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Characteristics of fine particulate matter (PM2.5) at Jinsha Site
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Abstract
Air pollution is a serious threat to ancient sites and cultural relicts. In this study, we collected indoor and outdoor PM2.5 samples
and individual particles at the Exhibition Hall of Jinsha Site Museum in June 2020, and then the chemical components, sources,
morphology, and mixing state of the fine particulate matter were analyzed. Our results show that the indoor and outdoor PM2.5

concentrations at the Exhibition Hall were 33.3±6.6 and 39.4±11.4 μg m−3, respectively. Although the indoor and outdoor
concentrations of OC and EC were close, the proportion of secondary organic carbon in OC outdoor (33%) was higher than that
indoor (27%). The PM2.5 was alkaline both indoors and outdoors, and the outdoor alkalinity was stronger than the indoor
alkalinity. SNA (SO4

2−, NO3
−, and NH4

+) was the dominant component in the water-soluble inorganic ions; Na+, Mg2+, and
Ca2+ were well correlated (R2> 0.9), and Cl− and K+ were also highly correlated (R2> 0.8). Enrichment factor analysis showed
that Cu (indoor) and Cd were the main anthropogenic elements and that Cd was heavily enriched. Principal components analysis
showed that the main sources of PM2.5 at Jinsha Site Museum were motor vehicles, dust, secondary sources, and combustion
sources. The individual particles were classified as organic matter, S-rich, soot, mineral, and fly ash/metal particles, and most of
these particles were internally mixed with each other. At last, we proposed pollution control measures to improve the air quality
of museums and the preservation of cultural relicts.
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Introduction

Particulate matter (PM) in the atmosphere is of widespread
concern as a result of its impact on the Earth’s climate, the
environment, and human health (Jan et al. 2017; Lee et al.
2017; Martins and da Graça 2018). Meanwhile, the chemical
species present in PM can also damage ancient buildings,
cultural relicts, and archeological sites (Cao et al. 2005; Hu
et al. 2015; Spezzano 2021). High concentrations of PM can

cause cultural relicts to peel, corrode, break, and twist andmay
cause damage to buildings (Lazaridis et al. 2018; Zorpas and
Skouroupatis 2016). There have been many studies on the
sources of PM and the danger posed by its pollution to
different types of museum. Hanapi and Din (2012) measured
the concentrations of PM in several museums in Malaysia and
found that the mass concentration of PM exceeded the indoor
air quality limit and the standard for total suspended particles
and PM10 in Malaysia, threatening both human health and the
country’s cultural heritage. Kontozova Deutsch et al. (2008)
found that the presence of tourists led to the accumulation of
suspended PM inside some European churches and museums.
Chianese et al. (2012) compared the mass concentrations of
PM inside and outside the Museum of Capodimonte and
found that dust and organic matter were transferred from the
surrounding park into the museum by both the wind and the
movement of tourists. Santis et al. (1992) measured the con-
centrations of indoor and outdoor air pollutants in the Uffizi
Gallery in Florence and found that the indoor concentrations
of HONO far exceeded the outdoor concentrations, which
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may be a result of a heterogeneous reaction between the walls
and the exposed surfaces of the cultural relicts.

According to previous studies, compared with PM10

(particles with the aerodynamic diameter smaller than 10
μm), PM2.5 (particles with the aerodynamic diameter small-
er than 2.5 μm) is easier to enter display cases, deposit on
objects, and thus soil the surface of cultural relicts (Wang
et al. 2015; Janssen et al. 2013). At the same time, the fact
that PM2.5 is more harmful to human health than PM10 has
been reported by many studies (Lyu et al. 2017; Li et al.
2017a). In addition, most of the chemical components in
PM are mainly distributed in PM2.5 (Huang et al. 2016).
Therefore, PM2.5 was usually taken as the key research
target in many previous studies on the characteristics of
air pollution in museums. For example, Zorpas and
Skouroupatis (2016) found that the PM2.5 mass concentra-
tions in the Cypriot Archeological Museum and the
Byzantine Museum in Cyprus were high both outdoors
and indoors and that the presence of tourists increased the
mass concentration of indoor PM2.5. Yang et al. (2009)
showed that both indoor and outdoor PM2.5 concentrations
in Han Yangling Museum were mainly secondary ions,
such as sulfate, nitrate, and ammonium. The monitoring
conducted in Plantin-Moretus Museum, Belgium, found
that sulfur-rich particles were frequently observed indoors
during summer, while calcium-rich and calcium- and
silicon-rich particles were dominating during winter
months (Gysels et al. 2002).The study on single particle
analysis showed that the relative abundance of carbon-
rich particles inside the Royal Museum of Fine Arts,
Belgium, was greater than outside (Krupińska et al. 2012).
These results are of great value in understanding and eval-
uating the impact of atmospheric PM on cultural relicts in
museums and on human health.

The Jinsha Site was announced as a National Key Cultural
Relicts Protection Unit by the State Council of China in 2006,
and Jinsha Site Museum is built on the original site.
Unexplored cultural relicts—such as excavated and back-
filled ivory, wild boar fangs, antlers, sunken wood, pottery,
and jade—are all preserved at this site. The efficient preserva-
tion of these cultural relicts is important to studies of the an-
cient Shu civilization. However, Jinsha Site is located in
Chengdu, one of the most polluted cities in China with an
average annual PM2.5 concentration of 43 μg m−3 in 2019.
This PM2.5 concentration exceeded the first-level standard
(35 μg m−3) of the GB3095-2012 ambient air quality standard
for China by >20% and was several times the World Health
Organization guidelines (10 μg m−3) for PM2.5. Therefore, the
impact of this high level of PM2.5 pollution on the indoor air
quality of Jinsha Site Exhibition Hall deserves attention be-
cause it affects both the preservation of relicts and the site and
the health of visitors. In addition, the chemical composition of
PM is complex, and different components have different

effects on different cultural relicts and human health.
However, most previous studies have focused on just one type
of particle or one class of PM, and few studies have reported a
comprehensive determination of the overall chemical compo-
sition of PM.

In this study, we collected PM2.5 and individual aerosol
particles both indoor and outdoor of the Jinsha Site
Exhibition Hall and analyzed the chemical components,
sources, morphology, and mixing state of the particles. This
information is important if we are to provide a better environ-
ment for the preservation of cultural relicts and a better visitor
experience for tourists.

Materials and methods

Sampling site and sample collection

An indoor observation site was set up at the ivory site of
Pit No. 1 at Jinsha Site Exhibition Hall. The outdoor site
was located in the square outside the east gate of the
Exhibition Hall, about 100 m from Chengdu’s middle ring
road.

Two TH-150C samplers (Wuhan Tianhong, China)
were used to continuously collect indoor and outdoor
PM2.5 in June, 2020. The samplers used a Pall quartz fiber
filter membrane (d = 90 mm) and a flow rate of 100 L
min−1. The sampling periods were 08:30–20:00 h and
20:30–08:00 h, respectively, for daytime and night-time
sampling. Each sample was collected over a 11.5-h peri-
od. Four field blanks were also collected before and after
the sampling period and analyzed at the same time as the
PM2.5 samples. After sampling, the quartz filters were
placed in individual petri dishes and stored at −20°C be-
fore weighing and subsequent PM2.5 chemical composi-
tion (including carbonaceous components, water-soluble
inorganic ions, and trace elements) analysis. The air flow
rate of the sampler was calibrated before the start of the
collection period to ensure that the PM2.5 sampler worked
at the specified flow rate.

Individual particles were collected on copper (Cu) trans-
mission electron microscopy (TEM) grids coated with carbon
film (carbon type-B, 300-mesh copper; Tianld Co., China) by
a DKL-2 sampler (Genstar Electronic Technology, China).
The sampler had a cascade impactor with 0.5 mm diameter
jet nozzles at a flow rate of 1.0 L min−1 (Li et al. 2016, 2020).
The sampling duration varied from 45 to 300 s depending on
the particle loading estimated from the pollution levels. The
copper grids were placed in sealed, dry plastic capsules and
stored in a desiccator at 25°C and 20 ± 3% relative humidity
for subsequent TEM analysis.
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Sample analysis and data processing

PM2.5 chemical and individual particle analysis

The two carbonaceous components—namely, organic carbon
(OC) and elemental carbon (EC)—were determined according
to the EPA/NIOSH (TOT) method using a Sunset Labs
thermal/optical carbon aerosol analyzer. A Dionex ICS-90
ion chromatography system was used to determine eight
water-soluble inorganic ions (SO4

2−, NO3
−, NH4

+, K+,
Mg2+, Ca2+, Na+, and Cl−). The concentrations of trace
elements (Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd, and
Pb) were determined using an Agilent 7500a inductively
coupled plasma mass spectrometer. More detailed informa-
tion about the sample pretreatment, instrument optimiza-
tion, and quality control methods are reported by Huang
et al. (2021).

The individual particles were analyzed by TEM at an ac-
celerating voltage of 200 kV using a JEOL JEM-2100 micro-
scope coupled with an energy-dispersive X-ray spectrometer.
Energy-dispersive X-ray spectrometry can detect elements
with atomic weights heavier than C (such as C, O, Al, S, K,
Ca, Fe, Si). The distribution of aerosol particles on the TEM
grids was not uniform, with coarser particles occurring near
the center and finer particles occurring on the periphery.
Therefore, to make sure that the analyzed particles were rep-
resentative of the entire size range, four areas were chosen
from the center to the periphery of the sampling spot on each
grid. A total of 950 and 1106 aerosol particles were collected
indoors and outdoors, respectively.

Data analysis

Secondary organic carbon (SOC) SOC is formed by the pho-
tochemical reactions of volatile hydrocarbons (Wang et al.
2019a). The concentration of SOC can be obtained by:

SOC ¼ OC−EC OC=ECð Þmin

where OC is the concentration of OC (μg m−3), EC is the
concentration of EC (μg m−3), and (OC/EC)min is the lowest
observed OC/EC ratio (Han et al. 2015).

Enrichment factor (EF) The EF method is an analytical tech-
nique proposed by Zoller et al. (1974) to express the degree of
enrichment of an element in atmospheric particulates. The EF
calculation can be used characterize the degree to which the
concentration of an element is affected by human activity and
therefore to determine whether the element is from a crustal,
anthropogenic, or mixed source (Reimann and De Caritat
2000). The formula is:

EF ¼ Ci=Creferenceð Þsample= Ci=Creferenceð Þcrust

where (Ci/Creference)sample is the ratio of the trace element to the
reference element in PM2.5 and (Ci/Creference)crust is the ratio of
the trace element to the reference element in the Earth’s crust
(Nayebare et al. 2018). An EF < 10 is indicative of a signifi-
cant crustal source with a negligible influence from anthropo-
genic source; if 10 < EF < 100, then this element is mainly
frommixed source (crustal and anthropogenic source), where-
as EF > 100 indicates that all of this element is derived from
human activity—that is, it has an anthropogenic source (Chan
et al. 1997; Sutherand 2000).

Results and discussion

PM2.5 mass concentration

The average mass concentration of PM2.5 was slightly higher
outdoors than indoors during the whole study period, with
average values of 39.4±11.4 and 33.3±6.6 μg m−3, respective-
ly (Fig. 1). The outdoor sources of PM2.5 are complex and
include contributions from motor vehicles, biomass burning,
coal combustion, cooking, road dust, industrial sources, and
pollutants transported from the areas surrounding Chengdu
(Li et al. 2017b; Tao et al. 2014). There is no obvious source
of indoor PM2.5 emissions, and therefore this PM2.5 was main-
ly sourced from outside, although the semi-closed structure of
the Exhibition Hall (especially during the closed period at
night) reduced the transmission of pollutants to the interior.
These results are similar to those found in previous studies of
the five great civilization museums of the Yangtze River (Hu
et al. 2015). The difference between the indoor and outdoor
concentrations of PM2.5 in our study wasmuch lower than that
reported by Li et al. (2014a) in the Pottery Depot of the
Terracotta Warriors and Horses Museum of Qin Shihuang
(indoor, 62.8 μg m−3; outdoor, 113.4 μg m−3). This can be
attributed that the semi-enclosed nature of the Jinsha Site
Exhibition Hall, especially during the daytime, when there is
a continuous air exchange between indoors and outdoors. By
contrast, the Pottery Depot of the Terracotta Warriors and
Horses Museum is almost completely enclosed, which effec-
tively limits the transmission of pollutants from outdoors to
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Fig. 1 Indoor/outdoor and open/closed days PM2.5 mass concentrations.
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indoors. The difference in PM2.5 mass concentrations between
indoors and outdoors was significantly increased on days
when the Exhibition Hall was closed, with differences of
17.0±5.1 μg m−3 when it was closed and 3.5±6.0 μg m−3

when it was open. This further illustrates the important role
of air exchange between indoors and outdoors in the transmis-
sion of air pollution at Jinsha Site Exhibition Hall.

The outdoor PM2.5 mass concentration during the daytime
(40.9±6.3 μg m−3) was slightly higher than that at night (38.0
±14.8 μg m−3). By contrast, the indoor PM2.5 mass concen-
trations during the daytime (33.7±5.7 μg m−3) and night-time
(32.9±7.3 μg m−3) were similar. A comparative study found
that when the museum was closed during the daytime, the
average indoor PM2.5 mass concentration was 29.8±3.0μg
m−3, which is lower than the average PM2.5 mass concentra-
tion of 34.6±5.8 μg m−3 when the museum was open during
the day and also lower than that at night (32.6±7.3 μg m−3).
Human activity during the days when the museum was open
may be an important reason for the increase in PM2.5 mass
concentrations. This difference in the PM2.5 mass concentra-
tion between day and night was also seen at the Emperor Qin’s
Terra-cotta Museum (Hu et al. 2009).

It must been noted that our study was carried out during the
coronavirus disease 2019 pandemic period, when the museum
adopted a single-day flow limit of 1000 people. The number
of visitors was therefore significantly less than before the pan-
demic, and the impact of human activities on the indoor air
quality was greatly reduced.

Chemical composition of PM2.5

Carbonaceous component

The OC in the atmosphere can be divided into primary OC
emitted directly by primary emission sources (including natu-
ral and anthropogenic sources) and SOC formed through ox-
idation of reactive organic gases followed by gas-to-particle
conversion processes in the atmosphere (Bozzetti et al. 2016;
Huang et al. 2014; Gelencsér 2004). The EC is mainly derived
from the incomplete burning of fossil fuels and biomass (Luo
et al. 2021). The difference between the indoor and outdoor
concentrations of OC was 0.6±2.4 μg m−3 throughout the
observation period, whereas the difference in EC was 0.1
±0.4 μg m−3 (Fig. 2). The concentrations of carbonaceous
components were similar in the two environments as a result
of the frequent air exchange between indoors and outdoors.

The OC/EC ratio is generally considered to be an important
indicator of the source of PM2.5. SOC is considered to be
present when the OC/EC ratio is >2 (Chatterjee et al. 2021).
In our study, the outdoor and indoor OC/EC ratios at the
Exhibition Hall were 5.9 and 5.7, respectively, clearly indicat-
ing the presence of SOC. Meanwhile, the proportion of out-
door SOC in OC (33%) was higher than that of indoor (27%).

In addition, the indoor concentrations of OC, EC, and SOC
were similar during the night (7.7±1.2, 1.5±0.3, and 1.6
±0.8 μg m−3, respectively) and during the day (7.3±0.7, 1.2
±0.2, and 1.5±0.9 μg m−3, respectively). The outdoor concen-
trations of EC were similar during the day and night (1.4±0.5
vs. 1.3±0.3 μg m−3), whereas OC was lower during the night
(7.1±1.7 μg m−3) than during the day (9.2±2.7 μg m−3).

Water-soluble inorganic ions

Water-soluble inorganic ions (WSIIs) are important compo-
nents of PM2.5 and can contribute to haze pollution (Wu et al.
2018). The indoor and outdoor average mass concentrations
of WSIIs were 13.2±5.5 and 13.2±6.0 μg m−3, accounting for
39.3 and 33.5%, respectively, of the total PM2.5. Among the
WSIIs, SO4

2−, NO3
−, and NH4

+ (SNA) were the dominant ion
components, accounting for 69.9 and 59.2% of the total in-
door and outdoor WSIIs, respectively (Fig. 3). The SNA com-
ponents were mainly derived from the secondary conversion
of their gaseous precursors (e.g., SO2, NOx, and NH3) (Xie
et al. 2020). The concentrations of SO4

2−, NO3
−, and NH4

+

were as follows: indoor, 5.3±2.4, 0.7±0.7, and 3.2±2.4 μg
m−3, respectively, and outdoor, 4.5±2.1, 0.6±0.5, and 2.8
±1.7 μg m−3, respectively. Ca2+ is a typical tracer of soil and
construction dust (Liu et al. 2017), and its indoor concentra-
tion (1.3±0.7μg m−3) was lower than the outdoor concentra-
tion (2.3±2.1 μg m−3). This is because the outdoor sampling
site was located in the center of a square with a much higher
contribution from soil dust. In addition, the indoor (0.5±0.3

OC      SOC      EC

M
a
s
s
 c

o
n

c
e
n

tr
a
ti

o
n

(μ
g

·m
-3

)

Outdoor Indoor

10

8

6

4

2

0

Fig. 2 Indoor and outdoor concentrations of carbon components (OC,
EC, SOC) of PM2.5

Fig. 3 Indoor and outdoor WSIIs compositions
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and 0.1±0.1 μg m−3) and outdoor (0.6±0.3 and 0.2±0.2 μg
m−3) concentrations of K+ and Mg2+ were both similar.

PM2.5 acidityWe used the ratio of the anion and cation equiv-
alents to calculate the acidity of the indoor and outdoor PM2.5

(Cheng and Zhang 2017):

AE ¼ Cl−½ �=35:5þ SO4
2−� �

=48þ NO3
−½ �=62

CE ¼ Naþ½ �=23þ NH4
þ½ �=18þ Kþ½ �=39þ Mg2þ

� �
=12þ Ca2þ

� �
=20

where AE represents the anion equivalent in the sample and
CE represents the cation equivalent in the sample.

The calculation shows that the indoor and outdoor ratios of
AE/CE were 0.53 and 0.38, respectively, indicating that both
the indoor and outdoor PM2.5 were alkaline. The outdoor
PM2.5 was more alkaline than the indoor PM2.5, consistent
with the higher alkaline ions concentrations in the observa-
tions and the differences between the indoor and outdoor con-
centrations. These results are also consistent with those at the
Qianhu Campus of Nanchang University (Huang et al. 2012).
Previous studies have shown that both alkaline or acidic par-
ticles could cause serious damage to cultural relicts and affect
their color (Hu et al. 2015; Mašková et al. 2017). Moreover,
these particles could cause serious harm to human skin and
respiratory system (Nowatzki 2008).

The existing forms of SNA The main component of WSIIs is
SNA, and the existing form of SNA is important in the anal-
yses of the formation of PM2.5 pollution. Previous studies
have shown that NH4

+ usually preferentially combines with
SO4

2− to form (NH4)2SO4 or NH4HSO4, and then the remain-
ing NH4

+ will combine with NO3
− to form NH4NO3 (Li et al.

2017; Wang et al. 2019b). The regression equations for NH4
+

and SO4
2− at the indoor and outdoor monitoring points were y

= 3.5641x − 0.0201 and y = 3.2919x + 0.002, respectively.
The slopes were both >2, indicating that the SO4

2− in both the
indoor and outdoor atmosphere combined with NH4

+ to gen-
erate (NH4)2SO4, and there was some excess NH4

+ remaining.
The further linear fitting of the indoor and outdoor NH4

+ and
NO3

− + 2SO4
2− concentrations showed that the slopes of the

indoor and outdoor regression equations were both >1 (1.8
and 1.6, respectively), indicating that the NH4

+ combinedwith
SO4

2− and NO3
− and there was some excess NH4

+ remaining.
Both the indoor and outdoor NH4

+ mainly existed as
(NH4)2SO4 and NH4NO3, and the excess NH4

+ was available
to combine with other anions (such as Cl−).

Ion correlation The Pearson correlation analysis was carried
out on the WSIIs in the indoor and outdoor PM2.5, and the
results were very similar. We therefore use the results for the
outdoor PM2.5 in further discussions. Table 1 shows that the
correlation coefficients (R2) between the SNA components
were >0.5, consistent with their similar mechanisms of

formation (secondary reactions). The correlation coefficients
(R2) between Na+, Mg2+, and Ca2+ were all >0.9, indicating
that these three ions have a high homology, closely related to
their sources in soil and construction dust (Huang et al. 2018;
Liu et al. 2017; Yu et al. 2020). Cl− and K+ also showed a
strong correlation (R2 > 0.8), which may be related to contri-
butions from combustion sources, such as coal combustion
and biomass burning.

Trace elements

The total outdoor concentration of trace elements was slightly
higher than the indoor concentration throughout the study
period, with average values of 4.0±1.7 and 2.7±0.5 μg m−3,
respectively. The total contribution of Al and Fe accounted for
85.9 and 86.8% of the outdoor and indoor trace elements,
respectively (Fig. 4).

We used Al as a reference element to calculate the EF
of trace elements in PM2.5 (Table 2). Apart from Cu,
which had a mixed source outdoors and an anthropogenic
source indoors, there was no difference in the degree of
enrichment of other trace elements, and they had the same
level of enrichment both indoors and outdoors. Al, V, Mn,
Fe, and Co had a crustal source; Cr, Ni, Cu (outdoor), Zn,
As, and Pb had a mixed source; and Cu (indoor) and Cd
had an anthropogenic source. The EF value of Cd both
indoors and outdoors was >100, and almost all the Cd
was from human activity.

Principal components analysis (PCA)

PCA was performed with the chemical components quan-
tified in the PM2.5 filters to identify the main sources of
PM2.5 at the Jinsha Site. We used the outdoor observa-
tions for source analysis because there is no unique indoor
emission source in the Jinsha Site Exhibition Hall, and the
indoor PM2.5 is mainly from the transmission of outdoor
air pollutants. Table 3 shows that the cumulative contri-
bution rate of the four principal components reached
82.1%, and we therefore assume that these components
represent the main sources of PM2.5.

In factor 1, the OC, EC, Al, Mn, Fe, Ni, Cu, Zn, As, Cd,
and Pb had higher loading values, and the variance explana-
tion ratio reached 36.4%. The OC mainly comes from com-
bustion sources such as fossil fuels (Cao et al. 2006). The EC
mainly comes from tailpipe exhaust fumes and is attributed to
poor vehicle maintenance (Song et al. 2006). Zn, Cu, and Pb
come from the mechanical wear of motor vehicles, gasoline
combustion, and tire wear (Hou et al. 2019), whereas Ni is
characteristic of fuel combustion (Fan et al. 2021). Factor 1
can therefore be comprehensively identified as sourced from
motor vehicles.
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The loading values of Ca2+,Mg2+, Na+, V, Cr, and Cowere
higher in factor 2, and the variance explanation ratio was
22.1%. Ca2+ generally comes from soil dust or building con-
struction. Mg2+ mainly comes from soil (Cao et al. 2006). Na+

can come from dust or industrial smelting, such as steel-
making (Han et al. 2007; Silva et al. 2000). V may be derived
from soil, wind, or sand (López et al. 2011). Cr may be de-
rived from cement production dust or the metallurgical indus-
try (Li et al. 2021). Co is characteristic of the metallurgical
chemical industry (Hsu et al. 2021). V, Cr, and Co may
originate from the formation of industrial dust, indicating
that the dust sources are mixed with soil, sand, construction,
and industrial dust. Liang et al. (2018) reached a similar con-
clusion in the analysis of PM2.5 fugitive dust sources in
Guiyang. Factor 2 can therefore be identified as a source of
dust.

Factor 3 was dominated by SNA components, and the var-
iance explanation ratio was 14.4%. The main source of SNA
is the secondary conversion of gaseous pollutants (SO2, NOx,
and NH3) (Tang et al. 2021). This is consistent with the results
of Huang et al. (2021) that secondary sources are related to
SNA. Factor 3 can therefore be identified as a secondary
source.

The characteristic elements in factor 4 were K+ and Cl−,
and the variance explanation ratio was 9.3%. K+ and Cl− are
indicators of biomass combustion and coal combustion, re-
spectively (Luo et al. 2018). Therefore this factor can be iden-
tified as a combustion source. Boman et al. (2004) analyzed
PM from the residential combustion of pelletized biomass
fuels and found that KCl was the dominant inorganic phase,
consistent with our results.

Classification and mixing state of individual particles

In our study, all the individual particles measured by TEM
were classified as five major aerosol components based on
their morphology and elemental composition (Li and Shao
2009): organic matter (OM); S-rich, soot, mineral, and fly
ash/metal particles (Fig. 5). The morphology of the OM par-
ticles was stable under irradiation from the TEM electron
beam. The OM particles were mainly composed of C and O,
and their morphology was either regular spherical and irregu-
lar. In addition, there were semi-dome-like OM particles,
mainly in the form of organic coatings. The S-rich particles
weremore sensitive to the TEM electron beam andwere prone
to sublimation. Therefore the S-rich particles had a foam-like

Table 1 Correlation coefficients among WSIIs in outdoor PM2.5 at the Jinsha Site Museum.

Na+ NH4
+ K+ Ca2+ Mg2+ Cl− NO3

− SO4
2−

Na+ 1 0.102 0.344 0.999** 0.907** 0.469* 0.159 0.112

NH4
+ 1 0.289 0.102 −0.013 0.188 0.857** 0.738**

K+ 1 0.327 0.128 0.821** 0.320 0.154

Ca2+ 1 0.921** 0.451* 0.146 0.119

Mg2+ 1 0.256 −0.064 0.053

Cl− 1 0.359 0.207

NO3
− 1 0.518*

SO4
2− 1

**Correlation significant at p ≤ 0.01

*Correlation significant at p ≤ 0.05

Fig. 4 Compositions of trace
elements in indoor and outdoor
PM2.5.
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structure, and the main elements were C, O and S. Soot parti-
cles, derived from the incomplete combustion of fuels and
other sources, were composed of C and O, mainly chains or
clusters of carbon spheres. The mineral particles were regular
rectangular or angular irregular in shape. Because they mainly
come from construction and ground dust, the particles were
mainly composed of C, O, S, and Ca and also contained small
amounts of crustal elements such as Fe and Al. The fly ash/
metal particles had a very small particle size and smooth sur-
faces and mainly came from industrial activities. The main
elements were C, O, and Si and metals such as Fe and Zn.

Pósfai and Buseck (2010) described the mixing state of an
aerosol particle including externally mixed (separated in the

air) and internally mixed (an aggregate of different phases).
Through the analysis of the mixing state of particles, the
sources and formation mechanism of them can be analyzed
(Li et al. 2014b). In this study, most of the particles existed in
the form of internal mixing and presented a variety of mixed
forms (Fig. 6). According to the mixing state of particles, we
can infer their sources and formation mechanism in the atmo-
sphere. For example, the pre-existing OM particles in the at-
mosphere can provide a reaction interface for the condensa-
tion of gaseous precursors, such as SO2, and heterogeneous
reactions, which favors the formation of OM–S particles (Fig.
6a, b). Mineral particles are rich in alkaline substances, and
their surface is an important interface for secondary reactions
of acidic gaseous pollutants (SO2, NOx) to form mixed parti-
cles of mineral dust and sulfate (Fig. 6i). Although the contri-
bution of metal particles in PM2.5 was low, it has been the
focus of previous studies. This is because metals present a
serious threat to human health and involved in the formation
of some PM2.5 species, such as OM and sulfate. Fig. 6 c, d, e,
and g show that the fly ash/metal particles were widely mixed
with other types of particle.

Table 2 Enrichment factors (EF) for trace elements.

EF Al V Cr Mn Fe Co Ni Cu Zn As Cd Pb

Outdoor 1 1 37 2 1 2 27 66 74 18 573 39

Indoor 1 1 12 2 1 1 24 130 70 24 452 23

Table 3 Rotation factor load
matrix of chemical components in
outdoor PM2.5.

Components Factor 1 Factor 2 Factor 3 Factor 4

OC 0.809 −0.220 0.072 0.260

EC 0.456 −0.260 0.650 0.318

Na+ −0.097 0.876 0.090 0.301

NH4
+ −0.049 −0.033 0.948 0.127

K+ −0.076 0.125 0.200 0.895

Ca2+ −0.081 0.889 0.090 0.279

Mg2+ 0.063 0.960 −0.032 0.062

Cl− 0.050 0.291 0.170 0.842

NO3
− −0.077 −0.084 0.838 0.301

SO4
2− 0.131 0.113 0.843 −0.056

Al 0.934 0.198 0.003 −0.062
V 0.352 0.857 −0.157 −0.087
Cr 0.125 0.909 −0.073 −0.035
Mn 0.908 0.366 −0.078 −0.001
Fe 0.878 0.009 0.097 −0.080
Co 0.404 0.543 −0.066 0.039

Ni 0.807 0.234 −0.040 0.050

Cu 0.894 −0.104 −0.158 0.114

Zn 0.715 0.121 −0.370 0.061

As 0.830 0.147 0.175 −0.075
Cd 0.901 0.060 0.214 −0.163
Pb 0.927 0.048 0.222 −0.107
Characteristic value 8.011 4.853 3.164 2.043

Variance contribution rate (%) 36.413 22.059 14.380 9.288

Cumulative variance contribution
rate (%)

36.413 58.472 72.852 82.140

Source Motor vehicles Dust Secondary sources Combustion sources
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Fig. 5 TEM images of different types of particle.

Fig. 6 TEM images of individual mixed particles.
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Conclusions and suggestions

In order to investigate the characteristics of atmospheric par-
ticulate pollution in Jinsha Site Museum, we collected indoor
and outdoor PM2.5 samples and individual particles at the
Exhibition Hall of Jinsha Site Museum in June 2020, and then
the chemical components, sources, morphology, and mixing
state of the fine PM were analyzed. The results show that the
indoor and outdoor PM2.5 mass concentrations at Jinsha Site
Exhibition Hall were 33.3±6.6 and 39.4±11.4 μg m−3, respec-
tively. The opening and closing of the museum had an impor-
tant impact on indoor and outdoor PM2.5 concentration levels.
The indoor and outdoor OC/EC ratios were both >2, and their
PM2.5 were both alkaline. SO4

2−, NO3
−, and NH4

+ (SNA)
were the dominant ion components, accounting for 69.9 and
59.2% of the total indoor and outdoor WSIIs, respectively.
The main sources of PM2.5 at Jinsha Site Museumwere motor
vehicles, dust, secondary sources, and combustion sources.
All individual particles were classified as OM, S-rich, soot,
mineral, and fly ash/metal particles. Most of these particles
were internally mixed with each other, which is crucial in
analyzing the sources andmechanism of formation of particles
in the atmosphere.

In order to improve the air quality of Jinsha Site Museum
and provide better preservation and sightseeing environment
for cultural relicts and tourists, we put forward the following
suggestions for improving the air quality based on the results
of this study. Firstly, to reduce the outdoor pollution sources,
the dust on the bare ground around the Exhibition Hall should
be reduced by spraying with water, and the area of greening
around the Exhibition Hall could be further improved by
planting taller trees to block the transfer of pollutants from
the surrounding areas. Secondly, to reduce indoor pollution,
the air tightness of the Exhibition Hall should be improved
and the air exchange between indoors and outdoors reduced
by a curtain system at the entrance and exit. Air purification
equipment should be installed to remove the existing indoor
pollutants. Green building materials should be used for sec-
ondary decoration to reduce potential sources of indoor
pollutants.
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