
REVIEW ARTICLE

Air pollution-induced epigenetic changes: disease development
and a possible link with hypersensitivity pneumonitis

Suranjana Mukherjee1
& Sanjukta Dasgupta1 & Pradyumna K. Mishra2 & Koel Chaudhury1

Received: 26 May 2021 /Accepted: 16 August 2021
# The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Air pollution is a serious threat to our health and has become one of the major causes of many diseases including cardiovascular
disease, respiratory disease, and cancer. The association between air pollution and various diseases has long been a topic of
research interest. However, it remains unclear how air pollution actually impacts health by modulating several important cellular
functions. Recently, some evidence has emerged about air pollution-induced epigenetic changes, which are linked with the
etiology of various human diseases. Among several epigenetic modifications, DNA methylation represents the most prominent
epigenetic alteration underlying the air pollution-induced pathogenic mechanism. Several other types of epigenetic changes, such
as histone modifications, miRNA, and non-coding RNA expression, have also been found to have been linked with air pollution.
Hypersensitivity pneumonitis (HP), one of the most prevalent forms of interstitial lung diseases (ILDs), is triggered by the
inhalation of certain organic and inorganic substances. HP is characterized by inflammation in the tissues around the lungs’
airways and may lead to irreversible lung scarring over time. This review, in addition to other diseases, attempts to understand
whether certain pollutants influence HP development through such epigenetic modifications.
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Introduction

Air pollution has become a global threat to human health as it
predisposes the risks of various diseases including cancers. In
today’s world, a whole range of industries such as petrochem-
ical firms, chemical factories, fertilizer units, andmetallurgical
setups contribute to air pollution. Apart from the industrial
sector, the main emissions from certain types of power sta-
tions, cars, railways, airways, combustion engines also cause
air pollution. Certain field-cultivation techniques release am-
monia in the air from heavily fertilized fields and consequent-
ly pollute the environment. Even natural disasters like forest

fire, volcanic erosion, and dust storms pollute the air. Other
than these, biomass fuel uses, agricultural burning and utiliza-
tion of adulterated fuels are some of the sources of air pollu-
tion (Manisalidis et al. 2020). The use of wood and charcoal
for cooking and the operation of computers, printers, and pho-
tocopy machines, among others, contribute to indoor air pol-
lution. Rapid urbanization also contributes to air pollution as it
involves huge construction works. Moreover, some people are
exposed to air pollution due to their professions—for instance,
mining workers, traffic police and drivers are exposed to large
amounts of air pollutants (Shukla et al. 2019).

Air pollution is linked with a range of diseases like asthma,
chronic bronchitis, chronic obstructive pulmonary disease
(COPD), cardiovascular disease, metabolic disorders, various
reproductive conditions, dysregulation in immune response,
neurodegenerative disorders, and cancer (Breton and
Marutani 2014; Kurt et al. 2016). In 2013, World Health
Organization (WHO) declared outdoor air pollution as a lead-
ing environmental cause of death associated with cancer
(WHO 2013). A new study has indicated that air pollution
may increase the risk of death due to COVID-19, an infectious
disease that emerged in 2019 and is caused by novel corona-
virus SARS-CoV-2. It has been suggested that 15% deaths
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across the world due to covid-19 could be linked with long-
term exposure to air pollution (Pozzer et al. 2020). Outdoor air
is contaminated with various chemicals such as engine ex-
hausts, solvents, metals, dusts, and particulate matter (PM).
Although air pollution is linked with numerous diseases, the
impact of pollutants at both cellular and molecular levels has
not been explored in detail. At the cellular level, exposure to
different air pollutants or other toxic elements may lead to
apoptosis by targeting mitochondria either directly or indirect-
ly. Airborne particles have been found to induce apoptosis
associated with ROS production, cellular stress, and DNA
fragmentation (Andreau et al. 2012). Air pollution also in-
duces inflammation in tissues by influencing specific cyto-
kines and may also impact our endocrine system and metab-
olism processes (Prada et al. 2020). Moreover, recent studies
indicate that epigenetic alterations could be an important path-
way through which environmental factors exert their effects
(Alfano et al. 2018). Epigenetic is the alteration at the gene
expression level without changing the underlying DNA se-
quence such as DNA methylation, histone modification,
miRNA, and non-coding RNA expression (Weinhold 2006;
Jin et al. 2011). Cancers and many other diseases are often
associated with epigenetic modifications (Weinhold 2006).
Exposure to environmental stimuli may result in epigenetic
changes, which, in turn, can impact gene expression and pre-
disposition to disease risk (Breton and Marutani 2014). Little
is known about how specific air pollutants generate specific
epigenetic marks associated with a particular disease.
Understanding epigenetic alterations due to specific pollutants
may lead to the development of biomarkers to assess the dis-
ease risk due to air pollution.

This narrative review provides an overview of the associa-
tion between air pollution-induced epigenetic modification
and disease development. It also explores whether such mod-
ification plays a role in HP pathogenesis. We have searched
the PubMed and MEDLINE databases using the keywords
‘air pollution’, ‘air pollutant’, ‘air pollution-associated dis-
eases’, ‘epigenetics’, and ‘hypersensitivity pneumonitis’. We
have included all the original research articles published on
the topic in the last 20 years. Overall, this review paper sum-
marizes the findings of 235 articles, including 145 original
research papers, 76 review articles, 6 systematic review and
meta-analyses, 6 clinical trials, and 2 comparative studies. We
have only included the studies where disease development is
associated with air pollutants as well as with epigenetic chang-
es. We have not included studies in which air pollution in-
duces mutations or other alterations at the genetic level or
causes other physiological changes associated with disease
pathogenesis.

The objective of this review is to discuss the association
between certain air pollutants, epigenetic modifications, and
diseases linked with those pollutants. These epigenetic alter-
ations could be the mechanisms underlying the diseases

associated with air pollution. Such knowledge may guide the
prevention and treatment of the diseases. We also discuss HP
pathogenesis because certain pollutants could influence HP
development, and epigenetic modifications could be a mech-
anism involved in this process. Moreover, this review will
help researchers to develop epigenetic biomarkers for early
detection and monitoring prognosis of diseases associated
with air pollution. Other mechanisms involved in air
pollution-associated disease development have not been
discussed in this review article.

Air pollution: an overview

Ambient air pollution is a mixture of many different compo-
nents comprising airborne PM, ozone, nitrogen dioxide
(NO2), and volatile organic compounds, including benzene,
carbon monoxide (CO), and sulfur dioxide (SO2). Primary
pollutants are emitted directly into the air, while secondary
pollutants are formed in the atmosphere from other compo-
nents. Industrial sources, traffic, and residential heating are the
major sources of air pollution (Breton and Marutani 2014;
WHO 2013). In 2013, the International Agency for Research
on Cancer (IARC) declared outdoor air pollution and the as-
sociated PM as a potential risk factor for lung cancer.
Globally, the mutagenic potential of outdoor air exceeds the
normal range over six orders of magnitude (revertants/m3)
(Loomis et al. 2014; Cohen 2000). There is Increasing evi-
dence to suggest that both acute and chronic exposure to air
pollution is detrimental to human health and pregnant women,
infants, and individuals with existing diseases, as they are
more susceptible to the adverse effects of ambient air pollution
(Kloog et al. 2012; Vieira 2015).

Particulate matters (PM)

PM is the sum of hazardous solid and liquid particles
suspended in the air. They comprise both organic and inor-
ganic particles such as dust, pollen, and liquid droplets. PM
can be classified as coarse (diameter 10 μm; PM10), fine
(diameter 2.5 μm; PM2.5), and ultrafine (0.1 μm; PM0.1)
particles on the basis of their sizes (Ji and Khurana Hershey
2012). Coarse PM is generally produced from dust on roads,
dust generated from construction works and industrial emis-
sions, while combustion processes form fine particles com-
posed of metals, organic molecules, sulfate, nitrate etc.
These fine particles are capable of travelling long distances,
at times more than 100 km (WHO 2006). However, PM con-
centration varies by location and is generally more toxic dur-
ing working hours due to heavy traffic. PM-induced diseases
are listed in detail in Table 1. Other than inducing diverse
diseases, PM2.5 also alters epigenetic age, which is a marker
of mortality and disease risk (White et al. 2019). Another work
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has shown that PM2.5 exposure promotes circadian rhythm
disruption and metabolic dysfunction by downregulating his-
tone deacetylases 2, 3, and 4, thereby altering the chromatin
dynamics (Palanivel et al. 2020). Air pollution-induced
changes in the transcriptomic profile has also been reported.
PM2.5 exposure at birth is linked with differential gene ex-
pressions in early stages of life, which is relevant for complex
diseases (Merid et al. 2021). It was observed that depending
on the concentration and duration of PM2.5 exposure, a dis-
tinct transcriptomic and DNAmethylomic profile is generated
in bronchial epithelial cells (Huang et al. 2021).

Persistent organic pollutants (POPs) and polycyclic
aromatic hydrocarbons (PAHs)

In early 1900s, the entire biosphere started to become
contaminated with toxic man-made substances called per-
sistent organic pollutants (POPs) (Jones and de Voogt
1999). Only recently, there has been much concern about
POPs as many of these chemicals cause perturbations in
the endocrine and reproductive health of mammals
(Gregoraszczuk and Ptak 2013). Once produced, these
chemicals remain in our ecosystem for several years and
continue to exert their harmful effect on human health in
the form of diseases like cancer, birth defects, and neuro-
logical and immunological disorders (El-Shahawi et al.
2010). Certain POPs are associated with immunodeficien-
cy in infants, while a few others are substantial risk fac-
tors for breast cancer (Toms et al. 2016; Mouly and Toms
2016). Brain development in infants may get affected due
to exposure to POPs, as it has been shown that children
exposed to POPs during infancy scored comparatively
lower in intelligence and concentration measurements
(Tran and Miyake 2017). POPs are also associated with
gynecological disorders such as endometriosis, pre-term
birth, and other diseases like learning disabilities and an
increased incidence of diabetes (Gregoraszczuk and Ptak
2013; Ngwa et al. 2015).

The US Environmental Protection Agency (US EPA)
suggests that among the POPs, dioxin-related cancer risk
is greater than 1 in 1000 for current background levels of
exposure. However, the quantitative cancer risk assess-
ment information for dioxin is of varying ranges
( Ins t i tu te of Medic ine (US) Commit tee on the
Implications of Dioxin in the Food Supply 2003).
Integrated Risk Information System (IRIS) has been pro-
viding quantitative cancer risk assessments for several
other POPs including chlordane, DDE, DDT, dieldrin,
hexachlorobenzene, alpha-hexachlorocyclohexane, and
toxaphene (Gehlhaus et al. 2011). In the US, a number
of pesticides have been banned or restricted in terms of
usage due to their carcinogenic potential. Some of them
are DDT, dimethylhydrazine, hexachlorobenzene,

hexamethylphosphoramide, chlordecone, lindane, mirex,
and nitrofen (Gunier et al. 2001). People with high expo-
sure to pesticides have been identified with many different
types of cancers including lung, brain, prostate, skin as
well as blood and lymphatic system cancers (Blair and
Freeman 2009).

Polycyclic aromatic hydrocarbons (PAHs) in the air are
produced mainly by the burning of carbon-containing com-
pounds like wood and fuel. They are also present in gasoline
and diesel exhaust, cigarette smoke, and charcoal-broiled
food. A number of studies have shown that exposure to
PAHs is also linked with an increased incidence of lung, skin,
and urinary tract cancers (Abdel-Shafy and Mansour 2016). A
recent study has shown that PAH contributes to the biological
age by changing the leukocyte telomere length and the mito-
chondrial DNA copy number, as well as by forming anti-
benzo[a]pyrene diolepoxide adducts (Pavanello et al. 2020).

Effect of air pollution on human health

The most detrimental effect of air pollution is associated with
lung cancer (Cohen and Pope 3rd. 1995). It was found that the
incidence of lung cancer is correlated with urbanization vari-
ables other than smoking in a national Swedish cohort
(Boffetta et al. 2001). Smoking was responsible for 85% and
20–40% of lung cancer incidences inmen and women, respec-
tively (Tomatis 1993). A study had shown that 4.3% of the
lung cancer incidents in men and 10.5% in women in the
Cracow region were due to the air pollution (Hemminki and
Pershagen 1994). The nitroarenes from diesel exhaust which
can be converted to aromatic amines are a threat to bladder
cancer (Latifovic et al. 2015). Air pollution is also associated
other type of cancers such childhood leukemia and breast
cancer (Lien et al. 2017; Callahan et al. 2019). WHO has
estimated that the air quality for 91% of the global population
exceeds the pollution limit (WHO 2018). Ambient air pollu-
tion was responsible for 4.2 million deaths worldwide, con-
tributing to 7.6% of all deaths in 2016. In 2018, ambient air
pollution was responsible for 29% of all deaths and diseases
due to lung cancer. It is well realized that air pollution remains
one of the major causes for many diseases. In a study in 1994,
more than 40% of COPD incidents was attributed to air pol-
lution, while it was responsible for nearly 30% of ischemic
heart disease, stroke, and other respiratory infections
(Hemminki and Pershagen 1994). A recent study has indicat-
ed that air pollution can also bring out interstitial lung diseases
(ILDs) (Goobie et al. 2020).

Air pollution and epigenetic modifications

Epigenetics is the process where changes occur in gene func-
tions without changing their underline DNA sequences. Such
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changes, which may get reflected in cellular and physiological
traits, can be generated by environmental factors, besides be-
ing a part of the normal developmental phenomena (Sharma
et al. 2010; Feil and Fraga 2012). DNA methylation and his-
tone modifications are two key processes which alter gene
functions without changing the DNA sequences (Fuks
2005). DNA methylation is a reversible process and are me-
diated by DNA methyltransferase (DNMT) and demethylase
(Jin et al. 2011). Several studies indicated that a DNA meth-
ylation pattern can be greatly influenced by environmental
factors like ambient air pollution, and these epigenetic chang-
es are linked with diverse diseases (Plusquin et al. 2017; Ding
et al. 2016; Xu et al. 2018). Histones can also be modified by
several ways, such as acetylation, methylation, phosphoryla-
tion, and ubiquitylation. Micro-RNAs and ncRNAs play crit-
ical role in gene expression and contribute to epigenetic con-
trol in the process (Chuang and Jones 2007).

MicroRNAs are capable of regulating post-transcriptional
gene expression including the expression of epigenetic factors
like DNA methyltransferases, histone deacetylases, and
polycomb group genes (Macfarlane and Murphy 2010;
Filipowicz et al. 2008). Expression of miRNAs are associated
with several developmental processes and may contribute to
the onset of many diseases like cardiovascular diseases, can-
cer, metabolic diseases, and developmental disorders (Ha
2011). A diverse class of ncRNAs, such as snoRNAs,
miRNAs, siRNAs, exRNAs, piRNAs, and long ncRNAs,
can influence transcription and translation processes and play
significant roles in health and diseases. They generally do not
code proteins but are capable of regulating gene expression
through the regulation of the chromatin structure and DNA
methylation (Hombach and Kretz 2016). Moreover,
mitrochondrial DNA (mtDNA) is also regulated at the epige-
netic level in the form of mtDNA methylation (van der Wijst
et al. 2017). Mitochondrial epigenetics are capable of
influencing diverse cellular activities such as transcription reg-
ulation, cell division, cell cycle regulation, physiological ho-
meostasis, bioenergetics, and disease pathologies (Stimpfel
et al. 2018) (Fig. 1).

Chronic exposure to air pollution causes cytogenetic dam-
age, DNA-strand breakage, epigenetic changes, and altered
gene expression—all these changes are associated with higher
risk factors for many diseases, especially for cancers
(Ghorani-Azam et al. 2016). Studies have shown that organic
extracts of outdoor PM induce changes in the DNA morphol-
ogy in mammalian cell culture. Several cytotoxic effects, such
as oxidative DNA damage, breakage in the DNA strand, al-
tered telomere length, and mutation formation have been ob-
served in human peripheral monocytes when exposed to such
organic extracts (Cimino et al. 2014). DNA methylation pat-
tern in the genome also gets altered upon exposure to certain
pollutants (Martin and Fry 2018). Asbestos is not an essential-
ly mutagenic substance; it may, however, impose the risk of

cancer through an epigenetic mechanism (Kettunen et al.
2017). In addition, it is to be noted that an altered miRNA
expression profile has been reported as an effect of PM expo-
sure (Jardim 2011).

Epigenetic mechanisms are also involved in regulating
many genes that are involved in inflammation and immune
responses (Suárez-Álvarez et al. 2013). Therefore, aberrant
environmental signals that may induce epigenetic changes
could generate an imbalance in immunity. It was found that
exposure to PM2.5, CO, and O3 altered the methylation pat-
tern in many CpG sites for the immunoregulatory gene Foxp3,
IL-4, IL-10, and IFN-g, thereby altering the immune response
(Prunicki et al. 2021). Air pollution has also been found to
have been associated with autoimmune diseases. Such pollut-
ants may trigger pulmonary inflammation by altering the lung
microenvironment and inducing epigenetic changes (Zhao
et al. 2019). Besides abnormal immune responses, air
pollution-induced epigenetic modifications could directly
contribute to disease pathogenesis and such epigenetic chang-
es could be inherited across generations.

Air pollution and DNA methylation

Emerging evidences suggest that air pollutants modulate epi-
genetic states, ranging from DNA methylation to miRNAs
expression (Breton and Marutani 2014; Alfano et al. 2018).
Epithelial cells from the aerodigestive tract of heavy smokers
exhibit aberrant methylation of multiple genes associated with
the pathogenesis of lung cancer (Zö Zöchbauer-Müller et al.
2003). Several genes that are related with cancer progression
have also been found to be hypermethylated in the bronchial
epithelium and peripheral lymphocytes of smokers (Sridhar
et al. 2008). Exposures to metals induce DNA methylation
as well as histone modifications (Martinez-Zamudio and Ha
2011). Metal-rich air particles generate H3K4me2 and
H3K9ac patterns in specific promoters of transcriptionally ac-
tive genes (Cantone et al. 2011).Mitochondrial DNA also gets
methylated upon metal exposure (Byun et al. 2013). It is to be
noted that fine PM is strongly pro-oxidant in nature, and mi-
tochondrial DNA is more susceptible to oxidative damage due
to lack of introns and histone proteins (Bhargava et al. 2018b).
DNA from the sperm of mice exposed to steel plant air has
been shown in a persistent hypermethylated state long after
the exposure ended (Yauk et al. 2008). Epidemiological stud-
ies reveal that PM2.5 and PM10 exposures induce the hypo-
methylation of Alu and/or LINE1 (Long Interspersed Nuclear
Element-1) elements in leukocytes and buccal cells (Terry
et al. 2011; De Nys et al. 2018). PM exposure also alters
DNAmethylation in the NOS2A gene involved in nitric oxide
production, which is important for cardiovascular and respira-
tory health (Breton et al. 2012; Breton et al. 2014). During
pregnancy, especially in the first trimester, PM2.5 exposure is
linked with global DNA hypomethylation in the placental
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tissue (Janssen et al. 2013). High levels of PM and ozone
exposures are associated with hypermethylation of the
FOXP3 gene in regulatory T cells (Nadeau et al. 2010).
Direct exposure to PM2.5 also induces methylation of the
p16 promoter (a tumor-suppressor gene) in alveolar epithelial
cells as well as in the lungs of mice. The expression level of
DNAmethyltransferase 1 (DNMT1) is reported to be elevated
in PM-exposed patients—this could be a mechanism to induce
methylation in the p16 promoter region (Soberanes et al.
2012). In an attempt to establish a link between childhood
asthma and air pollution, studies have demonstrated that ex-
posure to PM2.5 induces DNA methylation in several CpG
loci of inducible nitric oxide synthase (iNOS) genes, the major
enzyme for nitric oxide production in the airways (Breton
et al. 2012). Another study has shown that short-term expo-
sure to air pollution alters DNA methylation at the promoter
region of the iNOS gene (Salam et al. 2012). All these studies
indicate distinct pathways through which air pollution exerts
its phenotypic expression.

Expressions of many inflammatory and immune response
genes are found to be altered due to DNA methylation linked
with air pollution (Vawda et al. 2014). Air pollution-induced
DNA methylation is often found to be associated with poor
respiratory health outcomes (Rider and Carlsten 2019). Both
short- and long-term exposures to NO2, CO, and PM2.5 lead
to changes in the differentially methylated region (DMR) of
the Foxp3 promoter region and the IL10 intronic region.
These changes are long-lasting and significantly associated
with asthma pathogenesis (Prunicki et al. 2018). The

hypermethylation of interferon-gamma (IFN-γ) in effector
T-cells and Foxp3 in regulatory T-cells has been observed as
an effect of ambient air pollution (Kohli et al. 2012). In an-
other trial, 15 healthy adult participants were exposed to con-
centrated ambient particles (CAPs). Exposure to fine CAPs
reduced Alu methylation, while coarse CAPs reduced Toll-
like receptor-4 (TLR4) methylation—a gene involved in asth-
ma pathogenesis (Bellavia et al. 2013). Among other air pol-
lutants, SO4 has been associated with altered methylation pat-
terns in genes associated with asthma (Sofer et al. 2013). In
addition to DNA repetitive elements, PM exposures alter the
DNA methylation pattern for specific genes, including p53,
p15, p16, APC, RASSF1A, HIC1, iNOS, hTERT, and IL-6,
and such alterations influence the development of diverse dis-
eases. However, each different gene and subfamily of repeti-
tive DNA sequence responds independently to different expo-
sure conditions (Pacchierotti and Spanò 2015).

PAH is also associated with DNA methylation. Neonatal
exposure to PAH causes hypermethylated ACSL3 in the DNA
of the white blood cells of the umbilical cord (Perera et al.
2009). PAHs can also cause a hypermethylation state in the
LINE1 repetitive element (Lee et al. 2017). Airborne benzene
exposure in humans also generates hypomethylation of the
repetitive elements and specific genes (Bollati et al. 2007).
The measurement of Alu and LINE-1 methylation gives an
estimation of the global genomic DNA methylation content.
Global hypomethylation and hypomethylation of transposable
repetitive sequences are associated with reduced chromosom-
al stability and altered gene functions (Lisanti et al. 2013). It is

Fig. 1 Epigenetic alterations in
the mammalian system. (a) DNA
methylation at the DNA bases, (b)
different types of modifications at
the histone tails, and (c)
interference of the non-coding
RNAs (ncRNAs) with the gene
expression process
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possible that DNA methylation makes individuals susceptible
to pollutant exposure. A study has shown that exposure to
various pollutants alters ICAM-1 and VCAM-1 levels in
blood and these effects are dependent on Alu, LINE-1, or
TLR-2 methylation status (Bind et al. 2012).

Exposure to POPs such as DDT, DDE, HCH, chlordane,
mirex, and PCBs also induce altered methylation in Alu and
LINE1 sequences (Rusiecki et al. 2008). In a similar study, a
healthy Korean cohort shows that the blood concentrations of
different organochlorine pesticides are inversely associated
with the Alu methylation level (Kim et al. 2010).
Perfluoroalkyl substances (PFASs), a new class of POPs, are
industrial wastes and have been found to be epigenetically
active. A study has revealed that an increased level of serum
perfluorooctanesulfonate (PFOS) is associated with LINE-1
methylation, while prenatal PFOS exposure could be associ-
ated with the hypomethylation in Alu repeats in cord blood
(Watkins et al. 2014; Liu et al. 2018). Moreover, black carbon
exposure was found to generate hypomethylation in the Alu
region (Madrigano et al. 2011). Only a few studies have re-
vealed the effect of PM10 or PM1 on epigenetic modifica-
tions. A combination of PM10, PM1, zinc, and iron exposures
has been negatively associated with NOS3 methylation, while
only zinc exposure has reduced endothelin-1 (EDN1) methyl-
ation. The reduced NOS3 and EDN1methylation has led to an
increase in the endogenous thrombin potential (ETP), a mea-
surement of global coagulation, thereby providing a mecha-
nism for environmental exposures on coagulation through epi-
genetic modifications (Tarantini et al. 2013). Overall, expo-
sure to diesel exhaust particles (DEP) and other air pollutants
may result in epigenetic changes at repeat elements and spe-
cific candidate genes, which in turn is likely to influence gene
expression levels and contribute to disease pathogenesis. All
these observations suggest that changes in the methylation
pattern could be diverse and depend on several factors like
the duration and length of exposure, co-exposure, targets,
route of exposure, and the genetic makeup of hosts. Further
investigations are required to establish a direct correlation be-
tween methylation patterns and specific pollutants.

Air pollution and histones

The effect of air pollution on histone modification is well
established. However, measurement of histone modifications
due to air pollution in large population studies remains unex-
plored. One study shows that inhaled nickel, arsenic, and iron
are associated with increased histone3-lysine4 dimethylation
(H3K4Me2) and histone3-lysine9 acetylation (H3K9Ac) on
histones from blood leukocytes (Martinez-Zamudio and Ha
2011). PAH exposure also induces histone modifications in
mice—for instance, exposure to benzo[a]pyrene (BaP), a type
of PAH, decreases the acetylation of H3K14 in the steroido-
genic acute regulatory protein (StAR) gene promoter, which is

important for testosterone production (Liang et al. 2012). BaP
exposure to HeLa cells generates H3K4Me3 and H3K9Ac
modifications along with a reduced association of DNMT1
with the LINE-1 promoter. Cytosine methylation within the
CpG island of the LINE-1 promoter is also reported to be
reduced (Teneng et al. 2011). A knockout mice study shows
that Sirt1, a member of class III histone deacetylase, can con-
trol the adverse effect of PM exposure on cardiopulmonary
functions through the regulation of inflammation/coagulation
responses in lungs following the exposure (Wu et al. 2012).
Cigarette smoke exposure is also associated with an increased
expression level of DNMT1 and a decreased level of
DNMT3B (Xiao et al. 2015; Liu et al. 2007). Another study
reveals that cigarette smoke exposure decreases histone
deacetylase (HADC) activity and reduces HDAC1, HDAC2,
and HDAC3 expressions in macrophages, thereby leading to
an inflammatory response generation (Yang et al. 2006).
Exposures to PM10 and DEP may cause an imbalance be-
tween histone acetyletransferase (HAT) and HDAC expres-
sion levels, as well as increase histone H4 acetylation in the
promoter region of the specific genes, thereby generating in-
flammatory responses in human bronchial epithelial (HBE)
cells (Gilmour et al. 2003; Cao et al. 2007).

Air pollution and miRNA

It is controversial whether to include miRNAs as an epigenetic
mark. Almost two-thirds of the human genes are regulated by
miRNAs and are thought to play a critical role in mediating
biological responses to air pollution (Jardim 2011;
Tomankova et al. 2011). In one study, human airway epithe-
lial cells had been incubated with DEP and the miRNA ex-
pression profile was determined using miRNA microarray
technique. In total, 197 miRNAs were found to be down or
upregulated in response to the exposure, and a few among
them involved in inflammatory and tumorigenic processes
(Jardim et al. 2009). Exposure to PM also alters miRNA ex-
pression levels in the microvesicles derived from A549 alve-
olar cells and from the plasma of healthy steel plant workers
(Bollati et al. 2015). These PM-induced changes often impose
the risk of cardiovascular diseases. Literatures showing an
association between ambient air pollution and miRNA is
emerging. A small change in a single miRNA has the potential
to influence a large number of genes working on its down-
stream mechanism (Catalanotto et al. 2016).

It is to be noted that miRNAs are involved in important
cellular functions such as cell growth, differentiation, devel-
opment, apoptosis, and metabolism. Dysregulations in
miRNA expression are associated with diverse diseases in-
cluding cancers (Mahmoud et al. 2021). A recent study has
shown that a total of 25 miRNAs are deregulated in lung
cancer as well as associated with air pollution exposure. It
was suggested that miR-222, miR-21, miR-126-3p, miR-
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155, and miR-425may serve as biomarkers for the assessment
of risk factors for lung cancer in individuals who have been
exposed to air pollution (Sima et al. 2021). Besides various
types of cancers, miRNAs are also deregulated in different
diseases such as stroke, Alzheimer’s disease, Parkinson’s dis-
ease, and multiple sclerosis (Mahmoud et al. 2021). All these
diseases are also associated with air pollution (Kasdagli et al.
2019; Esmaeil Mousavi et al. 2017; Wu et al. 2017b). The
presence of miRNAs in body fluids such as urine and serum
as well as in tissues makes them suitable candidates for devel-
oping disease biomarkers.

Air pollution and non-coding RNA

Only a small number of known lncRNAs have been function-
ally characterized so far. lncRNAs are already emerging as
potential regulators of air pollution-associated diseases
(Karlsson and Baccarelli 2016). A recent work has shown that
cigarette smoke extracts and PM2.5 treatment alter the expres-
sion level of a particular lncRNA, lung cancer progression-
association transcript 1 (LCPAT1), in lung cancer cells and
knockdown of LCPAT1 impairs the effect of treatment (Lin
et al. 2018). An experiment reveals that lncRNA
LOC101927514 is linked with the PM2.5-induced inflamma-
tion in bronchial 16HBE cells that are used as a respiratory
inflammation model. RNAi inhibition of lncRNA
LOC101927514 reduces inflammation induced by PM2.5.
Moreover, lncRNA LOC101927514 binds with STAT3, a
protein which is known to influence the inflammatory state
of the cells. This indicates the possibility that lncRNA
LOC101927514 could be a potential target for the treatment
of PM2.5-induced respiratory inflammation (Tan et al. 2020).
In another study, more than 500 lncRNAs have shown altered
expression levels in rat embryos exposed to air pollution.
Gene ontology (GO) and Kyoto encyclopedia of genes and
genomes (KEGG) pathway enrichment analyses of the
deregulated lncRNAs indicate their involvement in neurolog-
ical processes and congenital defects (Li et al. 2019). Smoking
is another common risk factor for many diseases like COPD,
asthma, lung cancer, and cardiovascular diseases; it influences
the expression of lncRNAs in lung tissues (Wang et al. 2017).
GO and KEGG pathway analysis show that these lncRNAs
are linked with the pathways involved in the pathogenic pro-
cesses of COPD (Zhang et al. 2018a). Another lncRNA,
MALAT1 is involved in cigarette smoke extract-induced ma-
lignant changes in HBE cells (Ji et al. 2003).

lncRNA can influence miRNA expressions. In many cases,
the crosstalk between lncRNAs and miRNAs are important
regulators of gene expression. Sometimes intragenic miRNA
sequences are embedded within lncRNA sequences, thus sug-
gesting a post-transcriptional regulatory role of lncRNAs in
miRNA regulations (Dykes and Emanueli 2017). These find-
ings suggest that lncRNAs may function as novel biomarkers

of environmental exposure—they are involved in interactions
with various environmental factors and can regulate many
cellular processes, thereby influencing disease pathogenesis
associated with air pollution.

Air pollution and transgenerational epigenetic
inheritance

Epigenetic changes may persist through several cell cycles or
may get transmitted to subsequent generations without
impacting the underlying DNA sequences (Henikoff and
Greally 2016). Transgenerational epigenetic inheritance deals
with epigenetic marks—i.e. DNA methylation, histone modi-
fications, and non-coding RNAs—that are acquired in one
generation and get stably transferred to the next generation
through the gametes (Trerotola et al. 2015; Blake and
Watson 2016). Transgenerational epigenetic inheritance is
not a very common phenomenon. However, epigenetic chang-
es can be inherited when they occur in gametes and are not
completely erased due to reprogramming (Wei et al. 2015).
Tumor-suppressor mismatch repair genes MLH1 and MSH2
are examples where epimutations are inherited through the
germ lines (Hitchins et al. 2007; Chan et al. 2006).
Imprinted genes provide another example of epigenetic inher-
itance. Generally, there are two functional copies (alleles) for
each gene—one inherited from the mother and another from
the father. One copy of the alleles which is heavily methylated
is called the imprinted gene and it remains transcriptionally
silenced (Barlow and Bartolomei 2014). miRNA is a regula-
tory molecule for gene expression in response to environmen-
tal stimuli, and such changes in miRNA expression may alter
the gene expression so as to influence the gene expression
even in the future generations.

It has been found that 5-methylcytosine (5mC) is the pre-
dominant DNA methylation in mammals. Methylation marks
could be inherited if they are mitotically and meiotically stable
and are capable to avoid epigenetic reprogramming in primor-
dial germ cells as well as postfertilization embryos (Stenz et al.
2018). Recently, it has been thought that histone modifica-
tions and their regulatory enzymes can transfer the epigenetic
signatures across generations. In C. elegans, histone3-
lysine27 trimethylation (H3K27me3) marks can transfer the
memory of repressing X-chromosome transgenerationally
(Gaydos et al. 2014). The role of non-coding RNAs in
transgenerational epigenetic inheritance is currently being
researched (Larriba and del Mazo 2016).

In Table 1, we have summarised the connection between
various air-pollutants, subsequent epigenetic modifications,
and different disease risks. A few pollutants are associated
with immunemodulation through epigenetic changes and thus
could play as a risk factor for HP development. It would be
interesting to study whether there is direct correlation between
HP development and exposure to those pollutants.
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Table 1 Diverse disease risks due to air pollution-mediated epigenetic changes

Air pollutants Epigenetic mark Diseases/Symptoms References

1 PM2.5 Promoter methylation of the tumor suppressor p16
gene

Lung cancer Soberanes et al. 2012

2 PM2.5 SOX2 promoter hypermethylation Lung Cancer Tantoh et al. 2019

3 PM2.5 miRNA mediated deregulation in gene expression
.

Lung Cancer Ning et al. 2019

4 PM2.5 H3K27ac (histone 3 lysine 27 acetylation) Inflammatory responses Liu et al. 2015

5 PM2.5 Alterations in LINE-1 methylation, methylation at
CpG loci of TNF-α

Inflammation Wang et al. 2020a

6 PM2.5 Altered global DNA methylation, P16 gene
promoter methylation, and DNMT activity,
altered post-translational histone modification.

COPD Leclercq et al. 2017

7 PM2.5 Mitochondrial DNA methylation Heart rate variability Byun et al. 2016

8 PM2.5 miRNA Cardiovascular diseases Chen et al. 2018

9 PM 2.5 Methylation at candidate CpGs in monocytes Atherosclerosis Chi et al. 2016

10 PM 2.5 Genome-wide DNA methylation Cardiometabolic diseases Li et al. 2018a

11 PM 2.5 ICAM-1 promoter methylation Glucose dysregulation Peng et al. 2016

12 PM2.5 Regulation of extracellular vesicle-enriched
miRNA (evmiRNAs) expression by DNA
methylation

Altered systolic blood
pressure

Rodosthenous et al.
2018

13 PM2.5 Altered methylation in clock genes (CRY1,
CRY2, NPAS2 )

Ischemic stroke Cantone et al. 2020

14 Prenatal exposure to PM2.5 Cord blood DNA methylation of IGF2/H19 gene Disease risk in later life Wang et al. 2020b

15 Prenatal exposure to PM2.5 Lower expression levels of the miR-17/92 cluster
in cord blood

Cancer risk, disease
predisposition in later
life

Tsamou et al. 2020

16 PM2.5, metals from traffic sources (Cd,
Fe, Mn, and Ni)

DNA methylation in imprinted control
regions(L3MBTL1, NNAT, PEG10, GNAS
Ex1A, MCTS2, SNURF/SNRPN, IGF2R, and
RB1)

Risk associated with
non-small cell lung
cancer, glioma, and
bladder cancer

Liang et al. 2021

17 PM2.5 and PM10 Hypomethylation of tandem repeats SATα Inflammation Guo et al. 2014

18 Ambient air pollutant: PM2.5, PM10,
PAH, O3

Hypermethylation of Foxp3 locus Asthma Janssen et al. 2013

19 PM2.5, NOx CpG-methylation, DMRs in circulating
monocytes

Atherosclerosis
pathogenesis

C Chi et al. 2021

20 PM2.5, NO2 DNA methylation on cytosine-phosphate-guanine
(CpG) sites and differentially methylated
regions (DMRs).

Inflammation and
immune responses

Eze et al. 2020

21 Traffic-related air pollution (TRAP) –
PM2.5, PM10, NO2 and SO2

DNA methylation and histone H3K9 acetylation Respiratory disorders Ding et al. 2017

22 Exposure to PM2.5, PM10 during
pregnancy

DNA methylation on CpG sites and on
differentially methylated regions (DMRs)

Respiratory health Gruzieva et al. 2019

23 Ambient air pollutants: PM2.5, PM10,
SO2, NO2, CO.

Genome-wide analysis of differential DNA
methylation

Pulmonary disorders and
cancers

Wang et al. 2020c

24 Traffic-related pollutants: PM2.5, black
carbon, NO2, CO

LINE-1, Alu, and gene-specific DNA methylation
tissue factor (F3), Toll-Like Receptor 2
(TLR-2), and ICAM-1)

Cardiovascular disease Lisanti et al. 2013

25 Prenatal exposures to PM2.5, PM10 Altered DNA methylation in specific gene
promoters

Childhood
cardio-respiratory
health

Breton et al. 2016

26 Prenatal exposures to PM2.5, PM10 Placental global DNA methylation Placental adaptation at
the level of global
DNA methylation

Maghbooli et al. 2018

27 PM10 microRNA-101 Blood pressure Motta et al. 2016

28 PM10 (most abundant elements: Al, Fe,
water soluble organic fraction)

Alterations in DNA methylation in macrophages Inflammation Miousse et al. 2014

29 Iron-rich combustion- and friction-derived
nanoparticles (CFDNPs) that are

Lower H3K9me2/me3 and higher γ-H2A.X Alzheimer's disease (AD) Calderón-Garcidueñas
et al. 2020
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Table 1 (continued)

Air pollutants Epigenetic mark Diseases/Symptoms References

abundantly present in airborne
particulate matter

30 Airborne PM and PM metallic
components

Extracellular vesicle (EV) miRNAs Inflammation and
coagulation

Pavanello et al. 2016

31 Ambient ultrafine particles (UFP,
diameter Dp < 0.18 μm)

Noncoding RNAs Neurodevelopmental and
neurodegenerative
disorders

Solaimani et al. 2017

32 Ozone (O3) miRNAs, namely miR-132, miR-143, miR-145,
miR-199a*, miR-199b-5p, miR-222, miR-223,
miR-25, miR-424, and miR-582-5p

Inflammatory diseases Fry et al. 2014

33 Ozone (O3) DNA methylation of the apelin gene Pulmonary edema Miller et al. 2018

34 Traffic-related air pollution (TRAP) Nasal DNA methylation Childhood asthma Zhang et al. 2018b

35 Traffic-related air pollution Differentially methylated CpG positions (DMPs)
and differentially methylated regions (DMRs)

Asthma severity Zhu et al. 2021

36 Diesel exhaust particles (DEP) from traffic
and house dust mite (HDM)

Changes in 5-methyl-cytosine (5mC) and
5-hydroxy-methylcytosine (5hmC) in the
regulatory regions associated with transcription
factors in airway epithelial cells

Airway diseases, asthma Zhang et al. 2018a,
2018b, 2018c (July)

37 Diesel Exhaust (DE) CpG site methylation Allergic disease Clifford et al. 2017

38 Diesel Exhaust (DE) CysLT-related gene methylation Asthma, poor lung
function

Rabinovitch et al. 2021

39 Diesel Exhaust (DE) CpG site methylation, DMRs in bronchial
epithelial cells

Pulmonary pathologies Cardenas et al. 2021

40 Gestational exposure to Diesel Exhaust
(DE)

DNA methylation in global regulatory regions Cardiac hypertrophy,
fibrosis and
susceptibility to heart
failure

Goodson et al. 2019

41 Polycyclic aromatic hydrocarbons (PAHs) Methylation in the FOXP3 locus Asthma, allergic rhinitis Hew et al. 2015

42 PAH Higher expression of let-7a, miR-146a-5p, and
miR-155-5p and lower expression of IL-6,
CXCL8, and TLR2 mRNAs

Inflammation Li et al. 2020

43 PAH, Nitro-PAH, PM2.5 Promoter methylation of CDKN2A, APC, and
MLH1 genes and hypomethylation of the
LINE-1

Cancer risk Silva et al. 2019

44 Phenanthrene (Phe) CpG island methylation of FOXP3 gene Atopic conditions Liu et al. 2013

45 Coke oven emissions (COE), PAHs Hypomethylation of LINE-1 and AhRR gene Lung cancer Yang et al. 2018

46 Air pollutants Histone modifications (H3K9ac, H3K9me3,
H3K27me3, and H3K36me3)

Blood pressure Kresovich et al. 2017

47 Air pollution Methylenetetrahydrofolate reductase (MTHFR)
C677T polymorphism

Alzheimer’s disease
(AD)

Wu et al. 2017b

48 Environmental tobacco smoke Alteration in gene-specific and global DNA
methylation

Allergic asthma Christensen et al. 2017

49 Tobacco smoke exposure CD14 methylation Allergic diseases Munthe-Kaas et al.
2012

50 Environmental tobacco smoke Alterations in methylation pattern of IFN-γ and
Thy-1 promoters

Respiratory diseases Cole et al. 2017

51 Prenatal exposure to tobacco smoke Alterations in DNA methylation of LINE1 and
AluYb8. Changes in the methylation on CpGs
in the promoter region of AXL and PTPRO
genes.

Disease risk in later life Breton et al. 2009

52 Cigarette smoke Hypomethylation on the glutamate-cysteine ligase
catalytic subunit (GCLC) gene

COPD Cheng et al. 2016

53 Cigarette smoke CpG methylation Of gene AIRE, PENK and
SLC6A3

Non-small cell lung
cancer

Ma et al. 2019

54 Cigarette smoke DNA methylation in white blood cells Cardiovascular diseases Chatziioannou et al.
2017

55 Cigarette smoke DNA methylation Schizophrenia Ma et al. 2020
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Air pollution and epigenetic modifications
in hypersensitivity pneumonitis (HP)

Airborne pollutants have adverse effects in the lungs. Recent
studies find an association between air pollution exposure and
increased incidence of poor lung function and mortality in
interstitial lung diseases (ILDs) (Johannson et al. 2015). In
idiopathic pulmonary fibrosis (IPF), air pollution is associated
with increased incidence and harmful effects on health (Harari
et al. 2020). ILDs comprise an array of heterogeneous paren-
chymal lung diseases that occur due to fibrosis and inflamma-
tion of lung parenchyma. Considerable heterogeneity exists
among ILDs, depending on a variety of causative agents,
while in some cases the cause is unknown and therefore the
disease is classified as idiopathic. Prevalence of ILDs depends
largely on geographical locations and incumbent environmen-
tal conditions. IPF, sarcoidosis, and HP are the most regularly
observed disorders amongst ILDs (Kalchiem-Dekel et al.
2018). According to data from Indian registry, HP accounts
for 47.3% of all ILD cases and is the most frequent type of
ILD in India. HP, also known as extrinsic allergic alveolitis
(EAA), is a heterogeneous and immunologically-mediated
lung disease. It results from the inhalation of certain organic
substances of animal or plant origin and inorganic substances
like low molecular weight chemical isocyanates. The most
prevalent forms of HP are farmer’s lung disease, developed
from bacterial and fungal exposure, and bird fancier’s lung
that occur due to the inhalation of avian antigen found in bird
droppings. Interestingly, the inhaled offending antigen does
not induce the disease in every exposed individual. It is re-
ported that nearly 5–10% of the exposed individuals will de-
velop HP. Prevalence of chemical worker's lung is only 1–
4.7% of the isocyanate-exposed workers, while farmer's lung
is reported to have developed in 1–19% of the mouldy hay-
exposed individual. It is also estimated that only about 6–20%

of the avian antigen-exposed people develop bird fancier's
lung. Such variations in disease incidence can be traced to
the presence of predisposed genetic and epigenetic factors.
Individuals who are genetically susceptible (first hit) develop
HP when exposed to an inciting antigen (second hit). The
second hit—i.e. the exposure to causative antigen—alone can-
not induce HP development (Spagnolo et al. 2015). A recent
study has indicated an association between air pollution level
and HP occurrence in India (Singh et al. 2019). It is apparent
that air pollution could be a risk factor for HP, but how air
pollution could influence HP pathogenesis is largely un-
known. It has been observed that exposure to specific air pol-
lutants leads to inflammation and altered immune responses.
Such exposure is also associated with epigenetic modifica-
tions. Therefore, we hypothesize that air pollution-induced
epigenetic alterations influence immune responses, thereby
making exposed individuals susceptible to the development
of HP. The following section outlines the pathophysiology of
HP in connectionwith epigenetic modifications induced by air
pollution.

Immunopathogenesis of HP

HP is an inflammatory lung disease caused by the inhalation
of organic or inorganic antigens (summarized in Table 2) less
than 5 μm in diameter. According to the ‘two-hit’ hypothesis,
the coexistence of inducing factors, such as antigen and pro-
moting factors like genetic abnormalities or additional envi-
ronmental exposures, may lead to an exaggerated immune
reaction in the lungs and thereby causes inflammation. HP is
characterized by alveolitis, which eventually results in granu-
loma formation and the development of fibrosis. The devel-
opment of fibrosis leads to respiratory insufficiency, and fi-
nally, to the death of the patient (Selman et al. 2012).

Table 1 (continued)

Air pollutants Epigenetic mark Diseases/Symptoms References

56 Indoor air pollution caused by smoky
coals with high benzo(a)pyrene (BaP)
and quartz levels

CDKN2A, DLEC1, CDH1, DAPK, RUNX3,
APC, and WIF1

DNA methylation in the promoter region

Primary non-small cell
lung cancer (NSCLC)

Huang et al. 2018a

57 Biomass smoke miR-126 and miR-155 Cardiovascular diseases Ruiz-Vera et al. 2019

58 Second-hand smoke Altered methylation of major repetitive DNA
elements including LINE L1, IAP LTR and
SINE B1

Lung cancer Tommasi et al. 2012

59 Second-hand smoke DNA methylation of several CpG loci Bladder carcinoma Wilhelm-Benartzi
et al. 2011

60 Second-hand smoke CpG methylation within FOXP3 and IFNγ loci Asthma Runyon et al. 2012

61 Smoke and second-hand smoke Altered methylation of GSTP1, FHIT, and
CDKN2A, SCGB3A1 and BRCA1genes

Breast cancer Callahan et al. 2019
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The pathogenesis of HP is complex and involves both Type
III (immune complex-mediated) and Type IV (T cell-
mediated) hypersensitivity reaction . Several studies have sug-
gested that the alveolitis, (inflammation in alveoli branches)
initiates with almost an exclusive predominance of neutro-
phils, eventually involving lymphocytes and becoming solely
lymphocytic at later stages. The human lung contains approx-
imately 1011 alveolar macrophages which play a major role in
granuloma and fibrosis formation in HP. In the susceptible
individual with repeated exposures, the disease-causing anti-
gen forms an immune complex with the pre-existing antigen-
specific antibody (IgG). This event triggers the activation of
the complement cascade and results in the recruitment of mac-
rophages, neutrophils, and lymphocytes at the site infection to
induce the formation of granuloma (Patel et al. 2001). These
immune cells also secrete several molecular mediators that
induce the migration and stimulation of fibroblast to induce
fibrosis. It is reported that chronic forms of HP are regulated
by the T cells. Analyses of the bronchoalveolar lavage fluid
(BALF) of chronic HP patients have suggested an involve-
ment of Th2 T cells with a higher CD4+ / CD8+ ratio and a
concomitant reduction in the number of γδT cells in disease
development (Caillaud et al. 2012; Simonian et al. 2009). It is
likely that the CD4 to CD8 ratio varies according to the type of
the inhaled antigen. Activation of alveolar macrophages in the
acute and sub-acute phases also promotes CD8+ T cells accu-
mulation, granuloma formation, and subsequent development
of fibrosis. Natural killer cells are also reported to be involved
in HP pathogenesis (Korosec et al. 2007). Various reports
have demonstrated that Th1 cytokine plays an essential role
in disease pathogenesis (Barrera et al. 2008). The induction
and perpetuation of the inflammatory responses in HP, includ-
ing the recruitment of the different inflammatory cells, are
mediated by a myriad of cytokines and chemokines. The path-
ophysiology of HP is not dependent on any one component of
cellular immunity, but it is developed due to a multimodal

interaction between these components, each of which may
play a crucial role in disease progression.

Neutrophils are the body’s first line of defence against for-
eign bodies and plays a crucial role in inflammatory diseases
like HP. After inhalation of the causative antigen, neutrophils
accumulate in the alveoli and small airways of the lungs.
Upon stimulation, neutrophils secrete various cytokines that
are implicated in the pathogenesis of HP (Pardo et al. 2000).
The secretion of IFN β, IL-10, and IL-6 by neutrophil is reg-
ulated by epigenetic modifications. The binding of two tran-
scription factors, PU.1 and C/EBPβ, favours activation of the
transcription of these three cytokines (Ostuni et al. 2016).
Additionally, the matrix metalloproteinases (MMPs),
collagenase-2 (MMP 8), and gelatinase B (MMP 2) produced
by neutrophils are also reported to play a key role in the dis-
ease progression (Pardo et al. 2000). An epigenetic study on
MMP2 reveals that its expression is dominated by DNA and
histone modifications (Santiago-Ruiz et al. 2019). Patients
with chronic HP have an increase of neutrophils loaded with
MMP8 and MMP9, and many studies show that the expres-
sions ofMMPs are regulated by histone and DNAmethylation
(Campos et al. 2016).

Macrophages are predominantly involved in granuloma
formation in HP (Suga et al. 1997). The lncRNA MEG3-4
has been identified as a tissue-specific regulator of inflamma-
tory responses in alveolar macrophages during bacterial infec-
tion through the transcriptional regulation of immune re-
sponse genes. It has been confirmed that the lncRNA
MEG3-4 binds to the microRNA miR-138 in a competitive
manner, with mRNA encoding the proinflammatory cytokine
IL-1β, thereby increasing the abundance of IL-1β and en-
hancing the inflammatory response to bacterial infection in
alveolar macrophages (Li et al. 2018b). A recent study on
epigenome analysis has revealed that DNA methylation is
involved during macrophage differentiation by changing the
binding sites of transcription factors (Dekkers et al. 2019). T

Table 2 Common HP-inducing antigens

Name of the Disease Origin Antigen Source of Antigen

1. Farmer’s lung Bacterial Micropolyspora faeni,
Thermoactinomyces vulgaris

Moldy hay

2. Summer-type HP Fungal Penicillium frequentans Contaminated old houses

3. Hot tub lung Mycobacterial Mycobacterium avium complex
(MAC), composed of M. avium and
M. intracellularss

Contaminated water

4. Bird fancier’s lung Animal fur protein Avian proteins Feather bloom, avian serum(pigeons,
chicken, turkey, goose, avian
proteins),
and excrement (mainly due to pigeon
intestinal mucin)

5. Chemical worker’s
lung

Low-molecular weight
chemicals

Diisocyanates, trimellitic anhydride Polyurethane foams, spray paints, dyes,
glues
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cells are also considered to be important regulators of HP
development (Simonian et al. 2009). Epigenome maps com-
bined with mechanistic studies, have demonstrated that T cells
undergo extensive epigenome remodelling in response to sig-
nals, which has a strong effect on phenotypic stability and
function of the lymphocytes (Schmidl et al. 2018).
Moreover, it was shown that the second-hand smoke and am-
bient air pollution, which deteriorate respiratory health, were
associated with DNA hypermethylation and a decreased ex-
pression of IFN-γ and Foxp3 in T cells population (Runyon
et al. 2012).

External influence on HP development

Recently, Singh et al. have reported that ambient air pollution
is a promoting factor in the development of HP. The study
demonstrates that the odds of developing HP is 7% greater for
every 10 μg/m3 increase in air pollution (PM2.5 level). The
authors hypothesize that fine-particulate air pollutants lead to
airway inflammation, reduce mucociliary clearance in the al-
veoli, and lead to an immune-mediated response that ultimate-
ly leads to the development of HP (Singh et al. 2019). It is
apparent that more rigorous studies are necessary to establish
this hypothesis. It is evident from the ‘Table 1’ that exposures
to PM2.5, PM10, NO2, SO2, CO, and O3 were found to be
associated with epigenetic changes like alteration in LINE-1
methylation, methylation on CpG sites of many immunoreg-
ulatory genes, histone modifications, and miRNA regulations.
These epigenetic changes were again associated with inflam-
mation and poor respiratory health. Therefore, exposure to
those pollutants may alter immune responses, which could
influence HP development. Moreover, HP pathogenesis in-
volves many components of our immune systems that are
under epigenetic regulations (Fernández-Morera et al. 2010).
Wu et al. have reported methylation of EBF3 gene in periph-
eral blood samples of a Turkic ethnic group (Uygurs) with
bird fancier’s lung. The authors hypothesized that EBF3 hy-
pomethylation might be associated with IL 10 dysregulation
in HP subjects (Wu et al. 2018). In another study on Chinese
Uygur population by the same group, methylation of the gene
Smad3 is reported. Smad 3 protein is one of the key players in
the formation of fibrosis; it is likely that Smad3 gene hypo-
methylation promotes pulmonary fibrosis by increasing
Smad3 mRNA expression (Wu et al. 2017a).

Diagnosis and effective management of HP often pose to
be a challenge to the pulmonologists. HP is curable if diag-
nosed correctly in its early stages, i.e. before occurrence of
irreversible lung damage. The prognosis of HP is not depen-
dent only on the dose and duration of exposure to the causa-
tive agents; the genetic and environmental factors also play a
major role in disease pathogenesis. Recent studies have shown
that HP development is associated with ambient air pollution,
which is known to be linked with inflammation and other lung

diseases. An understanding of epigenetic alterations associat-
ed with air pollution has emerged in recent times and in many
cases, such alterations are associated with diverse diseases
including ILDs (Fig. 2).

Future perspective: development of risk
assessment biomarkers

Epigenetic signatures reflect changes in the cellular environ-
ment and can also be found in the human circulatory system in
case of several diseases (Ladd-Acosta 2015; Bhargava et al.
2018a). These signatures seem promising and can be explored
to identify robust biomarkers to monitor clinical outcomes as
well as early detection of diseases. An ideal biomarker should
show a high degree of specificity and sensitivity and ease of
measurement; it should also be capable of detecting a disease
in its early stage (Byrnes and Weigl 2018). Although the plas-
ticity of the human epigenome makes it difficult to establish
true epigenetic marks for a particular condition, diverse dis-
eases show alterations in their epigenetic signatures. A recent
study reports that epigenetic alterations take place even on
seasonality and weather influence (Ricceri et al. 2014; Xu
et al. 2020). A significant number of studies have been con-
ducted to understand the epigenome during cancer. The
cancer-specific hypermethylation of CpG islands shows clin-
ical importance (Jin et al. 2011;Wilhelm-Benartzi et al. 2011).
Epigenetic marks, which are established as an effect of air
pollution, can also be used as biomarkers for risk assessments
for diseases associated with air pollution.

Methylation in DNA sequences has several advantages.
DNA is a relatively stable molecule. It can be collected from
a large number of sources and stored for a long time after
being collected from patients. Moreover, DNA methylation
is a widespread change throughout the cancer genome and
hence many points in the genome can be used for the assay
to generate highly predictive models (Huang et al. 2018a,
2018b; Tommasi et al. 2012). Sophisticated techniques such
as methylation-specific PCR (MSP), mass spectrometry-
based methylation detection (EpiTYPER), MethyLight, and
pyrosequencingetc, allow determination of the methylation
state of a specific DNA location even from aminimum sample
volume (Olkhov-Mitsel and Bapat 2012). This makes it fea-
sible to evaluate the diagnostic and prognostic potential of the
methylation state of a large number of DNA sequences for
many cancer types. The Cancer Genome Atlas project
(TCGA) provides a platform for information regarding DNA
methylation changes in cancers (Lee 2016). A case control
study in 2008 utilized a series of methylated genes to predict
disease recurrence after surgery in Stage I lung cancer pa-
tients. The promoter hypermethylation of just four genes—
CDH13, RASSF1A, APC, and CDKN2A (p16) was reported
to predict tumor recurrence, thus establishing a link between
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genemethylation and tumor recurrence in lung cancer patients
(Brock et al. 2008). This study established that the epigenetic
status of tumors plays a critical role in clinical outcomes as
well as in determining the aggressiveness of tumor develop-
ment. MGMT (O6-methylguanine-DNA methyltransferase)-
promoter methylation has been used to determine the treat-
ment response among patients with glioblastoma (Butler
et al. 2020). MGMT is a DNA-repair enzyme, and the effi-
ciency of DNA repair in cancer cells plays an important role in
therapeutic resistance. Thus, MGMT inactivation can sensi-
tize such cells to therapeutic drugs (Verbeek et al. 2008).
Many other epigenetic changes have started to emerge as pre-
dictive markers for the response to chemotherapy. BRCA1
hypermethylation is common in breast and ovarian cancers
(Esteller et al. 2000). It has been found that BRCA1 methyl-
ation status can predict chemosensitivity and treatment re-
sponse to cisplatin (Stefansson et al. 2012). The methylation
of GSTP1 and MLH1 also predicts therapeutic outcomes in
many cancer types (Shivapurkar and Gazdar 2010). Another
oncogene, KRAS is itself capable of mediating epigenetic
alterations, which are essential for cell transformation.
KRAS has been found to promote DNA methylation by facil-
itating the recruitment of DNMT1 in the promoter regions of

the specific genes (Serra et al. 2014). In H-Ras-transformed rat
fibroblasts, MMP2 and clusterin gene expressions are sup-
pressed by promoter DNA hypermethylation (Lund et al.
2006).

Aberrant histone modifications can also be utilized as pre-
dictive biomarkers to evaluate the progression and treatment
outcomes in cancers. A significant number of proteins that
regulate histone modifications are themselves mutated in tu-
mors. The polycomb group protein Enhancer of Zeste 2
(EZH2) acts as a critical regulator in prostate cancer develop-
ment. EZH2 is involved in chromatin silencing by methylat-
ing histone3 on lysine27 (H3K27me3). EZH2 has been found
to be overexpressed in metastatic prostate cancer, and tumors
that express a higher level of EZH2 are associated with poorer
prognosis (Gan et al. 2018; Liu et al. 2019). In addition, EZH2
overexpression has shown poor clinical outcomes in other
cancers such as esophageal cancer, breast cancer, head and
neck cancer, and glioblastoma (He et al. 2010). Lysine-
specific demethylase 1 (LSD1) is another histone-modifying
protein, which is linked with cancer development. LSD-1
removes the mono- and di-methyl groups from H3K4 and
functions as a transcriptional repressor (Majello et al. 2019).
The role of LSD1 in breast cancer has not been clearly

Fig. 2 Mechanism showing HP development by increasing host
susceptibility through air pollution exposure. a) Emission of industrial
and traffic-related air pollution. Pollutants reach the alveolar spaces in
the lungs and induce epigene t ic changes in the lungs ’
microenvironment, thereby influencing host susceptibility to disease
development. b) The interaction between the causative antigen
deposited in alveolar spaces and the circulating IgG antibody forms
precipitating antigen-antibody immune complexes in interstitial spaces.

Immune complexes trigger activation of both complement and
pulmonary macrophages. Activated macrophages secrete the cytokines
IL-1 and TNF-a that promote adhesion of leukocytes to activated
endothelium. Complement activation enhances vascular permeability
and attracts inflammatory cells. As a consequence of recruitment and
activation, inflammatory cells release toxic mediators that promote
acute lung injury, which eventually leads to HP development

55993Environ Sci Pollut Res (2021) 28:55981–56002



established. A study has shown that inactivation of LSD1 by
both genetic and pharmacological approaches leads to aggres-
siveness in luminal breast cancer, while another study shows
that LDS1 mediates chemoresistance in the disease (Verigos
et al. 2019; Hu et al. 2019).

Bioinformatics, as a new emerging discipline, combines
mathematics, information science, and biology and helps an-
swer biological questions. There are several bioinformatics
tools for DNA methylation analyses, but only a few platforms
can correlate DNA methylation and gene expression for cus-
tomized analyses. Several bioinformatics tools like COHCAP
(Warden et al. 2013), PiiL tool (Moghadam et al. 2017),
ViewBS (Huang et al. 2018a, 2018b), correlate DNA methyl-
ation with gene expression. MethHC databases can also be
utilized to visualize DNA methylation and gene expression
on a web platform (Huang et al. 2015). MethGET is another
web-based bioinformatics platform that correlates genome-
wide DNA methylation and gene expression (Teng et al.
2020). The Gene-Ontology (GO) database provides a useful
tool to analyse the functions of all dysregulated genes (Harris
et al. 2004). Database for Annotation, Visualization, and
Integrated Discovery (DAVID) is another online bioinformat-
ics tool that provide biological meaning behind gene profile
(Dennis Jr et al. 2003). In addition to that, Reactome also
provides intuitive bioinformatics tools for visualisation, inter-
pretation and analysis of pathways associated with genes
(Fabregat et al. 2017).

We anticipate that this review will provoke further investi-
gation on the potential association between HP and air pollu-
tion, considering epigenetic modifications as a potential threat
by which air pollution exerts its effect on disease develop-
ment. It would be useful to identify a set of predictive bio-
markers to assess the risk factors for the development and
progression of the diseases associated with air pollution.
However, in this review article we did not explore whether
air pollution directly affects our genome by generating novel
mutation, deletion, DNA breakage or chromosomal aberra-
tions. We also did not discuss the genetic and immunological
basis of HP development, although it could be crucial to un-
derstand the impact of air pollution in disease pathogenesis
and may lead to the development of novel biomarkers to as-
sess the risk of HP development due to air pollution.

Conclusion

The adverse effect of air pollution on our health is a matter of
increasing concern. PM and other chemicals associated with
air pollution pose various disease risks through both genetic
and epigenetic alterations. Although the link between environ-
mental exposure and disease risk due to epigenetic modifica-
tions is clearly established, little is known about the signaling
pathways that connect the pollutants to the epigenome. Here

we summarize the air pollutants that are associated with epi-
genetic modifications linked with increasing risk factors for
several diseases. This discussion prompts the question wheth-
er these epigenetic changes could be utilized as risk assess-
ment biomarkers for specific diseases associated with air pol-
lution. Further research may identify more robust epigenetics
marks that are associated a particular disease induced by spe-
cific pollutants. Moreover, such modifications may pass
through several generations and predispose an individual to
disease risks even without any direct exposure. These epige-
netic alterations may serve as biomarkers for disease suscep-
tibility for the next generation.

Recently, it has been indicated that HP is associated with
ambient air pollution. Pollution-mediated epigenetic changes
in HP is yet to be explored. Such changes may sensitize the
immune system, thereby making individuals susceptible to
developing HP when exposed to the causative agents. Future
research may use the findings of this paper to more compre-
hensively understand HP pathogenesis as well as to develop
biomarkers for early detection and disease prognosis.
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