For example, this
technique was applied to evaluate linear alkylbenzene sulfo-
nate concentration based on ionic pair surfactant methylene
blue formation (Hu et al. 2019). In the analysis of surfactants
using UV-Vis, different compounds show different bands dur-
ing the spectrometry experiment. According to Silva et al. (da
Silva et al. 2015), the wavelength range of nonylphenol
ethoxylate ranges from 260 to 290 nm (Fig. 3) during the
decontamination of NP4EO in wastewater. However, this
technique generates a lot of toxic wastes. Another major draw-
back is that chromophores must be found in the samples

(Robards et al. 1999; Morales-Muñoz et al. 2004). Also, this
technique is not suitable for determining the surfactant group
present as a component of a large matrix.

Potentiometric analysis

The potentiometric titration technique can analyse the total ionic
and non-ionic surfactant components. This technique works
based on the change in the electromotive force cell after adding
different titrants volume. Herein, the detection is ion-selective
which is observed at the end-point of titration (Kurrey et al.
2019). Despite this advantage, this technique is not suitable for
individual component analysis in a mixture of surfactants.
Besides, the difficulty associated with signal stability and data
reproducibility limits the use of this technique.

Ion-selective potentiometric has been used for the analysis
of cationic and non-ionic surfactants. The analysis works
based on ionophores using ion-selective electrodes (Sak-
Bosnar et al. 2015). Nevertheless, according to Masadome
and Imato, this technique has also been used to analyse sodi-
um lauryl ether sulphate (SLES), an anionic surfactant
(Masadome et al. 1999). Therefore, the potentiometric analy-
sis base on ion-selective electrodes applies to large varieties of
environmental matrices. This technique offers several advan-
tages: reliability, reduced monitoring time, not destructive to
analytes, higher sensitivity, and less expensive compared to
spectrometric and chromatographic analytical techniques.
Recent advances in the ion-selective potentiometric analysis
are based on modification with carbon nanotubes and
nanomaterials. Special review articles have been devoted to
these developments in the last 2 decades (Dimeski et al. 2010;
Jozanović et al. 2019; Menger et al. 2021; Ostos et al. 2021).

Attenuated total reflectance Fourier transform
infrared spectrometry

Attenuated total reflectance Fourier transform infrared spec-
trometry (ATR-FTIR) is an essential technique in analysing
complex multicomponent mixtures (Kargosha et al. 2008;
Mansourian et al. 2019). This technique works on the princi-
ple of spectrum absorbance in an infrared region. This tech-
nique can be applied to determine the different surfactants in a
mixture simultaneously (Carolei and Gutz 2005). Besides, this
technique is reliable and stable and has a short time on-stream
for the analysis. One major drawback is the lack of suitability
to analyse a trace compound (Carolei and Gutz 2005).

Moreover, the instrumental cost is another pitfall. Further,
water used as a solvent in this technique has a sizeable inter-
ference in the absorption range. A recent development in this
analytical technique is the use of paper substrate during the
analysis. Kurrey et al. (2020) proposed a paper-based KBr to
replace the traditional KBr pellet as a sample holder.

Fig. 3 UV-Vis spectrum from the analysis of NP4EO in wastewater (da
Silva et al. 2015)

62090 Environ Sci Pollut Res (2021) 28:62085–62104



Titrimetry

Titrimetry is commonly employed in the analysis of some
non-ionic and cationic surfactants. This approach utilizes the
principle of off-line quantification of targeted mixtures with
the type of surfactant (Beneito-Cambra et al. 2013). Details
working principles are outlined in the review of Kurrey et al.
(2019). One advantage of this analysis is that sample pre-
treatment is not required. On the contrary, this technique is
limited by the narrow range of sample analysis and complex
operation mode (Beneito-Cambra et al. 2013).

Gas chromatography

In coping with the challenges of traditional analytical tech-
niques, gas chromatography has important advantages of sep-
arating complex matrices and analysing low molecular mass
metabolites. On the other hand, the technique requires the
compounds’ derivatization and their metabolites (Robards
et al. 1999). Moreover, the detection limit is influenced by
the choice of detector employed (Patil and Jain 2021). In re-
cent times, common detectors used to analyse target com-
pounds include chemical ionization, flame ionization detector,
electron impact, tandem mass spectrometry, and single quad-
rupole (Petrović and Barceló 2000; Clara et al. 2007). Gas
chromatography-mass spectrometry has been successfully
used to separate and analyse linear alkylbenzene sulfonate in
different samples. GC analysis is a suitable analytical tech-
nique for different types of surfactants due to implementing
the hybrid of a capillary column and flame ionization detector.
However, the use of GC for the analysis of cationic surfactants
has not been fully outlined in the open literature.

High-performance liquid chromatography (HPLC)

High-performance liquid chromatography (HPLC) is current-
ly the most utilized technique for analysing surfactants in an
environmental matrix. For the most part, it is used for the
analysis of low and high molecular weight analytes. There is
no need for derivatization in this analysis. Furthermore, this
technique is helpful for non-volatile analytes and different
surfactants group and biodegraded products. Interestingly,
the use of HPLC overcomes much of the challenges posed
by the earlier discussed techniques. However, the major set-
back in the application of HPLC revolves around the need to
isolate and extract analytes before the analysis. Principally, the
HPLC utilizes different solid-liquid partitioning systems to
identify the target analytes. Like GC-MS, HPLC has a low
limit of detection (LOD); it could detect as low as 0.0002 mg/
L (Liu et al. 2006). Moreover, this technique has been used to
simultaneously determine and quantify different surfactants
classes with high accuracy (Im et al. 2008). Most HPLC de-
tectors (such as MS, MS-MS, UV, conductivity, evaporative

light scattering, refractive index, FLD, and fluorescence) have
been applied to identify different surfactants.

Supercritical fluid chromatography (SFC)

Recent advances in the analysis of surfactants include the use
of supercritical fluid chromatography (SFC) to separate and
identify surfactants (Ma et al. 2019). A fluid at a critical point
(i.e. temperature and pressure) where there is no distinct liquid
or gas is said to be a supercritical fluid (SF). SFs have similar
density with liquid and similar viscosity with gas phase, there-
by combining the good advantages of both fluid phases. As a
result, SFC shares the strong points of both GC and HPLC.
Although HPLC has better selectivity, SFC is superior in ef-
ficiency and sensitivity. Also, the use of SFC can circumvent
the inherent toxicity and flammability associated with liquid
chromatography. Moreover, SFC is less expensive and more
environmentally friendly and operates at a higher flow rate
than liquid chromatography. CO2 is often used as the mobile
phase because of its low cost, UV inertness, non-toxicity,
good solvent properties, and low critical temperature
(31.1°C) and pressure (72 bar) that are easy to attain. The
selection of the stationary phase, on the other hand, is deter-
mined using the solvato-chromic model (Lv et al. 2014).

There is a wide range of detectors that can be used with
SFC. Standard detectors commonly used include flame ioni-
zation detector, evaporative light scattering detection, Fourier
transforms infrared spectroscopy, corona-charged aerosol de-
tection, and ultraviolet-visible detection (Shah et al. 2015;
Tang et al. 2020). Tang et al. (Tang et al. 2020) used quadru-
pole time-of-flight mass spectrometry coupled with SFC to
identify different pentaerythritol fatty acid esters. The appli-
cation of supercritical fluid chromatography marked a notable
advance in the study of pentaerythritol fatty acid esters. On the
opposite side, SFC relies on a pure chemical of high purity,
which is expensive to afford for most small laboratories.

Biological techniques

Some biological techniques are employed for the analysis of
surfactants considering their health risks and toxicological im-
pacts. For instance, ethoxylated alkylphenol, alkylphenol, and
their biodegraded products cause endocrine disruption and
teratogenic and estrogenic effects (Priac et al. 2017; Acir
and Guenther 2018). The conventional chemical and electro-
chemical analytical techniques are time-consuming and re-
quired technical know-how and sophisticated instruments.
However, analysis of food samples, animals, and many other
environmental samples required techniques that are simple,
quick, and reliable. Immunochemistry, molecular, and bio-
sensors are among the biological techniques commonly used
for the analysis of surfactants. The enzyme-linked immuno-
sorbent assay (ELISA) is a modern immunochemistry
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technique that is highly sensitive and cost-effective, requires
short-time analysis and fewer technical skills, and provides
reliable analytical results. For example, the average inhibitory
concentration (IC50) of octylphenol was quantified with
ELISA by incorporating a linear carboxylated analogue of 4-
nonylphenol (hapten) into carrier protein (as either monoclo-
nal or polyclonal antibody) (Li et al. 2014). The IC50 value of
the synthesized hapten with polyclonal and monoclonal was
51ng/mL and 76 ng/mL. Another less sensitive biological an-
alytical technique such as capillary electrophoresis has been
previously reported (Acir and Guenther 2018). Moreover, the
polymerase or gyrase chain reaction technique is the most
advanced biological technique usually deployed for the detec-
tion of surfactants particularly alkylphenol, ethoxylated
alkylphenol in animals. PCR is a thermocycling process used
for the amplification of interested DNA sequences. The poly-
merase chain reaction technique is a molecular technique that
is very rapid, highly sensitive, reliable, and accurate in detect-
ing the gene sequences of interest. This method relies solely
on the effects of surfactants (mostly endocrine disruptors) on
the gene expression of the important neuroendocrine system.
Due to the effect of the nonylphenol on the aromatase tran-
script of Atlantic salmon, quantitative PCR has successfully
been used to quantify the gene expression of cytochrome
P450N (Cyp 19). Kortner et al. (2009) carefully discussed
how immunohistology and immunoblotting and titrated
water-release assays were used to evaluate aromatase protein
immunoreactivity and aromatase activity in Atlantic salmon’s
brain due to the presence of nonylphenol (Table 3).

Assessment of surfactants in environmental
matrix

The excessive discharge of surfactants in the environment
endangers human health and ecological safety. Therefore, sev-
eral assessment techniques are employed to separate, identify,
and quantify the surfactants in an environmental matrix. This
section focuses on various assessment techniques through
which different surfactants in environmental samples can be
quantified. The integrity and efficacy of assessment tech-
niques depend primarily on the level of environmental con-
tamination and the remediation technologies’ efficiency. The
assessment techniques include spectrophotometric, potentio-
metric, voltammetric, and chromatographic methods. The op-
erational principles, weaknesses, and the strengths of each
assessment method are discussed in this section.

Titrimetric analysis

The titrimetric analysis is one method used to determine the
critical micelles concentration of cationic, anionic, and non-
ionic surfactants without pre-treatment. The pre-treatment

procedure includes the mixture of extraction and or
preconcentration of the analytes in the samples (van Os et al.
1993; Wu et al. 2020). Traditionally, the conductivity, surface
tension, and intensity of fluorescence are indicators to determine
the critical micelles concentration of surfactants (Scholz et al.
2018; Ghosh et al. 2020). However, this method is tedious and
time-consuming and requires a large sample size (Harkins and
Introduction 1947; Cui et al. 2014). Therefore, the adoption of
coloured or fluorescence ionic organic titrant was proposed to
optimize this method and eliminate the traditional approach’s
identified problems. This new approach is rapid, simple, and
cost-effective. However, the approach is limited to cationic
and anionic surfactants (Harkins and Introduction 1947; Cui
et al. 2014). Recently, C6-unsubstituted tetra pyrimidine
(THP-Ti) was proven as an excellent indicator to determine
the CMC of a wide range of surfactants (Wu et al. 2020).
Titrimetry were employed to assess dialkyl dimethyl ammoni-
um and ethoxylated surfactants, sodium dodecyl sulfonates, so-
dium dodecyl dimethyl benzyl ammonium chloride, and dode-
cyl dimethyl betaine in environmental samples (Borrego et al.
2000; Beneito-Cambra et al. 2013;Wu et al. 2020). Fig. 4 shows
the determination of sodium dodecyl sulfonates (SDS) content
using titrimetry analysis.

Bismuth active substance method and other related
modified methods

Bismuth active substance method or other modified methods
are employed to measure fatty alcohol and alkylphenol
ethoxylated surfactants. The usual modified methods are the
Wick bold method and the use of modified Dragendorff re-
agent. These methods depend mainly on potentiometric, spec-
trophotometric, and atomic absorption spectrophotometric
principles to determine surfactants’ concentration in environ-
mental analytes. The potentiometric method depends on the
changes in the environmental medium’s electrical properties
due to surfactants’ presence (Lara-Martín et al. 2012). The
spectrophotometric and the potentiometric approaches in-
volve the determination of absorbance of the precipitate of
bismuth-EDTA complex, yellow ternary Pb(II)-[meso-tet-
ra-(3,5-dibromo-4-hydrooxyphenyl)-porphyrin]-APEO com-
plex, ferric thiocyanate complex, iron(III) thiocyanate com-
plex, pseudo-cation complexes of sodium or potassium
ethoxylated compounds, and non-precipitate excess of molyb-
denum (Beneito-Cambra et al. 2013; Olkowska et al. 2013).
This assessment method is simple, rapid, and reasonably sen-
sitive and selective for specific surfactants in environmental
matrices (Jurado et al. 2002; Lara-Martín et al. 2012; Beneito-
Cambra et al. 2013). However, the spectrophotometric meth-
od can generate huge toxic wastes and is incapable of mea-
suring the total surfactants’ concentration (Yamamoto et al.
2002; Zhu et al. 2003). Also, there are problems with signal
instability and reproducibility of the potentiometric method
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(Ali et al. 2018). This method’s success depends significantly
on the quantities of targeted surfactant in the environmental
samples, pre-treatment efficiency, and accurate prediction of
absorbance wavelength range (Beneito-Cambra et al. 2013).

Fourier transform infrared spectrometry (FTIR)

Fourier transform infrared spectrometry is a prominent meth-
od used in assessing non-ionic surfactants (Gartshore et al.
2000; Carolei and Gutz 2005). Here, the non-ionic surfactants
must be extracted and concentrated through the salting-out
procedure (Andrew 1993). The process is easy, fast, and sen-
sitive for a particular class of surfactant (Beneito-Cambra et al.
2013). However, this method is not suitable for the evaluation
of the absolute value of non-ionic surfactants. Soap formation
can interfere with the efficiency of this method. Linear alkyl
benzyl sulfonate and sodium lauryl ether sulphate were simul-
taneously quantified with ATR-FTIR coupled with PLS re-
gression (Carolei and Gutz 2005; Kargosha et al. 2008).

Voltammetric technique

Voltammetric techniques are among electroanalytical proce-
dures used for quantitative analysis of environmental samples.

Notably, these techniques are less significant than chromato-
graphic, electrophoretic, and spectrophotometric because they
fail to assess mixtures of different surfactants in environmen-
tal samples (Sander and Henze 1997; Beneito-Cambra et al.
2013). However, voltammetry offers a superior specific anal-
ysis to surfactants in environmental samples. The techniques
are based on the principles of ionic conductivity of the
analytes and variation in the analytes’ transport charges. So,
the voltammetric techniques are used to measure conduction
charge transport of the electrolyte interface (i.e. measuring the
electrode potential of the analytes) (Scholz 2015). Due to mi-
celles’ potential to adsorbed electroactive species, the diffu-
sion coefficient of the CMC of surfactants is quantified with
voltammetric techniques. In perspective, voltammetric tech-
niques are employed to precisely quantify non-ionic surfac-
tants in surface water, sewage, WWTPs effluents, etc.
(Szymanski et al. 1996; Nesměrák and Němcová 2006).
Previously, 1–30 ethylene oxide units of the AEs and APEs
surfactants were measured on the surface of the working elec-
trode, i.e. hanging mercury drop electrode (HDME) (Gerlache
et al. 1996; Cvrković-Karloci et al. 2011). The measurement
was made possible because monitoring substances (EOs) were
adsorbed on the surface of HDME during pre-concentration.

Table 3 Analytical techniques for
various surfactants in
environmental samples

Technique Surfactant Detectors References

Potentiometry
titration

Methylene blue active substance
(MBAS) and disulphine blue ac-
tive substance (DBAS)

UV-Vis Roslan et al. (2010)

Titrimetry Disodium cocoyl
monoethanolamide sulfosuccinate
(DMSS)

Lv et al. (2014)

ATR-FTIR Sodium lauryl ether sulphate (SLES) Carolei and Gutz
(2005);
Mansourian et al.
(2019)

ATR-FTIR Coconut diethanol amide (CDEA)
and linear alkylbenzene sulfonates
(LABS)

Kargosha et al.
(2008)

ATR-FTIR Cocamidopropyl betaine (CAPB)
and alkylpolyglucoside (APG)

Carolei and Gutz
(2005)

Spectroscopy Alkylbenzene sulfonates,
hydroxyl-oxo-amides

Cochran et al.
(2016)

Gas
chromatography

Linear alkylbenzene sulfonates
(LAS) and lauryl alcohol
ethoxylates (LAEs)

MS Motteran et al.
(2019)

Liquid
chromatography
(LC)

Polyfluorooctane sulfonate (PFOS) UV Kim et al. (2018)

High-performance
LC

Linear alkyl benzenesulfonates
(LAS)

ELSD Liu et al. (2006)

Supercritical fluid
chromatography
(SFC)

Octylphenol ethoxylates (OPEOs)
and lauryl alcohol ethoxylates
(LAEs)

MS Ma et al. (2019)

ELISA (biological
technique)

Octylphenol (hapten) Monoclonal/polyclonal
antibody

Li et al. (2014)
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Chromatographic technique

The chromatographic method is the most advanced as-
sessment method for surfactants in an environmental sam-
ple. The method is sensitive and specific and possesses an
excellent capacity to separate, identify, and quantify each
surfactant in the environmental matrix within the shortest
possible time. The method is majorly classified into gas
chromatography and liquid chromatography. Several stud-
ies have shown that gas chromatography and high-
performance liquid chromatography coupled with post-
column, conductive, or UV-detectors can assess the eth-
ylene oxide units in the various surfactants (Gerlache
et al. 1996; Lobachev and Kolotvin 2006).

Gas chromatography method

Gas chromatography (GC) can directly analyse low mo-
lecular mass and non-ionic surfactants (such as NPs and
short chains NPEOs) without derivatization (Bartolomé
et al. 2005; Nagarnaik et al. 2010). GC cannot, however,
assess low volatile ethoxylated oligomers. Therefore, the
GC can only assess surfactants that were derivatized with
specific agents to eliminate volatilization and separation
challenges (Bennie et al. 1997; Bengoechea and Cantarero
2009; Jiménez-díaz et al. 2010). However, capillary GC
mass spectrometry (MS) has been used to assess low vol-
atile ethoxylated compounds (Beneito-Cambra et al.
2013). It has been established that the method tends to
degrade ethylene oxide composition of the surfactants
(Beneito-Cambra et al. 2013). The GC has an excellent
capacity to separate homologues and isomers of different
surfactants after derivatization. Distinctively, non-polar
capillary column GC can effectively analyse both anionic
and non-ionic surfactants (Bartolomé et al. 2005; Luo
et al. 2010). Some detectors are coupled with the GC to
assess surfactants, such as flame ionization, chemical ion-
ization, mass spectrometry, and quadrupole mass spec-
trometry. However, chemical ionization showed better
quantification performance (Alzaga et al. 2003; Pan and
Tsai 2008; Hibberd et al. 2009). Fig. 4 shows the appli-
c a t i o n o f GC c o l umn s f o r t h e a n a l y s i s o f
alkyldimethylamines, a non-ionic surfactant(Fig. 5).

Liquid chromatography

Liquid chromatography (LC) is employed to assess non-vol-
atile, low molecular weight surfactants such as bio-surfactants
and biodegraded surfactants. Unlike GC, liquid chromatogra-
phy analyses environmental samples without derivatization.
The LC employed for surfactants usually adopts a reverse-
phase column (León et al. 2000; Merino et al. 2004; Lara-
Martín et al. 2006; Rico-Rico et al. 2009; Bassarab et al.

2011). Mass spectrometry (MS), ion-trap MS (MSn), triple
quadrupole MS (MS-MS), time of flight MS (ToF-MS), and
quadrupole ToF MS (Q-ToF-MS) are typical detector used in
the analysis of surfactants (Lunar et al. 2004; Lara-Martín
et al. 2012). The method is used to quantify NP and
octylphenol ethoxylates in the environmental samples
(Loyo-Rosales et al. 2003).

HPLC is an advanced type of LC involving the use of high
pressure in the liquid mobile phase. High-performance liquid
chromatography with UV or fluorescence detectors is used to
analyse LAS and NPEOs in environmental samples (Villar
et al. 2007; Cantarero et al. 2011). The ultra-power LC
(UPLC) coupled with Q-ToF-MS is the most advanced ap-
proach to effectively analyse trace quantities of analytes with-
in the shortest recorded time (Lara-Martín et al. 2010, 2012).

Remediation of surfactants

The presence of surfactants in aquatic and terrestrial environ-
ments poses an adverse effect on microorganisms, plants, an-
imals, and humans. The immense usage of surfactants, their
health hazards, and strict regulatory policies on their allowable
limit call for their control in the environment. This allowable
limit has been a subject of debate among several researchers.
Therefore, several remediation approaches have been recom-
mended for the clean-up of surfactants in the environment. In
past decades, bioremediation is often employed in the removal
of surfactants from the environmental matrix. Recently, the
available remediationmethods encompass the physical, chem-
ical, biological, and membrane techniques (Siyal et al. 2020).
The biological and physical remediation approaches, includ-
ing gravity settling, cannot wholly remove both anionic sur-
factants and organic matters when the pollutant concentration
is high (Sriwiriyarat et al. 2017). The appropriate remediation
method is influenced by many factors such as treatment

Fig. 4 Titrimetric analysis of SDS (reproduced from (Wang et al. 2012))
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efficiency, operation time, effluent and influent characteris-
tics, and power usage. A detailed overview of the remediation
methods is provided in the remaining part of this section.

Physical methods

Adsorption is the most common physical method due to its
effectiveness in surfactant removal. Various materials are cur-
rently utilized as adsorbents, such as activated carbon,
nanomaterials, zeolites, clay, and resin. However, the use of
these adsorbents is limited due to their costs. By far, activated
carbon is the best material used as an adsorbent (Valizadeh
et al. 2016; Siyal et al. 2020). On the other hand, its develop-
ment is often an arduous task. In recent times, a lot of attention
is being focused on developing environmentally safe, cheap,
and highly efficient adsorbents as alternatives to activated
carbon. Siyal et al. (Siyal et al. 2020) summarized recent ad-
vances in adsorbent development. One emerging approach is
developing green adsorbents from waste materials to mitigate
the challenges in the application of adsorption for surfactant
removal from wastewater. Hossain et al. (Hossain et al. 2020)
outlined several diverse materials used as waste adsorbents. It
was hypothesized that the application of this type of materials
enhances waste management and contributes to economic
growth. These materials are either used as an as-received un-
modified or modified adsorbent or combined with other tech-
niques for surfactant remediation (Gupta et al. 2009). Despite
the potential benefits involved in the use of green adsorbents,
more research should be directed on the socio-economic and
techno-economic analyses of the concept (Gupta et al. 2009).

Another emerging methodology for surfactant removal is
the use of nanomaterials (Lu and Astruc 2020; Scaria et al.

2020). However, this approach’s major impediments are sus-
taining the synergy between the nanomaterial’s physicochem-
ical properties and the surfactants’ composition. These two
phenomena influence maximal removal efficiency.
Moreover, the mechanism involved in this approach plays a
vital role in the efficiency of this method. The relationship
between different surfactants composition and nanomaterials’
physicochemical properties on the surfactant removal efficien-
cy has been extensively reviewed. For instance, Gao et al.
(Gao et al. 2020) used various carbon nanotubes to compare
the remediation of three cationic surfactants, namely,
hexadecyltrimethylammonium bromide (CTAB), tetradecyl
dimethyl benzyl ammonium chloride (TDBAC), and dodecyl
dimethyl benzyl ammonium chloride (DDBAC). The authors
used pure functionalized multiwalled carbon nanotubes
(MWCNTs) and OH-/COOH- modified CNTs. It was shown
that porosity and large surface area increase the efficiency of
any CNTs. Also, there is an optimum amount of CNTs re-
quired to achieve maximum efficiency. The outer diameter
and functional groups of carbon nanotubes determine its re-
moval performance. For instance, smaller outer diameter
CNTs with no hydrophilic groups perform more than large
CNTs comprising hydrophilic functions in cationic removal
(Gao et al. 2020). The multiwalled carbon nanotubes have
been found to efficiently remove both non-ionic and anionic
surfactants but hardly removed cationic surfactants (Bai et al.
2010; Yang et al. 2010; Gao et al. 2020). However, the cat-
ionic surfactants’ removal capacity of carbon nanomaterials
largely depends on nanomaterials’ physicochemical proper-
ties and the cationic surfactant’s composition (Gao et al.
2020).

Fig. 5 Extracted EI ion
chromatogram of
alkyldimethylamines (ADMAs)
and its corresponding mass spec-
tra (reproduced from Tsai and
Ding 2004)
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Foam fractionation is a promising method to remove sur-
factants from wastewater. In practice, this method produces
foam by injecting air into a fractionation column consisting of
water contaminated with surfactants. Thus, surfactants are
separated from the polluted water based on their mass concen-
tration differences. Consequently, this forms a surfactant-rich
foam layer at the top of the column and the aqueous-rich layer
at the column’s bottom (Figs. 6 and 7). Advances in the reme-
diation of surfactants from wastewater via this process are
based on nanoparticle use via stabilization of foam. For exam-
ple, Hu et al. (2019) used silicon nanoparticles (SNP) as an
efficient foam stabilizer to improve LAS adsorption and foam
stability. Formability and foam stability are two crucial factors
that influence foam property. Activated SNP adversely affect-
ed formability due to the rise in viscosity. A high viscosity will
hinder air entrainment and reduce bubble formation (Hu et al.
2019). Consequently, this will reduce surfactant removal
efficiency.

One promising technology for recovering and removing
surfactants from wastewater is low-cost and straightforward
foam fractionation (Burghoff 2012). The single or multi-stage
foam fractionation column can operate either batch-wise or
continuous manner (Srinet et al. 2017). Generally, air flow
rate, attainment of critical micelle concentration, the volume
of foam, sonication time, and power significantly influence
foam fractionation (Srinet et al. 2017; Fei et al. 2018).
Extensive studies have been reported on the effects of air-
flow rate, feed flow rate, time, foam height, and liquid height
to remove anionic surfactants (e.g. sodium dodecyl sulphate)
(Srinet et al. 2017). The high specific surface area and low
interstitial liquid make foam a suitable medium for the adsorp-
tion of surfactants (Srinet et al. 2017). Despite the overwhelm-
ing works on foam fractionation, efforts towards its commer-
cialization are yet to be concretized. Therefore, more findings
are necessary to upscale and commercialize the foam
fractionation.

Chemical methods

The chemical remediation method provides an alternative to
surfactant removal from waste systems. In practice, the appli-
cation of chemical technologies in surfactant remediation
leads to the generation of valuable products such as carbon
dioxide, nitrogen, and water. There are different types of
chemical treatment and their variants.

Coagulation is a very effective method. Naumczyk et al.
(2017) clean-up highly polluted cosmetic wastewater using
this technique based on iron and aluminium compounds.
Aluminium-based coagulants perform best due to larger vol-
umes and more extensive diversity obtained from sludge-
containing aluminium. Coagulation is also sometimes com-
bined with other methods such as air flocculation and
Fenton processes. Coagulation-flocculation is highly effective
for the removal of pollutants in high concentrations. On the
other hand, the Fenton process gave the lowest removal effi-
ciency compared with other mentioned processes, according
to the study. The choice of coagulants also affects the efficien-
cy of the coagulation process. In most instances, the coagu-
lants create another waste if not correctly discharged (Li et al.
2018a). Thus, more efforts are required to select coagulants
that can selectively remove waste surfactant from water and
can be recovered without polluting the influent.

The treatment of surfactants from water by advanced oxi-
dation processes (AOPs) has been proven as a promising re-
mediation method for recalcitrant surfactants (Khan et al.
2018; Brandão et al. 2019; Zhou et al. 2019). Different tech-
niques of AOPs currently employed for remediating surfac-
tants are based on electrochemical, electro-Fenton, electro-
peroxide, and ultraviolet light irradiation. These processes
present numerous advantages over the traditional chemical
processes, such as freedom from the threat of carcinogenic
chlorinated products and the release of pathogenic microor-
ganisms (Esteban García et al. 2021).

Electrochemical advanced oxidation processes (EAOPs)
are alternative remediation technologies for anionic surfac-
tants. The process involves the application of electrochemistry
techniques to degrade recalcitrant surfactants from wastewa-
ter. EAOPs are considered safe and ecologically benign. Its
safety is due to the absence of adding chemicals to the process.
This process uses the transfer of electrons between the
electrodes by producing hydroxyl radicals to degrade
polluting surfactants. Recently, Ganiyu et al. (2018a) com-
pared three electrochemical processes (EO, EF, and EO-
H2O2) to remove anionic surfactants. The processes complete-
ly removed anionic surfactants present in the wastewater. In
all three processes, an increase in applied current increases the
COD (representing surfactant) removal efficiencies. It was
reported that a higher electric current enhances speedy and
large production of BDD (_OH). This in turn can readily ox-
idize the surfactant molecules in the system (Ganiyu et al.Fig. 6 Recovery of surfactant from foam fractionation
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2018b; Martínez-Huitle and Panizza 2018). However, an in-
crease in applied current density leads to unfavourable high
energy consumptions. EF process tends to involve the lowest
energy usage and current efficacy when the energy consump-
tion of the three processes was compared. This is because, in
the EF process, the two radicals produced from the process
dissolve the organic matter.

Surfactants are also being removed using the anaerobic/
oxic process (Gao et al. 2017). In principle, the process com-
prises six compartments divided into two anoxic conditions
and four oxic conditions. The anoxic treatment compartments
play a critical role in surfactant removal. However, this
process’s removal efficiency is mainly influenced by seasonal
changes in the region or country under consideration.
Furthermore, an electron beam based on irradiation has also
been employed in the removal of surfactants from wastewater
treatment plants (Gupta et al. 2009; Ahmed et al. 2017; Lu and
Astruc 2020). In this technique, the electron beam is irradiated
in an aqueous solution at different doses to generate several
species. Consequently, these generated species are used to
degrade the aqueous pollutants. However, an explanation of
the nature of the intermediates and products in this technique
is still scanty in literature.

Sonoreactor for remediation of surfactants fromwastewater
presents numerous advantages: ease mode of operation, more
benign to the environment, minimum chemical usage, free
from sludge generation, and by-products. Also, the low cost
of operation and maintenance make it an efficient advanced
oxidation treatment process. In principle, this reactor operates
on the principle of free radical generation (Mohajerani et al.
2010; Heidarinejad et al. 2018). Recently, Hadi et al.
(Dehghani et al. 2019) applied a sonoreactor to degrade
LAS from an aqueous solution. They found that LAS degra-
dation increases with time. Contrastingly, an increase in initial
LAS concentration decreases the LAS removal rate.

Increasing the acoustic power, on the other hand, leads to a
higher degradation of LAS. This is because of the possible
reaction in the cavitation of the sonoreactor. However, high
acoustic power implied higher energy. Thus, a balance should
be maintained between efficiency and energy cost.

Biological methods

The biological treatment method shares the advantages of
lower operational costs and the use of green methods. This
technique involves breaking down large molecular weight
compounds into lower ones using microorganisms such as
algae, fungi, and bacteria (Garcia-Rodríguez et al. 2014).
Further details of the types, processes, and mechanisms can
be found in the review of Ahmed et al. (Ahmed et al. 2017).
The biological treatment techniques have some drawbacks:
long operation time, inability towards toxic elements, and
high surfactant concentrations. Consequently, these result in
biomass death in the system (Collivignarelli et al. 2017;
Palmer and Hatley 2018).

Advanced technologies are being developed with a hybrid
of other processes to control some of the disadvantages of
conventional biological treatment technologies. For instance,
Collivignarelli et al. (2019) studied the removal of surfactants
(ionic and non-ionic) with the aid of nanofiltration, thermo-
philic aerobic membranes reactors (TAMR), and sorption on
carbons. The findings revealed that TAMR could withstand
high-stress conditions and inhibit the high concentration of
surfactants. Moreover, combining these three processes re-
sults in higher surfactant removal. However, cost-wise,
TAMR +NF represents the optimum process (Collivignarelli
et al. 2019). Additionally, the thermophilic aerobic reactor’s
efficiency can be enhanced through the attachment of ultrafil-
tration as this will make the reactor hold the biomass and treat
high concentrations of the target surfactants (Collivignarelli

Fig. 7 A summary of surfactant removal methods
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et al. 2015). A summary of general methods for the remedia-
tion of surfactants and their key merits and demerits is shown
in Fig. 7, Table 4.

Recommendations and conclusions

Recommendations and research gaps

The analytical techniques used in surfactant characterization
are rapidly growing. Among these techniques, supercritical
fluid chromatography is a cost-effective, time-saving, and
highly efficient technique for analysing a wide range of sur-
factants. Despite these overwhelming benefits, only a few
studies have been reported for the use of this technique in
assessing surfactants. Thus, SFC should be promoted in
analysing different types of surfactants. Also, studies based
on different detectors are necessary to cover all the types of
environments and compounds. The use of SFC with HPLC
coupled with MS detector could help easy identification and
quantification of various surfactants.

Adsorbents derived from waste materials provide cheap
and circular alternative treatments approaches for the recalci-
trant surfactants in wastewater. Research attention should be
devoted to the maximum recovery, regeneration, and safety of
these materials. Future studies should integrate techno-
economic evaluation of these adsorbents for the potential
commercialization.

Combining different chemical treatment technologies can
efficiently remove various surfactants or enhance the efficien-
cy of the current treatment practices. Towards this, coagula-
tion may be combined with other techniques such as ozona-
tion, UV irradiation, Fenton process, H2O2, and nanoparticles
to contribute to the current practice of surfactants treatments.

Additionally, little information is available on the mecha-
nism and kinetics of the electron beam oxidation process.
Future research should investigate how the target surfactant
is being degraded or the rate at which the process degrades
surfactants. The policymakers and environmental regulatory
agencies are strongly encouraged to draft guidelines and stan-
dards for the available classes of surfactants and their degrad-
ed products.

Table 4 Various surfactants
treatment technologies and their
performances

Treatment method Surfactant (initial concentration
500ppm)

Removal
efficiency (%)

Rf

Anaerobic/oxic process Nonylphenol (NP) 86 Gao et al. (2017)

Anaerobic/oxic process Nonylphenol mono-ethoxylate
(NP1EO)

90 Gao et al. (2017)

Anaerobic/oxic process Nonylphenol di-ethoxylate NP2EO) 90 Gao et al. (2017)

Electron beam Perfluorooctane sulfonate (PFOS) 68.04 Kim et al. (2018)

Adsorption CNT Hexadecyl trimethyl ammonium
bromide (CTAB)

50.36 Gao et al. (2020)

Adsorption SNP Linear alkylbenzene sulfonates
(LAS)

90 Hu et al. (2019)

Electro-Fenton Anionic surfactant 100 Ganiyu et al.
(2018a)

Coagulation Anionic surfactant 88.2 Naumczyk et al.
(2017)

Coagulation Anionic surfactant 91.6 Naumczyk et al.
(2017)

Coagulation-flocculation Anionic surfactant 87.3 Naumczyk et al.
(2017)

Fenton process Anionic surfactant 72.7 Naumczyk et al.
(2017)

Sonoreactor Linear alkylbenzene sulfonates
(LAS)

Dehghani et al.
(2019)

TAMR +NF+AC Non-ionic (TAS) 95 Collivignarelli et al.
(2019)

TAMR +NF+AC Methylene blue active substance
(MBAS)

76 Collivignarelli et al.
(2019)

Ozonation Anionic, cationic, and non-ionic sur-
factant

Delanghe et al.
(1991)
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Conclusions

This comprehensive review has revealed the enormous
ecotoxicity and human health implications of surfactants
in the environment. The non-degradability, persistence,
and toxicity of some surfactants and their transformed
products have extreme environmental consequences. So,
the balance and sustainability of natural ecosystems
could be managed through assessment, practical analy-
sis, and treatment of surfactants. Hence, several analyt-
ical, assessments, and remediation technologies are been
employed to effectively identify, quantify, and clean up
surfactants from environmental matrices. Based on the
available literature, this work showed that chromato-
graphic techniques particularly supercritical and quadru-
pole time of flight MS (Q-ToF-MS) fluid chromatogra-
phy offer a better analysis of surfactants up to trace
level concentrations in environmental matrices.
Considering the strengths and challenges of various
available remediation methods for the surfactants, foam
fractionation, thermal aerobic membrane reactors, ad-
vanced adsorbent, and electrochemical advanced aerobic
processes are effective methods. Future research should
focus on the development of cheap adsorbents from
wastes. However, extensive investigation on their recov-
ery, regeneration, re-use, and techno-economic values
should be considered. Also, it is pertinent to integrate
or couple the current advanced remediation technologies
to the existing wastewater treatment plants (WWTPs)
for efficient removal of surfactants from the influents.
Electron beam oxidation generates powerful radicals that
can completely mineralize surfactants. However, its
mechanisms, kinetics, and costs have not been adequate-
ly researched and documented. Lastly, this review is an
attempt to foster proper understanding of practicable
analysis and assessment as well as feasible remediation
approaches to aid researchers, policymakers, and regula-
tory bodies in their bids to minimize environmental ex-
posure to toxic surfactants.
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