Skip to main content
Log in

Interaction of plastic particles with heavy metals and the resulting toxicological impacts: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Interactions of plastic particles with different organic/inorganic pollutants including heavy metals impact their ecotoxicological potential, and proper understanding in this regard is important for their ecological risk assessment. However, many studies have reported the interactions between micro-/nanoplastics (MNPs) and heavy metals (HMs), but the most prevalent interactive forces and factors monitoring their interactions are still not clear. So, the present review represents the mechanisms of interactions with special emphasis on major interactive forces and biophysicochemical and environmental factors influencing trace element’s adsorption onto the surface of MNPs. Electrostatic interaction and pore-filling mechanism can best explain the HMs adsorption to MNPs. A number of biophysicochemical factors (such as biofilm, size, crystallinity, and surface charge) and environmental factors (such as pH, salt, and temperature) act together for mediating interactions and ecotoxicities of MNPs and HMs in the real environment. From a toxicological point of view, the synergistic mode of action may be more active in animals, whereas the antagonistic activity may be prevalent in plants. Besides polymer density, biofilm formation and agglomeration property of MNPs can control the vertical distribution of MNPs along the water column. Finally, the ecotoxicological potential of MNPs in the natural environment can be considered as a function of spatiotemporal variation in abiotic (including MNPs and heavy metals) and biotic components. This review will be helpful in the detail understanding of ecotoxicological risk assessment of MNPs in relation to their interaction with heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Availability of data and materials

It is a review article. Thus, data sharing is not applicable to this article.

References

  • Abbasi S, Moore F, Keshavarzi B, Hopke PK, Naidu R, Rahman MM, Oleszczuk P, Karimig J (2020) PET-microplastics as a vector for HMs in a simulated plant rhizosphere zone. Sci Total Environ 744:140984. https://doi.org/10.1016/j.scitotenv.2020.140984

    Article  CAS  Google Scholar 

  • Acosta-Coley I, Mendez-Cuadro D, Rodriguez-Cavallo E, de la Rosa J, Olivero-Verbel J (2019) Trace elements in microplastics in Cartagena: a hotspot for plastic pollution at the Caribbean. Mar Pollut Bull 139:402–411

    CAS  Google Scholar 

  • Adam M, Westphal A, Hallmann J, Heuer H (2014) Specific microbial attachment to root knot nematodes in suppressive soil. Appl Environ Microbiol 80:2679–2686

    Google Scholar 

  • Aghilinasrollahabadi K, Salehi M, Fujiwara T (2020) Investigate the influence of microplastics weathering on their HMs uptake in stormwater. J Hazard Mater 408:124439

    Google Scholar 

  • Ahmadi K, Banaee M, Vosoghei AR, Mirvaghefei AR, Ataeimehr B (2012) Evaluation of the immunomodulatory effects of silymarin extract (Silybum marianum) on some immune parameters of rainbow trout, Oncorhynchus mykiss (Actinopterygii: salmoniformes: Salmonidae). Acta Ichthyol Piscat 42(2):113–120. https://doi.org/10.3750/AIP2011.42.2.04

    Article  Google Scholar 

  • Ahmadi K, Mirvaghefei AR, Banaee M, Vosoghei AR (2014) Effects of long-term diazinon exposure on some immunological and haematological parameters in rainbow trout Oncorhynchus mykiss (Walbaum, 1792). Toxicol Environ Heal Sci 6(1):1–7. https://doi.org/10.1007/s13530-014-0181-1

    Article  Google Scholar 

  • Alomar C, Sureda A, Capo X, Guijarro B, Tejada S, Deudero S (2017) Micro-plastic ingestion by Mullus surmuletus Linnaeus, 1758 fish and its potential for causing oxidative stress. Environ Res 159:135–142. https://doi.org/10.1016/j.envres.2017.07.043

    Article  CAS  Google Scholar 

  • Anderson JC, Park BJ, Palace VP (2016) Microplastics in aquatic environments: implications for Canadian ecosystems. Environ Pollut 218:269–280

    CAS  Google Scholar 

  • Andrady AL (2017) The plastic in microplastics: a review. Mar Pollut Bull 119:12–22

    CAS  Google Scholar 

  • Ashton K, Holmes L, Turner A (2010) Association of metals with plastic production pellets in the marine environment. Mar Pollut Bull 60:2050–2055

    CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    CAS  Google Scholar 

  • Banaee M, Soltanian S, Sureda A, Gholamhosseini A, Haghi BN, Akhlaghi M, Derikvandy A (2019) Evaluation of single and combined effects of cadmium and micro-plastic particles on biochemical and immunological parameters of common carp (Cyprinus carpio). Chemosphere 236:124335

    CAS  Google Scholar 

  • Barboza LGA, Vieira LR, Branco V, Figueiredo N, Carvalho F, Carvalho C, Guilhermino L (2018) Microplastics cause neurotoxicity, oxidative damage and energy-related changes and interact with the bioaccumulation of mercury in the European seabass, Dicentrarchus labrax (Linnaeus, 1758). Aquat Toxicol 195:49–57. https://doi.org/10.1016/j.aquatox.2017.12.008

    Article  CAS  Google Scholar 

  • Batjargal T, Otgonjargal E, Baek K, Yang JS (2010) Assessment of metals contamination of soils in Ulaanbaatar, Mongolia. J Hazard Mater 184(1):872–876. https://doi.org/10.1016/j.jhazmat.2010.08.106

    Article  CAS  Google Scholar 

  • Bellingeri A, Bergami E, Grassi G, Faleri C, Redondo-Hasselerharm P, Koelmans AA, Corsi I (2019) Combined effects of nanoplastics and copper on the freshwater alga Raphidocelis subcapitata. Aquat Toxicol 210:179–187

    CAS  Google Scholar 

  • Bergami E, Pugnalini S, Vannuccini M, Manfra L, Faleri C, Savorelli F, Dawson K, Corsi I (2017) Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana. Aquat Toxicol 189:159–169

    CAS  Google Scholar 

  • Bradney L, Wijesekara H, Palansooriya KN, Obadamudalige N, Bolan NS, Ok YS, Rinklebe J, Ki-Hyun Kim KH, Kirkham MB (2019) Particulate plastics as a vector for toxic trace-element uptake by aquatic and terrestrial organisms and human health risk. Environ Int 131:104937

    CAS  Google Scholar 

  • Brennecke D, Duarte B, Paiva F, Caçador I, Canning-Clode J (2016) Microplastics as vector for heavy metal contamination from the marine environment. Estuar Coast Shelf Sci 178:189–195

    CAS  Google Scholar 

  • Browne MA, Galloway T, Thompson R (2007) Microplastic—an emerging contaminant of potential concern? Integr Environ Assess Manag 3:559–561

    Google Scholar 

  • Burdett JK, Sevov S (1995) Stability of the oxidation states of copper. J Am Chem Soc 117:12788–12792

    CAS  Google Scholar 

  • Burrows SD, Frustaci S, Thomas KV, Galloway T (2020) Expanding exploration of dynamic microplastic surface characteristics and interactions. Trends Anal Chem 130:115993. https://doi.org/10.1016/j.trac.2020.115993

    Article  CAS  Google Scholar 

  • Campanale C, Massarelli C, Savino I, Locaputo V, Uricchio VF (2020) A detailed review study on potential effects of microplastics and additives of concern on human health. Int J Environ Res Public Health 17:1212. https://doi.org/10.3390/ijerph17041212

    Article  CAS  Google Scholar 

  • Caruso G (2018) Microplastics as vectors of contaminants in aquatic ecosystems. J Pollut Eff Cont 6:e118

    Google Scholar 

  • Casabianca S, Capellacci S, Giacobbe MG, Dell'Aversano C, Tartaglione L, Varriale F, Narizzano R, Risso F, Moretto P, Dagnino A, Bartolotto R, Barbone E, Ungaro N, Penna A (2018) Plastic associated harmful microalgal assemblage in marine environment. Environ Pollut 244:617–626

    Google Scholar 

  • Chae Y, An YJ (2017) Effects of micro- and nanoplastics on aquatic ecosystems: current research trends and perspectives. Mar Pollut Bull 124:624–632

    CAS  Google Scholar 

  • Chae Y, An YJ (2018) Current research trends on plastic pollution and ecological impacts on the soil ecosystem: a review. Environ Pollut 240:387–395

    CAS  Google Scholar 

  • Chandra P, Enespa (2019) Soil microbes plants: interactions and ecological diversity. In: Varma A, Tripathi S, Prasad R (eds) Plant Microbe Interface. Springer, Cham. https://doi.org/10.1007/978-3-030-19831-2_6

    Chapter  Google Scholar 

  • Coyle R, Hardiman G, O’Driscoll K (2020) Microplastics in the marine environment: a review of their sources, distribution processes, uptake and exchange in ecosystems. Case Stud Chem Environ Eng 2:100010

    Google Scholar 

  • Del Razo LM, Arellano MA, Cebrian ME (1990) The oxidation states of arsenic in well-water from a chronic arsenicism area of Northern Mexico. Environ Pollut 64:143–153

    Google Scholar 

  • Deng Y, Zhang Y, Lemos B, Ren H (2017) Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure'. Sci Rep 7:46687. https://doi.org/10.1038/srep46687

    Article  Google Scholar 

  • Deng J, Guo P, Zhang X, Su H, Zhang Y, Wu Y, Li Y (2020) Microplastics and accumulated heavy metals in restored mangrove wetland surface sediments at Jinjiang Estuary (Fujian, China). Mar Pollut Bull 159:111482.

  • Donlan RM (2002) Bioflims: microbial life on surfaces. Emerg Infect Dis 8:881–890

    Google Scholar 

  • Eerkes-Medrano D, Thompson RC, Aldridge DC (2015) Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res 75:63–82

    CAS  Google Scholar 

  • Elhalawany N, Baseer RA, Mostafa AB, Rabei AG (2016) New efficient chelating polymers based on plastic waste for removal of toxic heavy metal pollutants. J Elastomers Plast 49(6):1–17. https://doi.org/10.1177/0095244316673134

    Article  CAS  Google Scholar 

  • Ercal N, Neal R, Treeratphan P, Lutz PM, Hammond TC, Dennery PA, Spitz DR (2000) A role for oxidative stress in suppressing serum immunoglobulin levels in lead-exposed Fisher 344 rats. Arch Environ Contam Toxicol 39(2):251–256. https://doi.org/10.1007/s002440010102

    Article  CAS  Google Scholar 

  • Erni-Cassola G, Zadjelovic V, Gibson MI, Christie-Oleza JA (2019) Distribution of plastic polymer types in the marine environment: a meta-analysis. J Hazard Mater 369:691–698

    CAS  Google Scholar 

  • Espinosa C, Cuesta A, Esteban MA (2017) Effects of dietary polyvinylchloride microparticles on general health, immune status and expression of several genes related to stress in gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol 68:251–259. https://doi.org/10.1016/j.fsi.2017.07.006

    Article  CAS  Google Scholar 

  • Feldman D (2002) Polymer weathering: photo-oxidation. J Polym Environ 10:163–173

    CAS  Google Scholar 

  • Fotopoulou KN, Karapanagioti HK (2012) Surface properties of beached plastic pellets. Mar Environ Res 81:70–77

    CAS  Google Scholar 

  • Fotopoulou KN, Karapanagioti HK (2015) Surface properties of beached plastics. Environ Sci Pollut Res 22:11022–11032

    CAS  Google Scholar 

  • Fu Q, Hu B, Zhou X, Hu Q, Sheng J (2016) Impact of key geochemical parameters on the attenuation of Pb (II) from water using a novel magnetic nanocomposite: fulvic acid-coated magnetite nanoparticles. Desalin Water Treat 57:26063–26072

    CAS  Google Scholar 

  • Fu D, Zhang Q, Fan Z, Qi H, Wang Z, Peng L (2019) Aged microplastics polyvinyl chloride interact with copper and cause oxidative stress towards microalgae Chlorella vulgaris. Aquat Toxicol 216:105319

    CAS  Google Scholar 

  • Galloway TS, Cole M, Lewis C (2017) Interactions of microplastic debris throughout the marine ecosystem. Nat Ecol Evol 1:116

    Google Scholar 

  • Godoy V, Blazquez G, Calero M, Quesada L, Martin-Lara MA (2019) The potential of microplastics as carriers of metals. Environ Pollut 255:113363. https://doi.org/10.1016/j.envpol.2019.113363

    Article  CAS  Google Scholar 

  • Guo X, Hu G, Fan X, Jia H (2020) Sorption properties of cadmium on microplastics: the common practice experiment and a two-dimensional correlation spectroscopic study. Ecotoxicol Environ Saf 190:110118

    CAS  Google Scholar 

  • Hall KR, Eagleton LC, Acrivos A, Vermeulen T (1966) Pore-and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind Eng Chem Fundam 5(2):212–223

    CAS  Google Scholar 

  • Hallegraeff GM (2010) Ocean climate change, phytoplankton community responses, and harmful algal blooms: a formidable predictive challenge. J Phycol 46:220–235

    CAS  Google Scholar 

  • Havens KE, Hanlon C, James RT (1994) Seasonal and spatial variation in algal bloom frequencies in lake Okeechobee, Florida, U.S.A. Lake Reservoir Manag 10:139–148. https://doi.org/10.1080/07438149409354185

    Article  Google Scholar 

  • Hodson ME, Duffus-Hodson CA, Clark A, Prendergast-Miller MT, Thorpe KL (2017) Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates. Environ Sci Technol 51(8):4714–4721

    CAS  Google Scholar 

  • Holmes LA, Turner A, Thompson RC (2012) Adsorption of trace metals to plastic resin pellets in the marine environment. Environ Pollut 160:42–48

    CAS  Google Scholar 

  • Holmes LA, Turner A, Thompson RC (2014) Interactions between trace metals and plastic production pellets under estuarine conditions. Mar Chem 167:25–32

    CAS  Google Scholar 

  • Horton AA, Walton A, Spurgeon DJ, Lahive E, Scendsen C (2017) Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ 586:127–141

    CAS  Google Scholar 

  • Huffer T, Hofmann T (2016) Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution. Environ Pollut 214:194–201

    Google Scholar 

  • Kaiser D, Kowalski N, Waniek JJ (2017) Effects of biofouling on the sinking behavior of microplastics. Environ Res Lett 12(12):124003

    Google Scholar 

  • Khan FR, Syberg K, Shashoua Y, Bury NR (2015) Influence of polyethylene microplastic beads on the uptake and localization of silver in zebrafish (Danio rerio). Environ Pollut 206:73–79

    CAS  Google Scholar 

  • Kim D, Chae Y, An YJ (2017) Mixture toxicity of nickel and microplastics with different functional groups on Daphnia magna. Environ Scie Technol 51(21):12852–12858

  • Koelmans AA, Bakir A, Burton GA, Janssen CR (2016) Microplastic as a vector for chemicals in the aquatic environment: critical review and model-supported reinterpretation of empirical studies. Environ Sci Technol 50(7):3315–3326

    CAS  Google Scholar 

  • Liao YL, Yang JY (2020) Microplastic serves as a potential vector for Cr in an in-vitro human digestive model. Sci Total Environ 703:134805

    CAS  Google Scholar 

  • Lin Z, Hu Y, Yuan Y, Hu B, Wang B (2021) Comparative analysis of kinetics and mechanisms for Pb (II) sorption onto three kinds of microplastics. Ecotoxicol Environ Saf 208:111451

    CAS  Google Scholar 

  • Lobelle D, Cunliffe M (2011) Early microbial biofilm formation on marine plastic debris. Mar Pollut Bull 62:197–200

    CAS  Google Scholar 

  • Lu K, Qiao R, An H, Zhang Y (2018) Influence of microplastics on the accumulation and chronic toxic effects of cadmium in zebrafish (Danio rerio). Chemosphere 202:514–520

    CAS  Google Scholar 

  • Luis LG, Ferreira P, Fonte E, Oliveira M, Guilhermino L (2015) Does the presence of microplastics influence the acute toxicity of chromium (VI) to early juveniles of the common goby (Pomatoschistus microps)? A study with juveniles from two wild estuarine populations. Aquat Toxicol 164:163–174

    CAS  Google Scholar 

  • Mao R, Lang M, Yu X, Wu R, Yang X, Guo X (2020) Aging mechanism of microplastics with UV irradiation and its effects on the adsorption of HMs. J Hazard Mater 393:122515

    CAS  Google Scholar 

  • Maso M, Garces E, Pages F, Camp J (2007) Dirfting plastic debris as a potential vector for dispersing harmful algal bloom species. Sci Mar 67:107–111

    Google Scholar 

  • Mato Y, Isobe T, Takada H, Kanehiro H, Ohtake C, Kaminuma T (2001) Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environ Sci Technol 35:318–324

    CAS  Google Scholar 

  • Mecdad AA, Ahmed MH, El-Halwagy MEA, Afify MMM (2011) A study on oxidative stress biomarkers and immunomodulatory effects of pesticides in pesticide-sprayers. Egypt J Food Sci 1(2):93–98. https://doi.org/10.1016/j.ejfs.2011.04.012

    Article  Google Scholar 

  • Moro-García MA, Mayo JC, Sainz RM, Alonso-Arias R (2018) Influence of inflammation in the process of T lymphocyte differentiation: proliferative, metabolic, and oxidative changes. Front Immunol 9:339. https://doi.org/10.3389/fimmu.2018.00339

  • Muller A, Becker R, Dorgerloh U, Simon FG, Braun U (2018) The effect of polymer aging on the uptake of fuel aromatics and ethers by microplastics. Environ Pollut 240:639–646

    Google Scholar 

  • Munier B, Bendell LI (2018) Macro and micro plastics sorb and desorb metals and act as a point source of trace metals to coastal ecosystems. PLoS One 13(2):e0191759

    CAS  Google Scholar 

  • Naqash N, Prakash S, Kapoor D and Singh R, (2020). Interaction of freshwater microplastics with biota and HMs: a review. Environ Chem Lett 1-12.

  • Nonoyama T, Lee YW, Ota K, Fujioka K, Hong W, Gong JP (2020) Instant thermal switching from soft hydrogel to rigid plastics inspired by thermophile proteins. Adv Mater 32(4):e1905878

    Google Scholar 

  • O'Neil JM, Davis TW, Burford MA, Gobler CJ (2012) The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313–334

    CAS  Google Scholar 

  • Paerl HW, Huisman J (2008) Blooms like it hot. Science. 320:57–58

    CAS  Google Scholar 

  • Qiao R, Lu K, Deng Y, Ren H, Zhang Y (2019) Combined effects of polystyrene microplastics and natural organic matter on the accumulation and toxicity of copper in zebrafish. Scie Total Environ 682:128–137

  • Qiu Y, Guo H, Guo C, Zheng J, Yue T, Yuan Y (2018) One-step preparation of nano-Fe3O4 modified inactivated yeast for the adsorption of patulin. Food Control 86:310–318

    CAS  Google Scholar 

  • Quigg A, Chin WC, Chen CS, Zhang S, Jiang Y, Miao AJ, Schwehr KA, Xu C, Santschi PH (2013) Direct and indirect toxic effects of engineered nanoparticles on algae: role of natural organic matter. ACS Sustain Chem Eng 1:686–702

    CAS  Google Scholar 

  • Ramirez L, Ramseier Gentile S, Zimmermann S, Stoll S (2019) Behavior of TiO2 and CeO2 nanoparticles and polystyrene nanoplastics in bottled mineral, drinking and lake geneva waters. Impact of water hardness and natural organic matter on nanoparticle surface properties and aggregation. Water 11(4):721

    CAS  Google Scholar 

  • Rice KM, Walker EM Jr, Wu M, Gillette C, Blough ER (2014) Environmental mercury and its toxic effects. J Prev Med Public Health 47:74–83

    Google Scholar 

  • Rochman CM, Hentschel BT, Teh SJ (2014) Long-term sorption of metals is similar among plastic types: implications for plastic debris in aquatic environments. PLoS One 9:e85433. https://doi.org/10.1371/journal.pone.0085433

    Article  CAS  Google Scholar 

  • Rochman CM, Brookson C, Bikker J, Djuric N, Earn A, Bucci K, Hung C (2019) Rethinking microplastics as a diverse contaminant suite. Environ Toxicol Chem 38:703–711

    CAS  Google Scholar 

  • Santos D, Felix L, Luzio A, Parra S, Cabecinha E, Bellas J, Monteiro SM (2020) Toxicological effects induced on early life stages of zebrafish (Danio rerio) after an acute exposure to microplastics alone or coexposed with copper. Chemosphere 261:127748

    CAS  Google Scholar 

  • Sarangi RK, Mohammed G (2011) Seasonal algal bloom and water quality around the coastal Kerala during southwest monsoon using in situ and satellite data. Indian J Geo Mar Sci 40:356–369

    CAS  Google Scholar 

  • Selinus O (2005) Essentials of medical geology impacts of the natural environment on public health. Academic Press, London

    Google Scholar 

  • Singh N, Tiwari E, Khandelwal N, Darbha GK (2019) Understanding the stability of nanoplastics in aqueous environments: effect of ionic strength, temperature, dissolved organic matter, clay, and HMs. Environ Sci: Nano 6(10):2968–2976

    CAS  Google Scholar 

  • Singh N, Khandelwal N, Tiwari E, Naskar N, Lahiri S, Lützenkirchen J, Darbha GK (2020) Interaction of metal oxide nanoparticles with microplastics: impact of weathering under riverine conditions. Water Res 189:116622

    Google Scholar 

  • Sjollema SB, Redondo-Hasselerharm P, Leslie HA, Kraak MH, Vethaak AD (2016) Do plastic particles affect microalgal photosynthesis and growth? Aquat Toxicol 170:259–261

    CAS  Google Scholar 

  • Solioz M (2016) Copper oxidation state and mycobacterial infection. Mycobact Dis 6:210. https://doi.org/10.4172/2161-1068.1000210

    Article  Google Scholar 

  • Summers S, Henry T, Gutierrez T (2018) Agglomeration of nano-and microplastic particles in seawater by autochthonous and de novo-produced sources of exopolymeric substances. Mar Pollut Bull 130:258–267

    CAS  Google Scholar 

  • Tang S, Lin L, Wang X, Feng A, Yu A (2020) Pb (II) uptake onto nylon microplastics: interaction mechanism and adsorption performance. J Hazard Mater 386:121960

    CAS  Google Scholar 

  • Thompson RC (2015) Microplastics in the marine environment: sources, consequences and solutions. In: Bergmann M, Gutow L, Klages M (eds) Marine Anthropogenic Litter. Springer, Berlin, pp 185–200

    Google Scholar 

  • Topalovic O, Hussain M, Heuer H (2020) Plants and associated soil microbiota cooperatively suppress plant parasitic nematodes. Front Microbiol 11:313

    Google Scholar 

  • Torres FG, Dioses-Salinas DC, Pizarro-Ortega CI, De-la-Torre GE (2020) Sorption of chemical contaminants on degradable and non-degradable microplastics: Recent progress and research trends. Sci Total Environ 757:143875

    Google Scholar 

  • Town RM, van Leeuwen HP, Blust R (2018) Biochemodynamic features of metal ions bound by micro-and nano-plastics in aquatic media. Front Chem 6:627

    CAS  Google Scholar 

  • Turner A, Holmes LA (2015) Adsorption of trace metals by microplastic pellets in fresh water. Environ Chem 12:600–610

    CAS  Google Scholar 

  • Turner A, Holmes L, Thompson RC, Fisher AS (2020) Metals and marine microplastics: Adsorption from the environment versus addition during manufacture, exemplified with lead. Water Res 173:115577

    CAS  Google Scholar 

  • Vedolin MC, Teophilo C, Turra A, Figueira R (2018) Spatial variability in the concentrations of metals in beached microplastics. Mar Pollut Bull 129(2):487–493

    CAS  Google Scholar 

  • Vethaak AD, Leslie HA (2016) Plastic debris is a human health issue. Environ Sci Technol 50:6825–6826

    CAS  Google Scholar 

  • Wang J, Peng J, Tan Z, Gao Y, Zhan Z, Chen Q, Cai L (2017) Microplastics in the surface sediments from the Beijiang River littoral zone: composition, abundance, surface textures and interaction with HMs. Chemosphere 171:248–258. https://doi.org/10.1016/j.chemosphere.2016.12.074

    Article  CAS  Google Scholar 

  • Wang F, Yang W, Cheng P, Zhang S, Zhang S, Jiao W, Sun Y (2019) Adsorption characteristics of cadmium onto microplastics from aqueous solutions. Chemosphere 235:1073–1080

    CAS  Google Scholar 

  • Wang F, Zhang X, Zhang S, Zhang S, Adams CA, Sun Y (2020a) Effects of co-contamination of microplastics and Cd on plant growth and Cd accumulation. Toxics 8:36. https://doi.org/10.3390/toxics8020036

    Article  CAS  Google Scholar 

  • Wang F, Zhang X, Zhang S, Zhang S, Sun Y (2020b) Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil. Chemosphere 254:126791

    CAS  Google Scholar 

  • Wen B, Jin SR, Chen ZZ, Gao JZ, Liu YN, Liu JH, Feng XS (2018a) Single and combined effects of microplastics and cadmium on the cadmium accumulation, antioxidant defence and innate immunity of the discus fish (Symphysodon aequifasciatus). Environ Pollut 243:462–471

    CAS  Google Scholar 

  • Wen B, Zhang N, Jin SR, Chen ZZ, Gao JZ, Liu Y, Liu HP, Xu Z (2018c) Microplastics have a more profound impact than elevated temperatures on the predatory performance, digestion and energy metabolism of an Amazonian cichlid. Aquat Toxicol 195:67–76. https://doi.org/10.1016/j.aquatox.2017.12.010

    Article  CAS  Google Scholar 

  • Wijesekara H, Bolan NS, Bradney L, Obadamudalige N, Seshadri B, Kunhikrishnan A, Dharmarajan R, Ok YS, Rinklebe J, Kirkham MB, Vithanage M (2018) Trace element dynamics of biosolids-derived microbeads. Chemosphere 199:331–339

    CAS  Google Scholar 

  • Wurst, S., Sonnemann, I., Zaller, J., 2018. Soil macro-invertebrates: their impacts on plants and associated aboveground communities in temperate regions: analysis and synthesis. In book: Aboveground-belowground community ecology. https://doi.org/10.1007/978-3-319-91614-9_8

  • Xu P, Ge W, Chai C, Zhang Y, Jiang T, Xia B (2019) Sorption of polybrominated diphenyl ethers by microplastics. Mar Pollut Bull 145:260–269

    CAS  Google Scholar 

  • Xu S, Ma J, Ji R, Pan K, Miao AJ (2020) Microplastics in aquatic environments: occurrence, accumulation and biological effects. Sci Total Environ 703:134699

    CAS  Google Scholar 

  • Yu P, Liu Z, Wu D, Chen M, Lv W, Zhao Y (2018) Accumulation of polystyrene microplastics in juvenile Eriocheir sinensis and oxidative stress effects in the liver. Aquat Toxicol 200:28–36. https://doi.org/10.1016/j.aquatox.2018.04.015

    Article  CAS  Google Scholar 

  • Yuan W, Zhou Y, Chen Y, Liu X, Wang J (2020) Toxicological effects of microplastics and HMs on the Daphnia magna. Sci Total Environ 746:141245

    Google Scholar 

  • Zhang GS, Liu YF (2018) The distribution of microplastics in soil aggregate fractions in southwestern China. Sci Total Environ 642:12–20

    CAS  Google Scholar 

  • Zhang R, Wang M, Chen X, Yang C, Wu L (2020) Combined toxicity of microplastics and cadmium on the zebrafish embryos (Danio rerio). Sci Total Environ 743:140638

    CAS  Google Scholar 

  • Zhou Y, Liu X, Wang J (2019) Characterization of microplastics and the association of heavy metals with microplastics in suburban soil of Central China. Sci Total Environ 694:133798

  • Zhu X, Zhao W, Chen X, Zhao T, Tan L, Wang J (2020) Growth inhibition of the microalgae Skeletonema costatum under copper nanoparticles with microplastic exposure. Mar Environ Res 158:105005

    CAS  Google Scholar 

  • Zou Y, Liu X, Wang J (2020a) Ecotoxicological effects of microplastics and cadmium on the earthworm Eisenia foetida. J Hazard Mater 392:122273

    Google Scholar 

  • Zou J, Liu X, Zhang D, Yuan X (2020b) Adsorption of three bivalent metals by four chemical distinct microplastics. Chemosphere 248:126064. https://doi.org/10.1016/j.chemosphere.2020.126064

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the CSIR-JRF grant to the first author (file no. 08/155(0075)/2019-EMR-I) and FRPDF scheme, Presidency University, Kolkata, India. The authors are also grateful to DST-SERB, Govt. of India, for funding the research project (EEQ/2018/000275) to the corresponding author. We are thankful to DBT-BUILDER and DST-FIST, Govt. of India, for sponsoring infrastructural facility to DLS (SR/FST/LSI-560/2013(C)).

Author information

Authors and Affiliations

Authors

Contributions

Sukhendu Maity: Conceptualization-lead, data curation-lead, formal analysis-lead, funding acquisition-equal, writing-original draft-lead. Rajkumar Guchhait: data curation-supporting, formal analysis-supporting, writing-original draft-supporting. Chayan Biswas: data curation-supporting, formal analysis-supporting, writing-original draft-supporting. Sambuddha Banerjee: data curation-supporting, formal analysis-supporting, writing-original draft-supporting. Madhuchhanda Adhikari: data curation-supporting, formal analysis-supporting.Ankit Chatterjee: data curation-supporting, formal analysis-supporting.Kousik Pramanick: conceptualization-lead, funding acquisition-equal, validation-lead, writing-review and editing-equal.

Corresponding author

Correspondence to Kousik Pramanick.

Ethics declarations

Ethics approval

This study does not need any ethical approval.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 18 kb)

ESM 2

(DOCX 16 kb)

ESM 3

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maity, ., Biswas, C., Banerjee, S. et al. Interaction of plastic particles with heavy metals and the resulting toxicological impacts: a review. Environ Sci Pollut Res 28, 60291–60307 (2021). https://doi.org/10.1007/s11356-021-16448-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-16448-z

Keywords

Navigation