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PM2.5 exposure inducing ATP alteration links with NLRP3
inflammasome activation
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Abstract
Fine particulate matter (PM2.5) has been the primary air pollutant and the fourth leading risk factor for disease and death in the
world. Exposure to PM2.5 is related to activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflam-
masome, but the mechanism of PM2.5 affecting the NLRP3 inflammasome is still unclear. Previous studies have shown that
PM2.5 can cause alterations in adenosine triphosphate (ATP), and an increase in extracellular ATP and a decrease in intracellular
ATP can trigger the activation process of the NLRP3 inflammasome. Therefore, we emphasize that ATP changes may be the
central link and key mechanism of PM2.5 exposure that activates the NLRP3 inflammasome. This review briefly elucidates and
summarizes how PM2.5 acts on ATP and subsequently further impacts the NLRP3 inflammasome. Investigation of ATP changes
due to exposure to PM2.5 may be essential to regulate NLRP3 inflammasome activation and treat inflammation-related diseases
such as coronavirus disease 2019 (COVID-19).
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Abbreviations
PM2.5 fine particulate matter
NLRP3 NOD-like receptor family pyrin domain con-

taining 3
ATP adenosine triphosphate
COVID-19 coronavirus disease 2019
PAHs polycyclic aromatic hydrocarbons
ASC apoptosis-associated speck-like protein
K+ potassium
Ca2+ calcium
Na+ sodium

IL-1β interleukin-1β
IL-18 interleukin-18
TCA tricarboxylic acid
ROS reactive oxygen species
NADPH nicotinamide adenine dinucleotide phosphate
DNA deoxyribonucleic acid

Introduction

Fine particulate (PM2.5) has become the main contributor to
air pollution and the fourth leading risk factor for death and
disability in the world (GBD C 2020; WHO 2016; Xu et al.
2020). PM2.5 compositions mainly include inorganic salts,
carbon-containing substances such as persistent organic pol-
lutants, metal elements, including lead and cadmium, which
are adsorbed and adhered to the surface (Samek et al. 2017;
Xie et al. 2019; Zhang et al. 2013); Zhao et al. 2019). The
proportion of each component in PM2.5 is related to factors
such as source, region, climate, season, and formation pattern
(Samek et al. 2017; Xie et al. 2019; Zhang et al. 2013); Zhao
et al. 2019). Furthermore, they can absorb a large number of
toxic and harmful substances, such as heavy metals and per-
sistent organic pollutants due to their large specific surface
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area and deposit in the respiratory tract and pass through the
alveoli into the blood system due to their small size, and sub-
sequently disperse and accumulate in various tissues and or-
gans of the human body through the circulatory system (Shou
et al. 2019; Sun et al. 2020; Wei and Tang 2018). Therefore,
the toxicity and health effects of PM2.5 depend not only on the
components and concentrations, but also on their unique phys-
ical and chemical properties, such as a Fenton reaction of
heavy metals that can produce intracellular reactive oxygen
species (ROS), and population susceptibility (Zeng et al.
2020).

The NOD-like receptor family pyrin domain containing 3
(NLRP3) inflammasome is a complex composed of NLRP3,
apoptosis-associated speck-like protein (ASC) and inactive
caspase-1 precursor, which can be activated by a series of
substances such as PM2.5 and adenosine triphosphate (ATP,
an intracellular basic energy unit), and biological processes
including potassium (K+) efflux, calcium (Ca2+) and sodium
(Na+) influx, mitochondrial damage, and lysosome destabili-
zation and rupture, etc. (Liu et al. 2020). Activation of the
NLRP3 inflammasome is the key innate immune pathway
responsible for producing active caspase-1 and interleukin-
1β(IL-1β) involved in the sterile inflammatory response
(Liu et al. 2018a). Mitochondria as the center of biological
energy of cells plays an important role in airborne particulate
matter-induced immunotoxicity (Sharma et al. 2021).
Although several studies have suggested that there is an asso-
ciation between PM2.5 exposure and NLRP3 inflammasome
activation, the underlying mechanisms are still unknown
(Cheng et al. 2020; Duan et al. 2019; Jia et al. 2021; Niu
et al. 2021; Wang et al. 2020a). Furthermore, several reports
showed that there is an association between PM2.5 exposure
and decreased intracellular ATP (Duan et al. 2019; Jin et al.
2019a; Jin et al. 2019b; Ning et al. 2019). In addition, extra-
cellular ATP has been confirmed as an activator of the NLRP3
inflammasome (Hudson et al. 2019; Jiang et al. 2017; Wang
et al. 2013). Therefore, ATP may mediate the relationship
between PM2.5 exposure and activation of the NLRP3 inflam-
masome. However, there is a critical gap in understanding the
mechanism referring to PM2.5 exposure and activation of the
NLRP3 inflammasome.

In this review, we briefly summarize the essential potential
role of ATP in the NLRP3 inflammasome activation process
triggered by exposure to PM2.5(Fig. 1 and Table 1). This study
may shed light on the strategy to treat PM2.5-induced ATP-
dependent NLRP3 inflammasome-related inflammatory re-
sponse and diseases (Fig. 2).

PM2.5 exposure and ATP alteration

Previous studies have shown that PM2.5 can lead to intracel-
lular mitochondrial dysfunction and subsequently weaken

mitochondrial respiration and reduce ATP production (Ku
et al. 2016; Miao et al. 2019; Park et al. 2021). For example,
exposure to haze, the dose of PM2.5 can reduce ATP produc-
tion in the lungs of rats, decrease the activity of malate dehy-
drogenase and citrate synthase [critical enzymes in the tricar-
boxylic acid (TCA) cycle], and attenuate the expression of
mitochondrial respiration chain genes such as UQCRI1 and
NDUFS2(Jin et al. 2019a). ATP levels decrease significantly
with increasing seasonal exposure to PM2.5, which is regulat-
ed byPPARa in a dose-dependent manner and is accompanied
by cardiac damage in Sprague Dawley rats (Jin et al. 2019b).
PM2.5 exposure can cause mitochondrial damage, such as mi-
tochondrial vacuolation and rupture of the mitochondrial
membrane in type II alveolar epithelial cells, and accompany
a decrease in ATP levels as evidence of energy metabolism
disorders (Ning et al. 2019). Li et al. reported that exposure to
PM2.5 led to a decrease in Na

+/K+-ATPase and Ca2+-ATPase,
which can inhibit the catalysis and decomposition process of
ATP and subsequently suppress the influx of K+ and the efflux
of Ca2+, respectively (Li et al. 2015a). Fu et al. reported that
exposure to PM2.5 can up-regulate ATP citrate lyase (ACLY),
which will inevitably decrease the level of ATP (Li et al.
2015a). A recent study demonstrated that PM2.5 exposure
inhibited sATP synthesis in BEAS-2B cells and down-
regulated four enzymes responsible for ATP production, in-
cluding ATP5F, COX7A, NDUF, and UQCR(Duan et al.
2020). Taken together, exposure to PM2.5 will cause a de-
crease in cellular ATP.

ATP alteration and NLRP3 inflammasome
activation

It is well-known that ATP stores energy in the form of high-
energy phosphate bonds and the hydrolysis of the bonds pro-
vides a large amount of free energy to drive the metabolic
reaction of various cells. ATP can be synthesized during cel-
lular respiration, either in the cytoplasm during glycolysis or
in the mitochondria via the TCA cycle and the electron trans-
port system in the presence of oxygen. The biological effect of
ATP on the NLRP3 inflammasome depends on its intracellu-
lar and extracellular flow (Fig. 3). Specifically, ATP release
from intracellular to extracellular can activate the NLRP3 in-
flammasome (Asgari et al. 2013). In other words, elevated
extracellular ATP (ATP exposure) or decreased intracellular
ATP (ATP efflux) may be the key step to ultimately activate
the NLRP3 inflammasome (Nomura et al. 2015; Wang et al.
2013).

It should be noted that extracellular ATP can trigger the
P2X7 membrane receptor to activate the NLRP3 inflamma-
some and subsequently secrete mature caspase-1 and IL-1β
(Amores-Iniesta et al. 2017; Baron et al. 2015; Chen et al.
2013; Di Virgilio et al. 2017; Hudson et al. 2019; Jiang
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Table 1 A brief summary of the relationship among PM2.5, ATP, NLRP3, and COVID-19

Variables Patterns References

PM2.5 and ATP Particulate mediate NLRP3 inflamamsome activation via phagosomal destabilization (Hornung et al. 2008)

PM2.5 inhibit Na
+K+-ATPase and Ca2+-ATPase and induce ROS and lung injury (Li et al. 2015b)

PM2.5 exposure causes abnormal energy metabolism and ATP decrease in lung tissues (Jin et al. 2019a)

PM2.5 exposure causes cardiac ATP reduction by regulating PPARa selection (Jin et al. 2019b)

PM2.5 causes lung injuries and coupled energy metabolic disorder as a decrease in ATP levels (Ning et al. 2019)

Inhibition of ATP citrate lyase protects PM2.5-induced epithelial-mesenchymal transition (Fu et al. 2019)

ATP and NLRP3
inflammasome

Extracellular ATP activate P2X7 receptor and function in the ATP-mediated lysis of
antigen-presenting cells.

(Surprenant et al.
1996)

ATP activate the P2X7 receptor to trigger NLRP3 dependent inflammasome activation (Mariathasan et al.
2006)

Pannexin-1 is required for releasing mature IL-1β induced by activating P2X7 receptors that are
ATP-gated cation channels

(Pelegrin and
Surprenant 2006)

ATP is a major endogenous danger signal that engages the P2X7 receptor/pannexin-1 axis, leading
to NLRP3 inflammasome activation, IL-1β maturation and lung fibrosis.

(Riteau et al. 2012)

The NLRP3 inflammasome is activated through ATP-dependent lysosomal cathepsin B release (Hoegen et al. 2011)

Extracellular ATP release triggering subsequent purinergic receptors results in NLRP3
inflammasome activation in response to PAMPs and DAMPs

(Gombault et al.
2012)

The assembly of the NLRP3 inflammasome requires a signal derived from extracellular ATP,
pore-forming toxins, or crystalline materials

(Juliana et al. 2012)

Intestinal inflammation activation is mediated by ATP-reactive P2X7 purinoceptors (Kurashima et al.
2012)

Downregulation of the Na/K-ATPase pump activates the NLRP3 inflammasome (Lacroix-Lamande
et al. 2012)

ATP release and purinergic signaling is a common pathway for particle-mediated inflammasome
activation

(Riteau et al. 2012)

C3a modulates IL-1β secretion by regulating ATP efflux and subsequent NLRP3 inflammasome
activation

(Asgari et al. 2013)

ATP-P2X4 signaling mediates NLRP3 inflammasome activation: a novel pathway of diabetic
nephropathy

(Chen et al. 2013)

ATP stimulation trigger the universal localization of ASC pyroptosome within the cytoplasm (Wang et al. 2013)

Ethanol, ATP and LPS treatments up-regulates NLRP3 expression, and causes caspase-1 cleavage
and the release of IL-1β and IL-18 in astrocytes supernatant

(Alfonso-Loeches
et al. 2014)

ATP activates the NLRP3 inflammasome in a ROS-dependent manner (Zhang et al. 2015)

Intracellular ATP decrease mediates NLRP3 inflammasome activation upon nigericin and crystal
stimulation

(Nomura et al. 2015)

Nanoparticles activated the NLRP3 inflammasome through ATP, ADP and adenosine (Baron et al. 2015)

Inflammatory sites contain high (hundred micromolar) extracellular ATP concentrations (Di Virgilio et al.
2017)

Blocking ATP-sensitive K channel alleviates morphine tolerance by inhibiting NLRP3-mediated
neuroinflammation

(Qu et al. 2017)

Mitochondrial function is required for extracellular ATP-induced NLRP3 inflammasome activa-
tion

(Sadatomi et al. 2017)

The ATPase activity of NLRP3 has pivotal role in infammasome activation (Shim et al. 2017)

Extracellular ATP activates the NLRP3 inflammasome and is an early danger signal of skin
allograft rejection

(Amores-Iniesta et al.
2017)

P2X7R-mediated NLRP3 inflammasome activation is dependent on extracellular ATP (Jiang et al. 2017)

Connexin43 hemichannel-mediated ATP release link with inflammasome pathway activation (Mugisho et al. 2018)

LPS-ATP-induced endothelial cell pyroptosis is regulated by ROS/NLRP3/Caspase-1 signaling
pathway

(Tang et al. 2019a)

NLRP3 ATP-hydrolysis motif is targeted by MCC950 for inflammasome inhibition (Coll et al. 2019)

Pregnane X receptor activating ATP release mediates NLRP3 inflammasome activation (Hudson et al. 2019)

ATP directly activates membrane channel P2X7 receptor, K+ efflux, and NLRP3 inflammasome (Wang et al. 2020b)
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et al. 2017; Liu et al. 2018a; Pelegrin and Surprenant 2006).
Blocking ATP hydrolysis by MCC950 can inhibit the activa-
tion and formation of the NLRP3 inflammasome (Coll et al.
2019). The P2X7 receptor, pannexin-1, and connexin-43 he-
michannels function as ATP-gated ion channels to permeate
and transfer Na+, K+, and Ca2+, and further influence NLRP3
inflammasome activation (Cymer et al. 2020; Huang et al.
2019; Karmakar et al. 2016; Mugisho et al. 2018; Mugisho
et al. 2019; Parzych et al. 2017; Tonkin et al. 2018; Wang
et al. 2020b; Yang et al. 2019). Activated P2X7 receptors

triggered by extracellular ATP can recruit the pannexin-1
gap junction protein to form a larger pore channel, subse-
quently accelerating K+ efflux and Ca2+ influx, and further
activating the NLRP3 inflammasome (Chakfe et al. 2002;
Dubyak 2007; He et al. 2016; Hudson et al. 2019; Liu et al.
2018a; Mariathasan et al. 2006; Riteau et al. 2012; Surprenant
et al. 1996). Down-regulation of the Na+/K+-ATPase and
Ca2+-ATPase pump by stimuli such as PM2.5 and leptospiral
glycolipoprotein activates the NLRP3 inflammasome (Geng
et al. 2006; Guo et al. 2017; Lacroix-Lamande et al. 2012; Li

Table 1 (continued)

Variables Patterns References

PM2.5 and NLRP3
inflammasome

K+ efflux is the common step for NLRP3 inflammasome activation triggered by bacterial toxins
and PM2.5

(Munoz-Planillo et al.
2013)

PM2.5 cause NLRP3 inflammasome activation and lung fibrosis through cathepsin B release, ROS
production, and potassium efflux

(Zheng et al. 2018)

PM2.5 exposure aggravated oAβ-induced inflammation and microglia was possibly dependent on
NLRP3 inflammasome activation

(Wang et al. 2018)

PM2.5-related cardiac injury is mediated by macrophages polarization and NLRP3 inflammasome
activation

(Du et al. 2019)

PM2.5 induce immune response by activating TLR4/MAPK/NF-κB pathway and NLRP3
inflammasome in alveolar macrophages

(Tang et al. 2019b)

PM2.5 change blood vessel formation through ROS-mediated NLRP3 inflammasome pathway (Shen et al. 2019)

PM2.5 exposure cause depressive-like responses through Nrf2/NLRP3 signaling pathway (Chu et al. 2019)

PM2.5-induced cardiac injury is associated with NLRP3 inflammasome activation (Duan et al. 2019)

PM2.5 compromises antiviral immunity in influenza infection by inhibiting activation of NLRP3
inflammasome and expression of interferon-β

(Tao et al. 2020)

NLRP3 Inflammasome is associated with PM2.5-induced neuroinflammation in Alzheimer's
disease

(Shi et al. 2020)

PM2.5-induced oxidative stress activates the TRPM2-Ca2+-NLRP3 axis to promote lung injury (Wang et al. 2020)

PM2.5 induce acute allergic airway inflammation via the TLR2/NF-κB/NLRP3 signaling pathway (Dai et al. 2020)

PM2.5 triggers cornea inflammation and pyroptosis via NLRP3 inflammasome activation (Niu et al. 2021)

PM2.5-induced lung inflammation via activating of the NLRP3/caspase-1 signaling pathway (Jia et al. 2021)

PM2.5-induced lung injury is attenuated in macrophage-specific NLRP3 deficient mice (Xiong et al. 2021)

PM2.5 activated the NLRP3 inflammasome in human umbilical vein endothelial cells (Hu et al. 2021)

PM2.5 and COVID-19 There is an association between short-term exposure to PM2.5 and COVID-19 infection (Zhu et al. 2020)

A small increase in long-term exposure to PM2.5 leads to a large increase in the COVID-19 death
rate

(Wu et al. 2020)

Both the short- and long-term PM2.5 exposures contribute to a higher motality of COVID-19 (Mehmood et al.
2020)

Short-term or chronic PM2.5 exposure has a significant negative impact of the human immune
system

(Zoran et al. 2020)

NLRP3 inflammasome
and COVID-19

SARS-CoV-2 might directly activate NLRP3 inflammasome, and severe COVID-19 patients
can demonstrate a dysregulated NLRP3 inflammasome activity and a cytokine storm

(van den Berg and Te
2020)

There is a link between the pathogenesis of severe COVID-19 and NLRP3 activation (Freeman and Swartz
2020)

Emerging role of IL-6 and NLRP3 inflammasome as potential therapeutic targets to combat
COVID-19

(Paniri and

Akhavan-Niaki2020)

The role of NLRP3 inflammasome in obesity-related COVID-19 exacerbations (Bertocchi et al. 2020)

The NLRP3 inflammasome activation is a potential drug target fighting COVID-19 (Shah 2020)
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et al. 2015a). Several studies confirm that both K+ efflux (low
intracellular K+) and Ca2+ influx (high intracellular Ca2+) can
trigger the NLRP3 inflammasome activated by various stimuli
such as particulate matter and bacterial toxins (Liu et al. 2020;
Munoz-Planillo et al. 2013; Petrilli et al. 2007; Suadicani et al.
2006).

There are a variety of additional ways, such as ROS over
generation, mitochondrial deoxyribonucleic acid (DNA) dam-
age, lysosome rupture, and endoplasmic reticulum stress, me-
diating the process of activation of NLRP3 inflammasomes
with ATP. For example, Zhang et al. demonstrated that ATP
activates the NLRP3 inflammasome in a ROS-dependent
manner (Zhang et al. 2015). Macrophage treatment with
ATP leads to the rapid generation of ROS, while the applica-
tion of the diphenyleneiodonium nicotinamide adenine dinu-
cleotide phosphate (NADPH) oxidase inhibitor can effectively
inhibit the activation of the caspase 1-related NLRP3 inflam-
masome mediated by ATP (Martinon 2010). Extracellular
macrophages treated with ATP induce ROS production and
subsequently process and secrete pro-inflammatory cytokines,
including IL-1β and interleukin-18(IL-18)(Cruz et al. 2007).
Additionally, ATP treatments stimulate the generation of mi-
tochondrial ROS (mROS), cause caspase-1 cleavage, and trig-
ger activation of the NLRP3 inflammasome to release IL-1β
and IL-18 in astrocytes (Alfonso-Loeches et al. 2014).
Excessive levels of ATP acting on the cell membrane increase
ROS as NADPH oxidase-dependent O2

•− production in cells
and trigger activation of the NLRP3 inflammasome (Abais
et al. 2015). Inhibition of LPS-ATP-induced ROS production

and endothelial cell pyroptosis by neferine can block the ROS/
NLRP3/Caspase-1 signaling pathway (Tang et al. 2019a).

ATP plays a pivotal role in maintaining the cellular pow-
erhouse position of mitochondria (Yu and Bennett 2016). The
imbalance of intracellular and extracellular ATP will seriously
impact the normal physical function of cells and the body. In
other words, mitochondrial homeostasis is indispensable for
normal metabolic circuits and signaling pathways based on
mitochondrial metabolism. Extracellular ATP-induced mito-
chondrial dysfunction and disruption, such as loss of mito-
chondrial membrane potential and mitochondrial fragmenta-
tion, which can result in mitochondrial DNA damage and
trigger activation of the extracellular ATP-induced NLRP3
inflammasome (Shimada et al. 2012; Sutterwala et al. 2014;
Zhong et al. 2018).

In addition, ATP-driven destabilization or rupture of the
lysosome leads to the release of the lysosome content to the
cytoplasm through cathepsin B, which participates in the ac-
tivation process of the NLRP3 inflammasome. For example,
the activation of the NLRP3 inflammasome in the pathology
of pneumococcal meningitis depends on the production of
ATP, the destabilization of lysosome, and the activation of
cathepsin B (Hoegen et al. 2011). Nigericin, an activator of
the NLRP3 inflammasome, results in decreased cellular ATP
and subsequently causes membrane permeabilization of the
lysosome and activation of the NLRP3 inflammasome (Heid
et al. 2013). Uptake of particulates such as silica crystals and
aluminum salt leads to acidification, swelling, and rupture of
the lysosome, and subsequent activation of the NLRP3

Fig. 1 The mediation role of ATP alterations in the association between
exposure to PM2.5 and activation of the NLRP3 inflammasome. Exposure
to PM2.5 can induce ATP alterations. In addition, both PM2.5 exposure
and ATP alteration can activate the NLRP3 inflammasome. Both

exposure to PM2.5 and activation of NLRP3 inflammasome are related
to COVID-19. Therefore, the review explores the mediation role of ATP
alteration in the association of PM2.5 exposure, the NLRP3
inflammasome activation, and their related COVID-19
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inflammasome (Hornung et al. 2008). While inhibition of
phagosomal acidification or cathepsin B alters NLRP3 activa-
tion, indicating that lysosome destabilization plays a role in
regulating NLRP3 inflammasome activation.

PM2.5 exposure and NLRP3 inflammasome
activation

The potential molecular mechanisms of PM2.5 exposure on
human health include the inflammatory response, oxidative
stress, and genotoxicity (Byun et al. 2016; Chen et al. 2020;
Guan et al. 2016). Additionally, oxidative stress is closely

related to the inflammatory response and plays an important
role in inflammatory processes (Lugrin et al. 2014). Several
studies found that exposure to PM2.5 can initiate the process of
NLRP3 inflammasome act ivat ion and associated
inflammation-related diseases (Hu et al. 2021; Xiong et al.
2021). PM2.5 exposure may lead to increased endogenous
carbon dioxide (CO2), suicidal death of erythrocytes (accom-
panied by loss of circulating red blood cells, hypoxia, anemia,
and dysfunction of the vascular endothelium), and activated
NF-kB through ligands for toll-like receptors and, subsequent-
ly, the NLRP3 inflammasome (Liu et al. 2018b; Nguyen et al.
2009; Zappulla 2008). A recent study indicated that PM2.5

promotes the NLRP3/caspase-1 pathway to further induce

Fig. 2 The potential ATP mediated pathway of PM2.5 exposure on
NLRP3 inflammasome activation. Exposure to PM2.5 induce
intracellular ATP decrease, which is linked with K+ efflux, Ca2+ influx,

lysosome rupture, mitochondria disfunction, endoplasmic reticulum
stress, and subsequently activate NLRP3 inflammasome

24450 Environ Sci Pollut Res (2022) 29:24445–24456



pulmonary inflammation (Jia et al. 2021). Furthermore, PM2.5

induces intracellular ROS and subsequently triggers lung in-
jury such as lung inflammation and fibrosis, inhibition of
blood vessel formation, and cornea inflammation by activat-
ing the NLRP3 inflammasome (Niu et al. 2021; Shen et al.
2019; Wang et al. 2020a; Zheng et al. 2018). In addition,
exposure to PM2.5 leads to cardiac dysfunction and injury,
which are mediated by macrophage polarization and activa-
tion of the NLRP3 inflammasome in mice with apolipoprotein
E-/- (Du et al. 2019). Exposure to PM2.5 induces abnormal
electrocardiogram alteration (ECG) and increased inflamma-
tory cell and fibrosis, which may be due to activation of the
NLRP3 inflammasome (Duan et al. 2019). PM2.5 from the pig
house activates the TLR4/MyD88 pathway to induce ROS
production and further trigger the NLRP3 inflammasome in
alveolar macrophages (Tang et al. 2019b). After exposure to
PM2.5 from Nrf2−/− and WT mice for 9 weeks, there were
obvious depressive-like responses and the NLRP3 signaling
pathway was more activated in Nrf2−/−mice than in WTmice
(Chu et al. 2019). There were many activators, such as PM2.5,
ATP, bacteria, and viruses, that trigger the activation of the
NLRP3 inflammasome (Kelley et al. 2019; Liu et al. 2020;
Liu et al. 2018b). However, the underlying mechanism of
PM2.5 exposure to activation of the NLRP3 inflammasome
is still unclear.

Mediation of ATP in PM2.5 exposure
and NLRP3 inflammasome activation

Cellular stimulation driven by environmental or endogenous
particles such as PM2.5, silica, and uric acid can trigger extra-
cellular delivery of intracellular ATP (intracellular ATP

decrease) and subsequent activation of the ligand (ATP)-gat-
ed/sensitive ionotropic P2X7 membrane receptor at the cell
surface (Baron et al. 2015; Gombault et al. 2012; Riteau
et al. 2012). Previous studies demonstrated that exposure to
PM2.5 can inhibit Na

+/K+-ATPase and Ca2+-ATPase activities
and induce alveolar macrophages to produce ROS, which may
indicate that ATP mediates the process of generation of ROS
induced by PM2.5 and then activates the NLRP3 inflamma-
some (Li et al. 2015b). Additionally, extracellular ATP trig-
gers the activation of the NLRP3 inflammasome and subse-
quently the maturation of IL-1β, which is consistent with the
decrease in intracellular ATP driven by exposure to PM2.5 and
complications of activation of the NLRP3 inflammasome
(Amores-Iniesta et al. 2017; Jiang et al. 2017; Ning et al.
2019; Niu et al. 2021; Jia et al. 2021). Although some of the
participants, such as the PM2.5, ATP, and NLRP3
inflammasomes, presented in different previous different stud-
ies, did not highlight the mediated and pivotal role of ATP in
the association between PM2.5 exposure and activation of the
NLRP3 inflammasome. Taken together, although ATP is re-
lated to several activators and regulators of the NLRP3 inflam-
masome, its direct key role in the process of exposure to PM2.5

activating the NLRP3 inflammasome needs further
confirmation.

Association among PM2.5, NLRP3
inflammasome, and COVID-19

The great interest in the link between PM2.5, the NLRP3 in-
flammasome and COVID-19 arises with the COVID-19 pan-
demic in the world. A recent study demonstrated that PM2.5

and the air quality index were positively related to daily new

Fig. 3 The process of ATP alteration activating the NLRP3
inflammasome. Both elevated extracellular ATP (ATP exposure) or
decreased intracellular ATP (ATP efflux) can activate P2X7 receptor
and open hemichannels such as pannexin-1 and connexin-43 in the

cellular membrane, which result in various biological processes including
mitochondria damage, lysosome rupture, and endoplasmic reticulum
stress, and subsequently oxidative stress and inflammatory response,
and finally activate the NLRP3 inflammasome
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cases of COVID-19 in Milan, Italy (Zoran et al. 2020). Each
1μg/m3 increase in PM2.5 is related to a 15% increase in
COVID-19 death in the USA (Wu et al. 2020). A 10 μg/m3

elevation in PM2.5 was associated with a 2.24% (95%CI: 1.02
to 3.46) increase in daily confirmed cases in China (Zhu et al.
2020). In addition, both short- and long-term exposure to
PM2.5 causes an increase in the incidence of lethal COVID-
19(Mehmood et al. 2020). What is more, the NLRP3 inflam-
masome plays an important role in the pathogenesis of
COVID-19 infection (Freeman and Swartz 2020; Shah
2020; van den Berg and Te 2020). An increase in diabetes
complications in patients with COVID-19 is partly attributed
to overactivation of the NLRP3 inflammasome (Bertocchi
et al. 2020). NLRP3 inflammasome blocker drugs, such as
MCC950 and Colchicine, may provide a promising treatment
strategy for patients with COVID-19 infection (Paniri and
Akhavan-Niaki2020). These studies may indicate that ATP-
regulating drugs may be a potential treatment for patients with
COVID-19.

Conclusion and future perspectives

In summary, exposure to PM2.5 can lead to decreased intra-
cellular ATP (ATP efflux). Both elevated extracellular ATP
and decreased intracellular ATP derived from particles such as
PM2.5 and crystals can activate the NLRP3 inflammasome
through several approaches such as K+ efflux, Ca2+ influx,
ROS, mitochondrial DNA damage, lysosome destabilization
and rupture. Meanwhile, exposure to PM2.5 can trigger the
activation process of the NLRP3 inflammasome. However,
the critical and central role of ATP in the procedure of envi-
ronmental stimuli such as exposure to PM2.5 and activation of
the NLRP3 inflammasome was ignored in previous studies.
Understanding the roles and regulatory mechanisms of ATP
alteration initiated by exposure to particulate substances in the
effect of activation of the NLRP3 inflammasome is essential
to develop potential treatment approaches against NLRP3-
related inflammatory symptoms and diseases such as
COVID-19.

This study serves as a catalyst for the role of ATP in future
studies, which remain inadequate molecular mechanisms of
PM2.5-driven ATP transfer and regulation and subsequent ac-
tivation of the NLRP3 inflammasome. ATP-associated ion
channels in the cellular membrane, such as P2X7 receptors,
pannexin-1, and connexin-43, play an important role in vari-
ous biological processes such as the inflammatory response,
oxidative stress, and genotoxicity. Exploring the underlying
molecular mechanisms of ATP transfer and regulation at the
cellular level is crucial to maintaining body homeostasis and
biological function. Identifying specific drugs or candidate
genes for ATP-related disorders may provide novel strategies

to prevent and treat a host of inflammatory diseases driven by
ATP alterations.
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