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Abstract
This review summarizes research data on SARS-CoV-2 in water environments. A literature survey was conducted using the
electronic databases Science Direct, Scopus, and Springer. This complete research included and discussed relevant studies that
involve the (1) introduction, (2) definition and features of coronavirus, (2.1) structure and classification, (3) effects on public
health, (4) transmission, (5) detection methods, (6) impact of COVID-19 on the water sector (drinking water, cycle water, surface
water, wastewater), (6.5) wastewater treatment, and (7) future trends. The results show contamination of clean water sources, and
community drinking water is vulnerable. Additionally, there is evidence that sputum, feces, and urine contain SARS-CoV-2,
which can maintain its viability in sewage and the urban-rural water cycle to move towards seawater or freshwater; thus, the risk
associated with contracting COVID-19 from contact with untreated water or inadequately treated wastewater is high. Moreover,
viral loads have been detected in surface water, although the risk is lower for countries that efficiently treat their wastewater.
Further investigation is immediately required to determine the persistence and mobility of SARS-CoV-2 in polluted water and
sewage as well as the possible potential of disease transmission via drinking water. Conventional wastewater treatment systems
have been shown to be effective in removing the virus, which plays an important role in pandemic control. Monitoring of this
virus in water is extremely important as it can provide information on the prevalence and distribution of the COVID-19 pandemic
in different communities as well as possible infection dynamics to prevent future outbreaks.
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Introduction

The new outbreak of COVID-19 has recently been a serious
threat to the health of people around the world. COVID-19 is
produced by SARS-CoV-2, which is a single-stranded,
positive-sense RNA virus that causes infection and respiratory

failure and has led to thousands of deaths (Eslami and Jalili
2020). The current coronavirus pandemic has resulted in huge
impacts worldwide. Coronavirus is estimated to infect up to
70% of the world’s population and kill millions of people. The
main public health strategy for limiting mortality is to reduce
exposure to the virus via physical distancing, which carries
tremendous economic costs (Quinete and Hauser-Davis 2021;
Stookey et al. 2020).

This abrupt epidemic outbreak of coronavirus disease has
currently caused enormous global concerns within the scien-
tific and healthcare community and the general population
alike due to the unavailability of human coronavirus vaccines
and different virus variants or genetic mutations. Infection
with the COVID-19 strain has since spread from Wuhan,
China, to approximately 216 countries and territories around
the world and has been established as a global pandemic
health emergency (Matterne et al. 2020; Kouhsari et al.
2020; Tran et al. 2021). This outbreak is estimated to cause
more than 184 324 026confirmed cases of COVID-19,
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including 3,992,680 deaths (WHO 2021). As of 7th
July 2021, a total of 3,032,056,355 vaccine doses were
administered.

Faced with this problem, the water is one of the most effec-
tive ways to contain the fast-spreading novel coronavirus
(COVID-19), however, increased potable water demand and
the needs of billions of people living in developing countries
that lack access to safe drinkingwater, facilitate the spread of the
virus (Zvobgo and Do 2020). Additionally, the wastewater gen-
erated represents a considerable portion of the water consumed,
its discharge can contain complex pharmaceuticals, antibiotics,
narcotics, radioactive elements, hazardous compounds, and
pathogens (Anayah et al. 2021). Wastewater is an ecologically
rich environment that contains a plethora of pathogens such as
bacteria, fungi, protozoans, toxins, and viruses. Viruses are
emerging pathogens and are able to adapt by mutation, recom-
bination, and reassortment and can thus become able to infect
new hosts and adjust to new environments. Enteric viruses are
among the commonest and most hazardous waterborne patho-
gens, causing both sporadic and outbreak-related illnesses
(Bouseettine et al. 2019). Waterborne enteric viruses, primarily
transmitted via fecal-oral route either via person-to-person or
interaction or the consumption of contaminated water or food,
can pose a serious health hazard to personnel working at waste-
water treatment facilities as well as the surrounding community.
They find their way into wastewater streams from waste,
vomiting, and urine of infected humans as well as animals,
hence enter the wastewater stream via infiltration and inflow.
Waterborne enteric viruses that are commonly found in waste-
water can cause several sporadic cases of diseases and outbreaks
because of water or food contamination. Their detection, quan-
tification, and effective removal from wastewater are of great
importance because their related diseases result in the death of
millions of people across the world, making them a matter of
great concern. Adenoviruses (AdVs), coxsackievirus, poliovi-
ruses, hepatitis (A and E) viruses, rotaviruses, reoviruses,
noroviruses (NoVs), and coronaviruses (including
SARS-CoV-2) are examples of some viruses that can be detect-
ed in wastewater (Ibrahim et al. 2021; Pandey et al. 2021). The
ability of some viruses to travel a much greater distance than
bacteria in the soil and eventually to groundwater sources due to
their sizes and persistence for a considerable period makes their
removal difficult and high risk (Adelodun et al. 2021).
Waterborne pathogens, including SARS-CoV-2, can be re-
leased into the urban-rural water cycle through domestic sew-
age, urban runoff, agricultural runoff, and wastewater dis-
charges. For this reason, efficient management of the
urban-rural water cycle should be considered, as it is essential
to understand the transmission of SARS-CoV-2 through differ-
ent routes before reaching wastewater effluents or surface water
such as oceans, rivers, or lakes.

For this reason, a treatments system for drinking water and
wastewater consisting of different physical and chemical

treatment units can provide multiple barriers to the alleviation
of viruses in water (L. Chen et al. 2021). Abatement of water-
borne viruses at different treatment processes is reviewed be-
low (coagulation, sedimentation, filtration, and disinfection)
for prevention of sewage discharge into freshwater and salt-
water are essential to reduce human exposure to the virus
(Naddeo and Liu 2020; Sharifi and Khavarian-Garmsir 2020).

The epidemics and pandemics should be included among
the natural disasters to which drinking water and wastewater
systems are vulnerable. The services provided by drinking
water and wastewater utilities are critical to protecting public
health, daily life, and economic well-being (Spearing et al.
2020; States 2020; Anayah et al. 2021).

The present review will focus on (a) analyze the character-
istics of SARS-CoV-2 and its effects on public health, (b)
identify the analytical method for SARS-CoV-2 detection
and quantification in water, (c) evaluate the presence of
SARS-CoV-2 in drinking water, natural water, and wastewa-
ter; (d) compare its environmental impact through the key
findings reported by several authors; (e) it will also provide
an overview of the potential transmission risks of this novel
coronavirus and how COVID-19 could spread in water re-
sources; (f) water and wastewater treatment polluted with
SARS-CoV-2. Monitoring effluents from wastewater treat-
ment plants is important to preventing both environmental
contamination and the spread of disease and (g) identify the
main trends in this field that help future research.

Definition and features of coronavirus

SARS-CoV-2 structure and classification

SARS-CoV-2 is a member of an enveloped positive-sense
single-stranded ribonucleic acid (RNA) virus family named
Coronaviridae belonging to the Nidovirales order. It is spher-
ical, has a diameter of approximately 65-125 nm, and has
crown-like spikes on the outer surface (Astuti and Ysrafil
2020). Enveloped proteins are involved in several aspects of
the virus life cycle, such as assembly, envelope formation, and
pathogenesis. Inside the envelope is the helical capsid contain-
ing nucleoprotein and the RNA genome (up to 33.5 kilobases
(kb) genomes) (La Rosa et al., 2020c; Fehr and Perlman
2015). Coronaviridae is divided into two subfamilies:
Coronavirinae and Torovirinae.Coronavirinae is then further
classified into alpha, beta, gamma, and delta coronavirus
(Ullah et al. 2020). Respiratory infection in humans is usually
caused by alpha and beta coronaviruses, which cause mild to
severe lower respiratory tract disease. Several human
coronaviruses. Middle East respiratory syndrome coronavirus
(MERS-CoV), severe acute respiratory syndrome coronavirus
(SARS-CoV), and acute respiratory distress syndrome
(ARDS)) have been identified, and they can be transmitted
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by humans via droplets and contact (Chen et al. 2020; Li et al.
2020). Occasionally, new variants of coronaviruses emerge
due to their genetic diversity, rapid mutation, high prevalence,
and wide distribution (Ullah et al. 2020; Mandal et al. 2020).

Infectious structures of SARS-CoV-2

Coronaviruses usually have a spike (S), envelope (E), mem-
brane (M), and nucleocapsid (N) as structural proteins.
Through the S protein, this virus enters the host cell, and it
is cut up by the host protease into two functional subunits, S1
and S2, which oversee host cell binding and viral-cellular
membrane fusion, respectively. Several CoVs recognize dif-
ferent proteases and entry receptors, where SARS-CoV and
SARS-CoV-2 process their S protein by employing the cellu-
lar serine called protease TMPRSS2 and subsequent interac-
tion with angiotensin-converting enzyme two (ACE2) cellular
receptors (Zhou et al. 2021; Scagnolari et al. 2021). These
viral components can be used for drug therapy against
COVID-19. The pathophysiology of SARS-CoV-2 is not well
understood, but similar to SARS-CoV, viral replication leads
to aggressive inflammation and causes acute lung injury
(Scagnolari et al. 2021).

This virus infects humans and animals, causing hepatic,
gastrointestinal, neurologic, and respiratory illnesses (Ullah
et al. 2020).

The effects of SARS-CoV-2 on public health

Global coronavirus disease 2019 (COVID-19) affects the econ-
omy, environment, people’s livelihoods, and mainly their health
(Rume and Islam 2020). For this reason, several studies have
reported its effects on the physical and mental health of children,
teenagers, young adults, and elderly adults (Di Santo et al. 2020).

Regarding physical health, COVID-19 is a viral respiratory
infection that is easy to spread due to the rapid transmission via
the respiratory tract from person to person (Naser et al. 2020).
Concerning mental health, people with pre-existing mental ill-
ness and substance use disorders will be at increased risk of
infection with COVID-19 (Cullen et al. 2020). From 2020 to
2021, the percentage of total studies on the effects of
COVID-19 was 44% for mental health and 34% for physical
health, while 22% of publications covered both (n = 32
(Banerjee et al. 2020). Table 1 summarizes the effects of
COVID-19 on public health linked to age group for comparison.

SARS-CoV-2 transmission

The main route of transmission of SARS-CoV-2 is either by
direct contact with an infected subject or indirect contact
through a hand-mediated transfer of the virus from

contaminated fomites to the mouth, nose, or eyes or via respi-
ratory droplets generated by breathing, sneezing, coughing,
etc., (La Rosa et al., 2020a), but knowledge about other po-
tential modes of transmission, e.g., fomite-based, vertical, and
fecal-oral transmission, remains sparse (Amirian 2020). The
wastewater plumbing system is believed to have acted as a
potential route of transmission and caused the superspreading
occurrence in Hong Kong due to the transportation of
“virus-laden droplets.” The presence of SARS-CoV-2 nucleic
acids has been reported in raw wastewater, sewage samples
collected from hospitals, and wastewater samples after sec-
ondary treatment (Mandal et al. 2020; Sepúlveda-Loyola
et al. 2020; Amirian 2020; Lapolla et al. 2020; Ahmed et al.
2020a; Cuevas-Ferrando et al. 2021).

Initial transmission

The bat is the largest natural host of the α- and β-
coronaviruses due to its adapted immune system (Kitajima
et al. 2020; Street et al. 2020). COVID-19 clinical
case-isolated coronavirus has a taxonomic homology > 95%
to bat coronavirus (Parthasarathy and Vivekanandan 2021).
There is evidence that human coronaviruses have a zoonotic
origin (Drexler et al. 2014) and that at some point in their
evolution, these viruses became able to infect people.
Figure 1 shows the likely mechanism for starting virus
transmission.

It was thought that the transmission of SARS-CoV-2 was
made possible by the consumption of bats in the food market
of the city of Wuhan, and thus transmission to humans was
possible (Shereen et al. 2020; Adelodun et al. 2020). Some
viruses are easily denatured by the increase in temperature
during the food cooking process between 56 and 60 °C
(Chida et al. 2021), and SARS-CoV-2 has shown a low affin-
ity for the ACE2 receptor, a protein responsible for initiating
the infectious process in human cells, above 40 °C (Shereen
et al. 2020; Chida et al. 2021). Thus, consuming this proc-
essed food could not be the cause of the initial transmission.

The virus developed the ability to use ACE2 as a receptor
in host cells (Street et al. 2020; Wan et al. 2020). This capa-
bility may have been the result of the natural evolution of the
virus or a modification acquired in another intermediate zoo-
notic host (Wan et al. 2020). The chances of coming into
contact with humans are higher and transmission is more
probable (Platto et al. 2020) when you have daily human
contact with the animal host for a long time.

Primary transmission mechanism

Primary transmission occurs from contact with droplets that
are dispersed by the coughing or sneezing of an infected or
asymptomatic individual (Rothan and Byrareddy 2020), and
transmission of the virus occurs by person-person contact,
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which is favored at a distance < 1.5 m (Fig. 1) (Drexler
et al. 2014; Manigandan et al. 2020b). Human and so-
cial proximity increases the transmission of the virus
(Manigandan et al. 2020b).

Primary transmission epithelial cells of the host lung are
infected by the virus through recognition of the membrane pro-
tein ACE2 by the glycoprotein S of SARS-CoV-2 (Rothan and
Byrareddy 2020). The ACE2 protein is expressed primarily in
type II alveolar cells, airway epithelial cells, fibroblasts, endo-
thelial cells, and various immune cells (Belete 2020).

Secondary transmission mechanisms

Surfaces contaminated with drops of body fluids from symp-
tomatic or asymptomatic patients, such as door handles, eleva-
tor buttons, tables, and glasses, become secondary mechanisms
of transmission (Fig. 1) (Shang et al. 2021). Touching surfaces
and tools contaminated with the virus increase the risk of con-
tagion (Manigandan et al. 2020b). Transmission is possible
through the ocular surface, nose, and mouth (Lu et al. 2020).

Medical procedures such as endoscopies or dental treatments
can also be a transmission mechanism (Manigandan et al.
2020b). In these transmission mechanisms, there is no direct
contact with an infected person; therefore, all different means
can be considered secondary mechanisms.

Airborne transmission of SARS-CoV-2 is critical, and this
mechanism has been confirmed. hospital room has been iso-
lated (Fig. 1) (Noorimotlagh et al. 2021).

The SARS-CoV-2 virus has been isolated and identified in
hospital wastewater (Fig. 1) (Gonçalves et al. 2021). The virus
has been identified in fecal excretions, and wastewater from
hospitals and households has a high viral concentration of 104

genomic copies/L (GC/L) (Gholipour et al. 2021).
Contact with SARS-CoV-2 wastewater aerosols may be a

secondary mechanism of transmission (Fig. 1), and these waste-
water aerosols can come into contact with workers in wastewater
treatment plants (Gholipour et al. 2021). Hospitalized patients or
those isolated at home can spread the virus through wastewater.
In countries where wastewater is not treated, the risk of transmis-
sion is greater (Adelodun et al. 2020).

Table 1 Effect of COVID-19 on mental and physical health

Age group Mental health Physical health Author, year

Children (0–12 years) Acute stress disorder, adjustment disorder,
post-traumatic stress disorder, worry, anxiety,
and fear.

- The economic crisis increases stress, violence,
and parental abuse against children.

(Kontoangelos et al. 2020)

Adolescents (13–17
years)

Post-traumatic stress symptoms, depression, low
mood, irritability, insomnia, and anger.
Emotional exhaustion due to reorganization of
family life, fear of death of relatives, massive
stress, and anxiety for the economic crisis.

- Increase in physical and sexualized violence
against adolescents, as well as multiple cases
of self-injurious and suicidal behavior.

- Drug and alcohol abuse has increased during
this pandemic.

(Banerjee et al. 2020;
Kontoangelos et al. 2020)

Young adults (18–35
years)

Depression, stress, and reduced sleep quality.
Indeed, delays in university activities due to
COVID-19 have been correlated with anxiety.
Also, higher panic and fear levels because of
information through social media.

- Symptoms are fever, cough, shortness of breath
or difficulty breathing, chills, fatigue, muscle
pain, headache sore throat, loss of smell or
taste, runny nose, nausea, or diarrhea.

- Most infections are asymptomatic or do not
require hospitalization/treatment. However, a
study shows that young people who
contracted COVID-19 and require hospitali-
zation ended up in intensive care/were placed
on a breathing machine/died. Patients with
multiple risk factors (morbid obesity,
hypertension, and diabetes) faced severe
cases.

(WHO 2020; Fegert et al. 2020;
Clay and Parker 2020)

Middle-aged adults
(36–55 years)

Negative changes in physical activity, sleep,
smoking, and alcohol consumption. Increased
depression, anxiety, distress, irritability,
fearfulness, insomnia, oppositional behaviors,
and somatic complaints. Some levels of panic,
mental health issues, psychotic symptoms,
and even suicide, were reported during the
early severe acute respiratory syndrome
outbreak.

- COVID-19 symptoms include fever, dry cough,
nasal congestion, shortness of breath, fatigue,
diarrhea, and vomiting.

- Some patients, gradually deteriorate, with the
involvement of internal organs such as the
lungs, kidneys, and heart.

- Complications after admission include
secondary infection, acute heart injury, and
acute liver and kidney injury.

(Lekamwasam and
Lekamwasam 2020; Clay and
Parker 2020; Cunningham
et al. 2020; Tarighi et al.
2021;

Older adults (> 55
years)

Anxiety, depression, sleep disturbances, high
levels of psychological stress, and loneliness
were observed during the lockdown by a
coronavirus.

- Clinical symptoms include cough, sputum,
chest tightness, difficulty breathing, fever,
fatigue, nasal congestion, runny nose sick,
vomit, and pneumonia severity index.
Complication after hospitalization: acute
respiratory distress syndrome, acute heart
injury, secondary infections, shock, and death.

- Elderly patients are prone to multi-system organ
dysfunction and even failure, including gas-
trointestinal bleeding, renal failure, DIC, or
deep vein thrombosis.

(Lekamwasam and
Lekamwasam 2020; Feroz
et al. 2020)
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Secondary transmission mechanisms represent an impor-
tant means of contagion, and preventionmeasures should con-
sider containment strategies to combat SARS-CoV-2 disease
by controlling these mechanisms.

Analytical methods for SARS-CoV-2 detection

The recent spread of SARS-CoV-2, exemplifies the critical
need for accurate and rapid diagnostic assays. Since the
WHO provided the diagnostic protocol on January 13, 2020,
clinical and research health laboratories have quickly devel-
oped a series of diagnostic kits for COVID-19 (Vogels et al.
2020; Corman et al. 2020).

The most widely used assay is real-time PCR (RT-PCR)
(Celis et al. 2021). Which is used for the molecular diagnosis
of SARS-CoV-2. Several protocols in laboratories include the
RNA extraction and purification process before RT-PCR as a
necessary step for the measurement of viral RNA loads, as it
isolates genomic RNA from the viral capsid and removes PCR
inhibitors from the original material (Deiana et al. 2020).

RT-PCR proceeds with laboratory conversion of viral ge-
nomic RNA into DNA by RNA-dependent DNA polymerase
(reverse transcriptase), as shown in Fig. 2. This reaction hangs
on small DNA sequence primers designed to recognize com-
plementary sequences on the RNA viral genome and the re-
verse transcriptase to generate a short complementary DNA
copy (cDNA) of the viral RNA.

SARS-CoV-2 detection and COVID-19 diagnosis depend on
RT-qPCR tests, and results are usually reported as positive or
negative. However, the test can also provide a measure of the
viral load in the sample, called a cycle threshold value (Tu and
O’Leary 2020).

The RT-PCR test provides real-time quantification by
reverse transcription of SARS-CoV-2 RNA into DNA,
and after performing PCR, the fluorescence signal in-
creases proportionally to the amount of nucleic acid am-
plified, which allows accurate quantification of RNA in
the sample. If the fluorescence reaches a specified thresh-
old within a certain number of PCR cycles (Ct value), the
sample is considered positive (Manigandan et al. 2020a).
Ct < 40 is considered positive, allowing the detection of
very few starting RNA molecules. The cycle threshold
(Ct) value from the RT–PCR is inversely proportional
(on a logarithmic scale) to viral load; hence, lower Ct
values correspond to higher viral loads (Trang et al. 2015).

SARS-CoV-2 detection in environmental water
samples

One common method is to quantify the amount of viral
RNA in an environmental water sample via RT-qPCR.
This method can measure the number of viral RNA copies
or genomic copies in water samples such as surface water or
wastewater (Rodríguez et al. 2009; Bar-On et al. 2020).
However, virus concentration steps will likely be necessary
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before subsequent detection of SARS-CoV-2 in samples, as
shown in Fig. 2 (Nemudryi et al. 2020; Wurtzer et al. 2020a;
Medema et al. 2020).

Several methods have been developed for concentrating
viruses in water samples, such as electropositive or electro-
negative membranes. Another membrane-based method used
for concentrating viruses in environmental water samples is
ultrafiltration, which is based on size exclusion. Other
methods, including polyethylene glycol (PEG), ultracentrifu-
gation, and skimmed milk flocculation, have also been used
for concentrating viruses from water samples (Lapolla et al.
2020; Haramoto et al. 2020; Sherchan et al. 2020).

Concentration volumes of water are important factors
that should be considered in the results of detection of
viruses; usually, concentrating < 100 mL of untreated
water samples is sufficient to detect enteric viruses
(Haramoto et al. 2018; Medema et al. 2020). Detection
of SARS-CoV-2 is principally based on RT-qPCR, and
their results are usually reported in RNA copies per
reaction or genomic copies within a concentration vol-
ume, such as liters, milliliters, or cubic meters (Corman
et al. 2020; Shirato et al. 2020).

Absolute or relative quantification can be used when
calculating the results of the RT-qPCR assay: the first is
used to quantify unknown samples by interpolating their
quantity from a standard curve, and the second is used
to analyze changes in gene expression in a given sam-
ple relative to another aqueous reference sample. The
calculation methods usually used for relative quantita-
tion are the standard curve method and comparative
cycle threshold method, as shown in Fig. 2 (Boulter
et al. 2016; Vogels et al. 2020; Arnaout et al. 2020).

Environmental impact associated
with SARS-CoV-2 in water

Drinking water

Drinking water is derived from either surface waters, compris-
ing rivers, streams, wetlands, and lakes, or groundwater.
However, several contaminants of public health importance
naturally occur in these water bodies. For example, metals
may originate from natural geochemical lithosphere condi-
tions, and geological processes, in addition to anthropogenic
activities, have led to extensive contamination by thousands of
chemicals. In general, urbanization and industrialization pro-
cesses and agriculture and forestry activities are considered
the two major contaminant inputs for these freshwater water
bodies (Quinete and Hauser-Davis 2021). Currently, clean
water sources and community drinking water are vulnerable
to stool contamination, and there is evidence that sputum,
feces, and urine contain SARS-CoV-2 (Purnama and
Susanna 2020; Bilal et al. 2020).

SARS-CoV-2 virus has recently been reported in wastewa-
ter. It is possible that patients diagnosed with coronavirus
disease are the main route of coronavirus transmission to wa-
ter and sewage (Tran et al. 2021). Detection of SARS-CoV-2
RNA in wastewater is of interest as it can be used as an early
warning method to detect the contact risk associated with un-
treated water or inadequately treated wastewater
(García-Ávila et al. 2020).

Waterborne viruses are different regarding their genome
contents and capsid proteins, but such viruses have some com-
mon attributes, making them of specific interest concerning
the risk of disease endemics related to drinking water infec-
tions. According to Hoseinzadeh et al. 2020, water-spread
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viral pathogens, categorized in terms of moderate to high
health importance, consist of adenovirus, astrovirus, hepatitis
A and E viruses, rotavirus, norovirus, and other caliciviruses,
as well as enteroviruses, including coxsackieviruses and
polioviruses. Additionally, urine urinary excretion viruses
(e.g., polyomaviruses and cytomegalovirus) have the potential
to be disseminated via water. Other viruses (e.g., influenza
and coronaviruses) have been considered organisms that are
transmittable by drinking water, but the evidence is indecisive.
Table 2 shows examples of viruses found in samples of drink-
ing water, and some treatments are reported to remove or
reduce these pathogens. SARS-CoV-2 has not yet been found
in any drinking water facilities, and per current evidence, it is
safe to comment that the risk to drinking water supplies is low
if proper precautions are being taken (Bhowmick et al. 2020).

The SARS-CoV-2 virus has been detected in fecal samples
and consequently in untreated wastewater. The fecal-oral
route of transmission has possible subpathways: contaminated
drinking water, contaminated raw and undercooked aquatic,
marine, aquacultural, and sewage-irrigated food, and
vector-mediated transmission. Contamination of drinking wa-
ter sources can occur through seepage from sanitation systems
(pit latrines and septic tanks), landfills leachates without
geomembrane protection towards the shallow groundwa-
ter systems. One study reported 99.9% mortality after
10 days in tap water at 23 °C and over 100 days at 4
°C in other types of coronaviruses. This finding also
suggests a longer survival time of coronaviruses in tap
water than in wastewater (Gwenzi 2021).

Water for human consumption is treated by conventional
methods with correct chlorine-based disinfection and ensuring
a residual chlorine level of 0.5 mg/L. Chlorine has also been
shown to be more effective in inactivating SARS-CoV-2 than
chlorine dioxide and other chemical products (García-Ávila
et al. 2020). SARS-CoV-2, an enveloped virus, does not sur-
vive easily in water and is able to eliminate and inactivate
itself efficiently. International and local regulations have
launched treatment requirements so that waterborne patho-
gens, such as viruses, do not attain drinking water systems.
The survival of SARS-CoV-2 in wastewater treatment and
drinking water supplies is a global concern (García-Ávila
et al. 2020).

The World Health Organization (WHO) noted that the ac-
cessibility of drinking water is a fundamental condition for the
safety of people. It is widely documented how unsafe water
has been suspected to be the cause of epidemics since ancient
times(Balacco et al. 2020). The absence of evidence on the
survival of COVID-19 in drinking water is valuable because it
could improve the hygienic conditions of people and prevent
the spread of the virus (Balacco et al. 2020; WHO 2021).

Further investigation is urgently required to determine the
persistence and infectivity of SARS-CoV-2 in polluted water
and sewage as well as the potential of disease transmission via

exposure to contaminated water matrices. This might be of
critical importance in controlling COVID-19 in vulnerable
communities and crisis zones with poor access to water, san-
itation, and hygiene (Carraturo et al. 2020; Kassem and Jaafar
2020).

The urban and rural water cycle

Waterborne pathogens, which are divided into three main cat-
egories, i.e., viruses, bacteria, and parasites (Bridle 2014), can
be released into the urban water cycle through domestic sew-
age, urban runoff, agricultural runoff, and wastewater dis-
charges (Bar-Or et al. 2020).

Appropriate management of the urban and rural water cy-
cle is essential to contain the spread of SARS-CoV-2 since the
disease it causes can spread through fecal-oral routes. Correct
disinfection of drinking water and wastewater treatment plants
andmeasures such as prevention of sewage leakage into fresh-
water resources are essential to reduce human exposure to the
virus (Naddeo and Liu 2020; Sharifi and Khavarian-Garmsir
2020).

SARS-CoV-2 can maintain its viability in sewage and the
urban-rural water cycle, originating from the fecal discharge
of infected patients and moving to different bodies of water
through the pathways shown in Fig. 3 (Bhowmick et al. 2020).

Several s tudies have reported the presence of
SARS-CoV-2 in urban and rural sewerage systems. This sew-
age has the possibility to contaminate freshwater; it can cross
untreated effluent discharges to surface water or leaks, as well
as affect the supply of traditionally treated graywater, and thus
these recycled urban waters also represent possible transmis-
sion methods (Mukherjee et al. 2020). Table 3 shows these
studies in urban and rural sewage.

According to the table above, multiple authors have detect-
ed SARS-CoV-2 in the sewage from urban and rural areas,
which confirms its mobility and presence in the water cycle,
represented in Fig. 3.

The quantification method used in all studies was real-time
polymerase chain reaction (RT-PCR), and virus concentra-
tions were reported as cycle thresholds (Ct) and copy numbers
per liter. Ct < 29 values corresponded to raw sewage in India,
while countries such as Israel, the USA, and Spain presented
Ct > 30 but below cycle 40. It is important to note that a
sample is considered positive when the cycle threshold (Ct)
took place below cycle 40. In the Northeastern U.S. metropol-
itan area, a primary sewage sludge exhibited the highest virus
RNA copies per liter, and the sewage in Quito contained the
lowest copies per liter.

The detected concentrations of SARS-CoV-2 in different
countries indicate its high persistence in sewage, and thus the
monitoring of the virus in these effluents is extremely impor-
tant because it can provide information on the prevalence,
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distribution in communities, and possible infection dynamics
to prevent future outbreaks and evaluate virus elimination.

Urban sewer systems are usually more representative sam-
ples of communities than wastewater because wastewater is
collected from the population through interceptors that are
used to divide the study people. If higher viral loads are ob-
served in one interceptor than in the rest, the corresponding
service area will be of greater concern for a possible viral
outbreak (O’Brien and Xagoraraki 2019). Taking samples in
rural areas is more complex than in urban areas due to the
nonexistence of wastewater collection systems and the prox-
imity of discharges to surface waters (Polo et al. 2020).

The COVID-19 pandemic influences multiple aspects of
urban and rural water areas, such as engineering, sanitary,
economic, and social aspects, which will have important ef-
fects in the future (Poch et al. 2020). Table 4 summarizes the
publications that report the impacts of COVID-19 on the man-
agement of the water cycle in urban and rural areas.

As seen in Table 4, there are several impacts of the
COVID-19 pandemic on the management of the urban and
rural water cycles. In rural communities, impacts such as wa-
ter supply programs, water scarcity and quality, disruption of
activities in agriculture and supply chains, and ensuring water
resources to basic needs are mentioned.

On the other hand, urban areas have shown these impacts:
the COVID-19 pandemic affects economic-social water as-
pects, water policies must be improved for equitable

distribution and sewage is a critical tool for monitoring the
COVID-19 pandemic because SARS-CoV-2 can maintain
its viability in sewage. However, a positive effect that some
studies report is that the COVID-19 lockdown has reduced
water contamination in multiple urban cities.

Surface water

SARS-CoV-2 presence in surface water, including both salt-
water and freshwater, was confirmed in some regions with a
high prevalence of COVID-19 disease. Moreover, the pres-
ence of coronaviruses from anthropogenic activities was con-
firmed in different water bodies (La Rosa et al. 2020a;
Sivakumar 2020).

It is important to understand the mobility of SARS-CoV-2
in the water environment to ensure that public health protec-
tion measures are properly established (Naddeo and Liu
2020). However, there are limited data on the presence of viral
loads in water bodies due to sewage discharged (Cahill and
Morris 2020). It is important to conduct studies that address
these issues to develop solutions that help developing coun-
tries with poor water and sewage infrastructure (Al Huraimel
et al. 2020).

SARS-CoV-2 can be spread to water ecosystems due to
leaking sewers or deficient removal after sewage treatment
(Wurtzer et al. 2020a). Moreover, rainfall events can increase
virus concentrations in natural water systems through

Fig. 3 Contamination system of SARS-CoV-2 in the rural and urban water cycle with human exposure

52659Environ Sci Pollut Res (2021) 28:52651–52674



Table 3 Detection of SARS-CoV-2 in urban-rural sewage by several authors

Sample
type/country

Quantification method Concentration
methods

Virus concentration Key findings Reference

Raw sewage/Israel PCR system Polyethylene glycol
(PEG) or alum
precipitation

Tel Aviv:
qPCR Ct of 33 and 33.6
Bnei Brak city:
qPCR Ct of 33-37.
Beer Sheva and Haifa:
negative (Ct > 40).

- This study shows a
proof-of-concept for the
detection of SARS-CoV-2
RNA in sewage.

- Results will enable early
identification and
spatial-based monitoring of
future outbreaks and be used
to confirm virus elimination.

(Bar-Or et al.
2020)

Primary sewage
sludge/Northeast-
ern U.S.
metropolitan area

Quantitative reverse
transcriptase--
polymerase chain
reaction (qRT-PCR)

Not reported Samples ranged from 1.7 × 103

to 4.6 × 105 virus RNA
copies mL−1.

The lower concentration in this
range corresponds to a
qRT-PCR cycle threshold
(Ct) value of 38.75. 96.5% of
all CT values were less than
38.

- SARS-CoV-2 RNA is present
in the stool of COVID-19
patients and thus in raw
sewage.

- Monitoring it in a
community’s collection
system can provide
information on the
prevalence and dynamics of
infection for the population.

(Peccia et al.
2020)

Raw sewage/Turkey Quantitative reverse
transcription PCR
(RT-qPCR)

Ultracentrifugation,
polyethylene glycol
adsorption,
electronegative
membrane, and
ultrafiltration
methods

Ambarli, Pasakoy, Kadikoy,
Terkos, Buyukcekmece,
Baltalimani and Tuzla points:
8.26 × 103, 1.80 × 104, ND,
ND, 3.73 × 103, 4.95 × 103,
2.89 × 103 SARS-CoV-2
copy numbers per liter,
respectively.

- SARS-CoV-2 in raw sewage
can be used as a tool in
wastewater-based
epidemiology and it can
provide information about
SARS-CoV-2 distribution in
the wastewater of various
districts of Istanbul.

(Kocamemi et al.
2020a)

Raw sewage/India RT-PCR analysis Filtration and
PEG/NaCl
adsorption method

Four samples with Ct of 25.5,
34.1, 23.7, and 25.9

- SARS-CoV-2 RNA is present
in hospital sewage samples
of India.

- These findings demonstrate
the applicability of WBE or
sewage surveillance as an
early indicator of the
persistence of the virus in the
community and the risk
associated with wastewater
handling.

(Arora et al. 2020)

Primary sewage
sludge/Spain

RT-PCR detection Ultrafiltration and
PEG/NaCl
precipitation

April 7: Ct of 34.3, 36.0 and
39.8

April 16: Ct of 33.4, 35.9, and
36.6

- Based on the destination of
the viral particles, ideal
places must be identified to
detect COVID-19 incidence
and monitor its evolution.

- The primary and thickened
sludge showed higher
concentrations, suggesting
that COVID-19 incidence
could be monitored in the
sludge line.

(Balboa et al.
2021)

Municipal
sewage/The San
Francisco Bay
Area, USA

RT-qPCR assay Ultrafiltration Cq values ranged from 29.5 to
36.2 (~ 2 to ~ 553 genome
copies/μL of RNA).

- This study sequenced RNA
directly from sewage
collected by municipal
utility districts to generate
complete SARS-CoV-2
genomes.

- Genomic sequencing can be
used to profile the viral
genetic diversity across
infected communities.

(Crits-Christoph
et al. 2021)

Sewage pools/China Quantitative real-time
reverse transcription
PCR (qRT-PCR)
method

Not reported Cycle threshold (Ct) values of
29.3, 30.5, 32.4 (inlets of
pre-processing disinfection
pool), and 33.5 (outlet of

- SARS-Cov-2 is present in the
sewage from pre-processing
disinfection pool of Chinese
hospitals.

(Wang et al.
2020a)
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combined sewer overflows or failures in wastewater infra-
structure (Bogler et al. 2020).

Previous studies reported that viral loads of SARS-CoV-2
are present in the water environment. However, some authors
did not detect viral RNA, and others provided a method for the
rapid assessment of the SARS-CoV-2 transmission risk, as
shown in Table 5.

As seen in Table 5, SARS-CoV-2 was detected in surface
water. Rimoldi et al. (2020) reported positive results in three
rivers in Milan, Italy; however, the concentration of the virus
was not measured.

Guerrero-Latorre et al. (2020) found viral loads in the dis-
charge of raw sewage into urban rivers of Quito, Ecuador, and
Weidhaas et al. (2021) detected SARS-CoV-2 RNA in small
facilities areas, such as Price River WID.

On the other hand, some authors have studied the presence
of SARS-CoV-2 in natural water but have not reported the
presence of viral concentrations. Haramoto et al. (2020) re-
ported negative results in samples of river water in Japan, and
in the results of Desdouits et al. (2021), none of the seawater
samples tested positive for SARS-CoV-2 RNA in different
areas of France. Samples tested negative can be affected by
dilutions made by an incorrect concentration method, or
SARS-CoV-2 did not reach the water environment during
sampling at significant levels.

Kumar et al. (2021b) and Shutler et al. (2021) reported viral
concentrations in natural water bodies through an assessment
of the SARS-CoV-2 transmission risk by modifying pollution

analysis methods. Viral load values were very different, < 100
copies/L for small proportions and > 4000 copies/L for large
natural water systems, probably due to the large influence of
volume.

The detection of SARS-CoV-2 in surface water, such as
saltwater and freshwater in rivers, streams, or lakes, has not
been sufficiently studied, and the information available is lim-
ited, as shown in the table. Moreover, several countries treat
their wastewater, so viral loads are considerably lower, al-
though there are also places where wastewater can be
discharged into rivers, producing negative impacts due to the
presence of human viral pathogens.

The presence and mobility of SARS-CoV-2 in water must
be considered because viral RNA copies that are discharged
into freshwater and saltwater are a risk of infection for the
population in contact with these water bodies (Mahlknecht
et al. 2021; Mordecai and Hewson 2020). In addition, studies
of water systems could be used to assess the risk of transmis-
sion to aquatic and human life and identify countries that are
exposed to a high risk of transmission. Additionally, data
sources can help to develop viral detection methods to reduce
impacts on the environment.

Wastewater

SARS-CoV-2 has been quantified in wastewater through ge-
nomic copying (GC), and the air at wastewater treatment
plants (WWTPs) has beenmonitored to determine its presence

Table 3 (continued)

Sample
type/country

Quantification method Concentration
methods

Virus concentration Key findings Reference

pre-processing disinfection
pool).

Not detected (final outlet of
sewage disinfection pool).

- The SARS-CoV-2 RNA
results demonstrated that
routine disinfection
measures of sewage in the
hospital were sufficient and
the hand hygiene of staff
was effective.

Urban rivers of
Quito impacted
by the
discharge of
sewage/Ecuador

qRT-PCR analysis The skimmed milk
flocculation
method

SARS-CoV-2 N1 region: 3.19 ×
106, 2.84 × 105, and 2.91 ×
106 GC/L.

SARS-CoV-2 N2 region: 2.23 ×
106, 2.07 × 105, and 8.55 ×
105 GC/L.

- Viral loads of SARS-CoV-2
were detected from rivers in
urban streams of Quito.

- -The presence of the virus can
be used as a surveillance tool
for an early warning.

- -A system using main sewage
discharges along the city
helping to control the
pandemic.

- -The method implemented
can be used in other cities
where sewage is not possible
to sample and wastewaters
are discharged to streams or
rivers.

(Guerrero-Latorre
et al. 2020)

*Considering a positive sample when the cycle threshold (Ct) took place below cycle 40
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Table 4 Impacts of COVID-19 in urban-rural areas related to water cycle management

Country/place Key findings Reference

Rural areas and developing countries - Impact of COVID-19 on the SDG number 6: clean water and sanitation due to
supply disruptions and inadequate access.

- Rural water supply programs that provide communities with deep boreholes
and public hand pumps, sanitation campaigns, and biosand filters for
household water treatment.

(Barbier and Burgess
2020)

Urban-rural areas - During COVID-19 lockdown (i)Venice waters cleared due to fewer boat and
tourist activities, and (ii) water utilities from Germany and Austria report that
the daily peak of water consumption in the morning is 1.5 to 2 h.

- Cities with high tourist activity will exhibit an important reduction in water
consumption.

- Industrial water consumption has decreased, and the agricultural sector has
high water demand.

(Cheval et al. 2020)

Countries in the Global South (scarcity). Saudi Arabia,
Jordan, Egypt, or Lebanon (quality).

- The water scarcity and quality are aggravated by the impacts of COVID-19.
- Competition for water by the different consuming sectors is also happening

between the rural and urban areas, mainly in water-scarce economies.
- The COVID-19 pandemic is an accelerator of the existing water crisis.

(Keulertz et al. 2020)

Urban communities - COVID-19 exist and canmaintain their viability in sewage and the urbanwater
cycle, originating from the fecal discharge of infected patients. Therefore,
water contaminated by coronaviruses is a potential vehicle for human expo-
sure.

- The use of chlorine still represents the best economic solution for disinfectant
and inactivation in the water of coronavirus.

(Naddeo and Liu
2020)

Pakistan (urban area) - The impact of COVID-19 on the informal urban population is a threat to
human lives and the health sector, which faces an increasing number of
serious cases.

- 34 million people live in urban informal settlements, where water is scarce for
basic needs, so government policies have to integrate urban design and
water-smart cities for them.

- Covid-19 has impacted SDG 11: make cities and human settlements inclusive,
safe, resilient, and sustainable.Water has a direct impact on the resilience and
habitability of cities.

(Neal 2020)

India (rural area) - The COVID-19 pandemic has interrupted activities in agriculture and supply
chains.

- Water management should focus on the need to guarantee the availability and
access to water for subsistence needs and domestic food production.

(Neal 2020)

Urban areas - The COVID-19 pandemic affects urban water aspects such as engineering
processes, sanitary, economic, and social aspects.

- Monitoring of SARS-CoV-2 in human sewage is used to map its spread and
scale community outbreaks.

- Sewage tracking from the hospital and pooled human samples indicate the
epidemic severity.

- Sewage is a critical tool for human health monitoring due to the COVID-19
pandemic.

(Poch et al. 2020)

Bangladesh and many parts of Africa (rural and
peri-urban areas)

- International institutions have to ensure resources were deployed to meet the
basic needs of rural communities, such as water to enable hand washing.

- The covid-19 outbreak could still be tackled in rural areas.

(Ranscombe 2020)

Urban and rural areas - Water systems have perceived positive impacts because of the reduction of
pollutant loading from input of vehicle emission, and industries. Also, a
reduction in the demand for coliform and biochemical oxygen in rivers and
lakes.

- Sewer systems and freshwater sources in hospitals or public places may be
contaminated with COVID-19.

(Rashed et al. 2020)

France, Italy, Los Angeles, Spain, and Wuhan city of
China

- The COVID-19 lockdown has reduced water pollution in many urban cities.
- Due to the clear water and the free movement of wild animals, humans began

to feel the recovery of the environment.

(Rupani et al. 2020)

Urban cities - The main impacts of the pandemic for the management of the urban water
cycle are (i) the quality of water resources has improved, (ii) water contam-
ination increased due to drugs for COVID-19 treatment, and (iii) water
treatment to reduce the transmission of COVID-19 through fecal matter is
necessary.

- The presence of COVID-19 in the sewage system provides information about
the infection hotspots and efficacy of control and spread patterns through
regular testing.

(Sharifi and
Khavarian-Garmsir
2020)

Countries, such as China, India, and the USA
(urban-rural areas)

- Controlling the spread of COVID-19 will increase water demand and worsen
water quality.

(Sivakumar 2020)
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(Medema et al. 2020). Some stages of wastewater treatment
processes can generate aerosols, derived from the collision
between water sheets in a mixing, aeration, or grease separa-
tion stage. Transmission by exposure to wastewater aerosols is
possible in wastewater treatment plants (Cruz-Cruz et al.
2020; Gholipour et al. 2021) (Fig 1).

The presence of viral RNA in wastewater has been deter-
mined, even when the prevalence of COVID-19 is low, estab-
lishing a correlation between the concentration in wastewater
and the reported prevalence of COVID-19 (Medema et al.
2020). Monitoring of SARS-CoV-2 in wastewater represents
pandemic status, a wastewater-based epidemiological ap-
proach (WBE) (W. Ahmed et al. 2021), and has been devel-
oped worldwide as an environmental surveillance approach to
inform health authority decision-making (Table 6). This epi-
demiological basis could help to identify specific areas of
increased epidemiological activity; however, its use would
be limited to cities with a wastewater collection or sewerage
system, without clandestine discharges or open drains.

Although the virus has been determined in wastewater and
its concentration is correlated with pandemic behavior, recent
studies suggest that the risk of accidental occupational expo-
sure to SARS-CoV-2 in raw sewage, through inhalation in a
treatment plant environment, is negligible, with less than 0.3%
of the population served by the plant actively infected (Dada
and Gyawali 2021). However, other studies indicate that the
risk increases as a function of the fraction of the population
with an active infection and warn that greater exposure to
aerosols may occur if the sewage and wastewater collection
system is inadequate. This is a common situation in underde-
veloped countries, which may be subject to routes of exposure
to the virus by direct ingestion and inhalation of bioaerosol
(Zaneti et al. 2021). It is recommended that workers take bio-
safety measures to reduce risks, such as disinfection of work
surfaces with 0.1% hypochlorite, ventilated work areas, keep-
ing areas free of clutter and personal belongings, and use of
long-sleeved gowns, biosafety goggles, and disposable gloves
(WHO 2020).

The methodology for SARS-CoV-2 RNA quantification
may have some limitations; large differences in catchment
size, pipe networks, wastewater characteristics, and subse-
quently hydraulic retention times can modify the viral concen-
tration (W. Ahmed et al. 2021). Therefore, it is important to

use the right concentration method. Viral concentration has
been observed to improve with precipitation, filtration, ultra-
filtration, and ultracentrifugation (Table 6) (Amoah et al.
2020). The detection of viruses in wastewater and drinking
water requires methods that are sensitive, resistant to
false-positive results, and must be fast and inexpensive
(Lahrich et al. 2021). Viral concentration methods are an es-
sential step to accurately detect SARS-CoV-2 RNA in waste-
water (Gonçalves et al. 2021).

The quantification of the virus may vary according to the
physicochemical characteristics of the wastewater (Table 6).
The concentration of SARS-CoV 2 in the wastewater in GC
per liter can be variable between 500 GC/L and 2200 GC/mL
(Medema et al. 2020; Zhang et al. 2020). According to
Medema et al. (2020), this may be related to pandemic status
during the analysis. Large particles can protect and contain the
virus inside (Wang et al. 2020a), causing unreliable quantifi-
cation. The sampling method is critical, and 24 h composite
samples may be more reliable in showing the daily average
(Sherchan et al. 2020). Sampling protocols should consider
the inactivation time of the coronavirus and the effect of stor-
age temperature (Cervantes-Avilés et al. 2021).

Due to the risk of hospital wastewater, treatment with sodium
hypochlorite has been proposed (Table 6) at concentrations of
800 g/m3; under this condition, the virus concentration was 500
GC/L. To achieve maximum removal, a concentration of 6700
g/m3 was used. Due to the organic matter load of the wastewater
matrix and the high concentration of hypochlorite used, the
formation of trichloromethane, tribromomethane,
bromodichloromethane, and dibromochloromethane compounds
was observed, which represents an environmental risk (Wang
et al. 2020b).

Wastewater treatment polluted with SARS-CoV-2

Removal of the SARS-CoV-2 virus through chlorine disinfec-
tion treatment has been evaluated, and the ecological risks of
disinfection byproducts need to be carefully considered.
Trichloromethane, tribromomethane, bromodichloromethane,
and dibromochloromethane concentrations were 332, 1.9, 5.1,
and 0.6 μg/L in the effluents, respectively (Table 7). They
show high ecological risks and challenge the surrounding en-
vironment receiving disinfected medical wastewater,

Table 4 (continued)

Country/place Key findings Reference

- The water demands will increase in the domestic, industrial, and recreational
sectors.

- COVID-19 will have serious impacts on water quantity and water quality.
- This pandemic will bring challenges related to water sources, infrastructure for

distribution, sewer/drainage structures, wastewater treatment, and disposal.
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possessing threats to the ecological system and human health
(Wang et al. 2020a).

Conventional wastewater treatment plants (WWTPs) have
shown effectiveness in the removal of SARS-CoV-2
(Table 2), which may be related to the removal of solids.
These solids can protect the virus, and the treatment must
contribute to the removal of solids. Carrillo-Reyes et al.
(2021) indicated that the virus may have an affinity for solids.

SARS-CoV-2 concentrations are higher in both primary and
waste-activated sludge (Kocamemi et al. 2020a). Virus re-
moval in an aseptic tankwas low due to the high concentration
of solids; this process does not separate and reduces the solid
content (Wang et al. 2020a).

The hydrophobic envelope of the virus could explain the
affinity of the virus for the solid matrix of the wastewater
(Ahmed et al. 2020c), which is explained by the fact that

Table 5 Detection of SARS-CoV-2 in surface water by several authors

Sample
type/country

Quantification
method

Concentration
method

Virus concentration Key findings Reference

River
water/Yamana-
shi, Japan

PCR assays Electronegative
membrane-vortex
(EMV) and ad-
sorption direct
RNA extraction

Not detected - None of the river water samples tested positive
for SARS-CoV-2 RNA.

(Haramoto et al.
2020)

Natural water
bodies

Quantitative
microbial risk
assessment
(QMRA)

Not applied SARS-CoV-2 RNA in receiving water
bodies does not probably exceed < 100
copies/L.

SARS-CoV-2 RNA in receiving water
bodies exceeds > 100 copies/L in an ur-
ban river that consists of a large propor-
tion of treated wastewater from infected
regions.

- The use of QMRA could be useful to manage
the potential risk of SARS-CoV-2 in water
bodies.

- Discharge of untreated wastewater from
combined sewer overflows (CSOs) is very
common in Central Europe (around 70% of
systems are combined sewer systems) and in
the United States.

(Kumar et al.
2021a)

Three river
samples/Milan,
Italy

RT-PCR analysis Not reported 14/04/2020:
Vettabbia river (+)
Lambro Meridionale river (+)
Lambro river (+)
22/04/2020:
Vettabbia river (−)
Lambro Meridionale river (−)
Lambro river (+)

- Positive detection of SARS-CoV-2 RNA in the
receiving rivers in the Milano Metropolitan
Area.

- The presence of the SARS-CoV-2 genome in
rivers indicated the inefficiency of the sewer-
age system of the Milano Metropolitan Area.

(Rimoldi et al.
2020)

Spain, UK, and
Morocco

Relative risk of
transmission

Not applied Spain:
633 copies per

100 mL
UK:
468 copies per 100 mL
Morocco:
459 copies per 100 mL

- Obtaining a method that quickly assesses the
risk of SARS-CoV-2 transmission in water
systems contaminated with feces.

- Interactions between river water and wastewater
spills should be minimized to reduce the risk
of infection.

(Shutler et al.
2021)

Urban rivers of
Quito impacted
by the
discharge of
sewage/
Ecuador

qRT-PCR analysis The skimmed milk
flocculation

method

N1 region:
3.19 × 106, 2.84 × 105, and 2.91 × 106 GC/L
N2 region:
2.23 × 106, 2.07 × 105, and 8.55 × 105 GC/L

- Viral loads of SARS-CoV-2 were detected from
rivers in urban streams of Quito.

- The presence of the virus can be used as a
surveillance tool for an early warning.

- A system using main sewage discharges along
the city helping to control the pandemic.

- The method can be used in other cities where
sewage is not possible to sample and
wastewaters are discharged to streams or
rivers.

(Guerrero-Latorre
et al. 2020)

Price river water
improvement
district/Utah

Reverse
transcriptase
quantitative
polymerase
chain reaction
(RT-qPCR)

Membrane filtration No. of samples/% positive:
11/27
AVG of SARS-CoV-2:
86 GC/L

- SARS-CoV-2 RNA was detectable in different
influents during nine weeks.

- SARS-CoV-2 RNA was detectable in small
areas (< 100 K people) such as Price River
WID.

- Facilities in areas that serve more than 100,000
people had higher detection frequencies as
compared to facilities serving smaller
communities.

(Weidhaas et al.
2021)

Seawater/France RT-PCR kit Negative-charged
membrane
filtration (MF)
and FeCl3 floccu-
lation (FF)

SARS-CoV-2 positive samples:
0/9 (Normandy area)
0/22 (Brittany area)
0/16 (Atlantic area)
0/9 (Mediterranea area)

- None of the water samples were found
contaminated by SARS-CoV-2.

- SARS-CoV-2 did not reach the French coastal
environment during summer 2020 at signifi-
cant levels.

- The detection of SARS-CoV-2 in the coastal
environment, using shellfish may help to
monitor the viral diffusion in seaside
communities.

(Desdouits et al.
2021)
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RNA is easier to quantify in the sludge without employing a
concentration method, and sludge monitoring has been sug-
gested to serve as an indicator for SARS-CoV-2 surveillance
(Carrillo-Reyes et al. 2021). The more efficient the treatment
may be in removing solids, the more efficient it will be in
removing the virus. The most commonly used methods to
improve quantification of the virus in wastewater employ
polyethylene glycol to concentrate the viral load (La Rosa,
Bonadonna, et al. 2020; Peccia et al. 2020; Zhang et al. 2020).

Virus envelope proteins play a very important role in the
process of infection and spread, they can contribute to the strong
or weak adhesion of SARS-CoV-2 to its host cell surface, which
mainly involves hydrophobic interactions(Jakhmola et al. 2021).
These proteins are mostly of a quaternary structure (Duart et al.
2021) and are characterized by hydrophobic interactions
(Bhagavan 2002).

The virus concentration can be equal in raw water and
primary sludge, and after biological digestion of the sludge,
the virus has not been detected (Balboa et al. 2021). Despite
the effectiveness of virus removal in raw water and virus de-
naturation in sludge, chlorination of treated water has been
recommended as a final treatment step (Carrillo-Reyes et al.
2021). The combined treatment of thermal hydrolysis and
anaerobic digestion prevented the detection of SARS-CoV-2
in sludge effluent of the plant (Balboa et al. 2021).

Althoughmore studies are needed to demonstrate the trans-
mission of the virus via untreated wastewater, the presence of
the virus has been demonstrated and poses a risk. Therefore,
WWTPs play an important role in controlling the pandemic,
as do sewage systems that allow for maximum wastewater
collection.

Future trends

The primary mechanism of virus transmission is person-to-
person contact (Rothan and Byrareddy 2020); however, we
have discussed other possible routes that represent a risk con-
dition. In the future, it will be important to demonstrate the
viral load necessary to generate COVID-19. These secondary
mechanisms (Fig. 1) represent a risk, but the particular viral
load condition for developing the disease is not clear.

Different efforts to control the spread of COVID-19 will in-
crease the water demand andworsen the water quality, leading to
additional challenges in water planning and management
(Sivakumar 2020). Further studies are needed to determine the
survival of SARS-CoV-2 in the environment, clearer mecha-
nisms of transmissibility through sewage, and the potential to
infect humans via the fecal-oral route. (Dhama et al. 2021).

The detection and quantification of the virus have
confronted difficulties due to the complex composition of
the wastewater. The concentration method is an important
factor in determining the virus (La Rosa, Iaconelli, et al.T
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2020a; Carrillo-Reyes et al. 2021; Dhama et al. 2021).
Therefore, more sensitive, easy to perform, accessible, and
economical techniques are needed to further monitor the pan-
demic and allow sanitary control to ensure public health.
Devices have been suggested for trace detection of
SARS-CoV-2 in water. One of the main challenges in
the detection/quantification of SARS-CoV-2 in wastewa-
ter samples is to generate optimized and standardized
protocols (Kitajima et al. 2020), where the risk of trans-
mission is high, as shown in Fig. 4.

WWTPs have shown effectiveness in virus removal (Arora
et al. 2020; Jiao Wang et al. 2020a); however, more

knowledge is needed about virus sharing through the different
stages of the treatments to more clearly determine the most
effective removal or denaturation method against the virus.

Disinfection methods used in the drinking water treatment
process highly inact ivate and efficient ly destroy
SARS-CoV-2 in water (Tran et al. 2021). However, there is
a need to investigate and improve the performance of disin-
fection technologies to be adopted for the inactivation of
SARS-CoV-2 in municipal and hospital wastewater to reduce
the related risk. (Mandal et al. 2020; Tran et al. 2021).

The studies compiled in this review are solid antecedents
that demonstrate the presence of the SARS-CoV-2 in natural

Table 7 SARS-CoV-2 removal in wastewater treatment systems

Country Treatment Condition treatment Removal concentration Key findings Ref

India Upflow anaerobic
sludge blanket
(UASB)

Primary treatment: Clarifier
HRT of 2.5 h
Secondary treatment: UASB
6 aeration tanks
HRT: 5 h
pH: ~ 7 to 8.5.
Sludge thickening unit:

retention time 20 days
Secondary clarifier: HRT 2.5

h

Raw wastewater: 1.8 × 103

copies/L and 3.5 × 103

copies/L
Final effluent: RNA was

not detected at all in the
final effluent

- PEG (polyethylene glycol) method
performed better in removing
materials inhibiting RT-qPCR.

- A conventional treatment system seems
to be effective in reducing the
SARS-CoV-2 genes.

(Kumar et al.
2020)

China Aseptic tank
chlorination

Sodium hypochlorite was not
regularly added to the final
concentration of 800 g/m3

and it increased to 6700
g/m3.

1.5-h contact and the mixing

Raw wastewater: 7.5 ×
103–14.7 × 103copies/L

Final effluent: RNA was
not detected to 6700
g/m3 of sodium
hypochlorite

- Trichloromethane, tribromomethane,
bromodichloromethane, and
dibromochloromethane were 332, 1.9,
5.1, and 0.6 μg/L in the effluents, re-
spectively.

(Zhang et al.
2020)

United Arab
Emirates
(UAE)

Wastewater
treatment plants
conventional

Preliminary, primary,
secondary

(ASP/clarification), and
tertiary (and filtration,
disinfection, chlorination)

Raw wastewater:
7.5×102–3.4×104 gene
copies/L

Final effluent: not detected

- Wastewater treatment technologies
implemented in the UAE are efficient
in the removal of SARS-CoV-2 and
confirm the safety of the treated
re-used water across the country.

(Hasan et al.
2021)

México Dual
(biofilter/-
activated
sludge).

Coarse and fine screening,
biological treatment and
disinfection process
(chlorinated)

Raw wastewater: 1.6 ×
104–5.2 × 104 gene
copies/L

Final effluent: not detected

- Secondary sludge from the WWTP
showed virus RNA levels eight orders
of magnitude higher than in the
influent, suggesting a migration of
genetic material from the liquid to a
solid matrix in the wastewater
treatment process.

(Carrillo-Reyes
et al. 2021)

México Activated sludge Coarse and fine screening
and biological treatment

Raw wastewater: 1.8 ×
104–3.8 × 104 gene
copies/L

Final effluent: not detected

- The detection of virus RNA in the
sludge was determined to be due to
migration of the genetic material, an
affinity of the virus for solids was
observed.

(Carrillo-Reyes
et al. 2021)

Spain WWTP
conventional

Primary sludge
Biologic sludge
Thickened sludge
Digested sludge

In waterline:
Raw wastewater: < 7.5 ×

103 copies/L
Outflow primary: < 7.5 ×

103 copies/L
Treated effluent: negative
In sludge line:
Primary sludge: < 7.5 × 103

copies/L
Biologic sludge: negative
Thickened sludge:
15×103–20 × 103 copies/L
Digested sludge: negative
Final effluent: not detected

- The affinity of the SARS-CoV-2 virus
for biosolids was observed to be as-
sociated with sludge currents in
WWTPs.

- The combined treatment of thermal
hydrolysis and anaerobic digestion
prevented the detection of
SARS-CoV-2 in sludge leaving the
plant.

(Balboa et al.
2021)

Turkey Activated sludge Primary sedimentation tanks.
Waste activated sludge

(WAS)

1.17 × 104 to 4.02 × 104

viruses per liter.
Final effluent: not

determined

- In this study, it was observed that
SARS-CoV-2 virus concentrations
were higher in both primary and acti-
vated sludge.

(Kocamemi
et al., 2020a)
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water and wastewater. Some data found, such as the study
areas and concentrations of viral loads, would help to quickly
relate the presence of the virus in water with the epidemiolog-
ical and sanitary situation in the future, which could determine
the economic and social factors that they intervene in the
duration of the disease in different rural or urban communities

Identifying those geographic areas that report the presence of
SARS-CoV-2 inwater could support future research to predict or
control re-outbreaks in surrounding areas. In Italy, viral loads
were detected in contiguous rivers and traveled through densely
populated areas near the Milan metropolitan area last year and
then a re-outbreak occurred in the neighboring city (Lazio).

The need for further research to establish the behavior of
the SARS-CoV-2 virus in aquatic systems is a priority to
establish efficient methods to concentrate and detect
enveloped viruses (and coronavirus in particular) from water
matrices and the estimation of the survival of these viruses in
natural conditions, at different temperatures and in different
types of water. Additionally, the information collected on
SARS-CoV-2 in this review aims to facilitate ideas that im-
prove the monitoring of COVID-19 in natural and wastewater
in future studies, which would allow investigating the devel-
opment of the disease in the population. This information
would help to determine the stability of the virus in water
bodies and to know its possible dynamics in space and time.

The findings discussed in this review would generate op-
tions that mitigate the presence of the virus and with it its
transmission in drinking water, natural water, and wastewater.
Finally, these findings could be used to develop new preven-
tive measures, in addition to healthy distance, temperature
measurement, and the use of antibacterial gel, related to the
pathways of spread of SARS-CoV-2 in water.

Conclusions

After reviewing 169 references, it was possible to analyze the
characteristics of the coronavirus, its transfer routes, detection

methods, and its impact on drinking water, surface water,
wastewater, and systems that are effective for wastewater
treatment.

The presence of SARS-CoV-2 has been demonstrated
in the water cycle in both urban and rural areas. One of
the routes of transmission of the virus is through the
sewage system of domestic origin, i.e., gray water, sew-
age, soaps and detergents, and toilet paper.

The monitoring of SARS-CoV-2 in wastewater can be a
tool that can monitor the behavior of the pandemic.
Conventional treatment systems are effective in removing
the virus, and a relationship between solid removal and viral
load has been observed. WWTPs play an important role in
pandemic control.

The transmission of SARS-CoV-2 may be greater in
rural areas. Public policies surrounding the urban-rural
water cycle have been exposed as deficient and bad in
several countries, mainly third world countries.

Some studies have reported the presence of water pathogens
including viruses in drinking water. However, SARS-CoV-2 has
not yet been found in any drinkingwater facilities, and it is safe to
comment that the risk to drinking water supplies is low.

There is still little information available regarding the ex-
istence of SARS-CoV-2 in surface waters; however, more
study is needed as its detection in different bodies of water,
which are usually in direct contact, is important. These studies
should include different natural ecosystems, both terrestrial
and aquatic.

The presence of SARS-CoV-2 in surface water should be
further studied to determine whether its transmission to differ-
ent living beings, including humans, is possible and whether it
is important to reduce or eradicate possible loads of viruses
found in these waters.

Finally, future trends focus on the scope of the pres-
ent information collected by several authors about the
impact of coronavirus SARS-CoV-2 in water to answer
the question of how this review could guide future
research.

Drinking
water

SAR-CoV-2

Urban-rural 
water cycle

Surface 
water

Wastewater 0%

33%

17%

50%

Studies reported SAR-CoV-2

drinking water

urban-rural
sewage
surfacewater

wastewater

WWTPs play an
important role in
pandemic control

Risk of transmission

Fig. 4 Potential risk of transmission of SARS-CoV-2 in water
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enzyme 2; BDD, Boron-doped diamond; BBD/Si, Boron-doped diamond/
silicon; CS, Coagulation-sedimentation; CSOs, Combined sewer over-
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