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Abstract
We analyze the dynamic correlation between the carbon price and the stock returns of green energy companies and calculate the
hedging effect of the carbon price on stock returns in green energy sectors. The results show that the coefficients of the carbon
price change with time and are vulnerable to extreme events like the COVID-19. The quantile-on-quantile (QQ) model results
reveal a dynamic effect from the carbon price to the stock returns of green energy sectors. The quantile coherency (QC) approach
results show that investors can benefit more in the short term with high-frequency trading to hedge between carbon trading and
the green energy stock market. What is more, the hedging effects are heterogenetic and investors should adjust their hedging
strategies in different quantiles.
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Introduction

Green energy, defined by Walker and Devine-Wright (2008),
includes the energy produced sustainably from biomass and
that produced by indefinitely regenerated sources, like hydro-
power, solar, and wind energies. With the awareness that coal,
oil, and gas are the major causes of pollution and lead to
environmental degradation, the green energy sectors have be-
come vertical to the global economy in the past decade
(Khurshid and Deng 2020). The growth of energy demand
and the constraints of reduced carbon emissions will make it
more challenging for the global economy to achieve green
growth (Wang et al. 2020).

Compared with traditional fossil energy, the resource scale
of green energy is 800 times that of the former. Therefore, the
attributes of manufacturing are far greater than the attributes of

resources, which will promote the manufacturing industry to
better play its advantages in photovoltaic, wind power, lithium
battery, and hydrogen energy industries. After generating
economies of scale and technological iteration, energy costs
will be further reduced, bringing more economical costs.
Some research finds that with the carbon price rising, invest-
ments in green energy firms would be encouraged (Kumar
et al. 2012). While carbon emission rights trading covers mul-
tiple high-emission and high-energy-consuming industries
such as electricity, steel, heating, truth, and oil refining.
Therefore, the carbon price affects the upgrading and transfor-
mation of these industries, which in turn affects the stock
returns of listed companies in these industries. The carbon
price is the major factor to be considered when a
pollution-generating company implements green technology
in operational decisions (Pan et al. 2021). It is also studied that
carbon price could facilitate the adoption of carbon capture
and storage technology and can effectively reduce coal-related
greenhouse gas emissions (Jie et al. 2020).

Apart from affecting the technology improvement and the
costs of the green energy companies, the carbon price affects
the stock prices of green energy companies by affecting cor-
porate earnings. When the carbon price is low, emission con-
trol companies generally tend to buy carbon emission rights,
and green energy companies save a large number of carbon
allowances available for sale due to the advantages of
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emission reduction technology and new energy technology.
Carbon trading gains additional income, and the increase in
income drives up corporate stock prices. When the price of
carbon emission rights is high, companies turn to seek alter-
native energy sources or introduce emission reduction tech-
nologies and equipment to reduce carbon emissions and pre-
vent excess emissions. It creates more market demand for
green energy companies to sell new energy technologies,
equipment, and services. Besides, it helps green energy com-
panies increase their profits, which in turn drives the simulta-
neous rise of stock prices. In addition, the carbon market plays
the role of resource allocation through carbon price signals
and guides the flow of social capital to more environmentally
friendly new energy companies, which will help reduce the
financing costs of green energy companies and boost their
market value and stock price growth. In short, green energy
companies can benefit from the change of carbon price, and
their stock prices are always positively affected by the price of
the carbon price.

The contribution of this paper is as follows: (i) to our best
knowledge, this is the first paper to analyze the correlation of
the carbon price and the stock returns of different green energy
industries; (ii) we apply some novel quantile approaches in
this study to expand the previous literature in this field; (iii)
it provides some feasibility suggestion for the investors in the
carbon trading and green energies fields.

The remainder of this paper is as follows. Section 2 reviews
the related literature. Section 3 introduces the main methodol-
ogy utilized in this paper. Section 4 shows the dataset and
some preliminary results based on the raw data. Section 5
illustrates the dynamics of the carbon price and stock returns
of the green energy market from a quantile perspective.
Section 6 concludes the paper.

Literature review

The relationship between the carbon price and stock markets
has been widely discussed since carbon trading becomes the
most cost-effective emission reduction tool to deal with cli-
mate change (see Moreno and Silva 2016; Fang et al. 2018;
Reboredo and Ugolini 2018; Mejdoub and Ghorbel 2018;
Pereira and Pereira 2019; Krokida et al. 2020; Wen et al.
2020a, b; Batten et al. 2020; Duan et al. 2021). Researches
find that key energy prices, including coal, gas, oil, and elec-
tricity, explain 12% of carbon price variation (Batten et al.
2020). The establishment of China’s carbon emissions trading
market and the opening of carbon prices promote the carbon
premium in the stock returns of the listed companies that par-
ticipate in carbon emission trading. Those companies always
need higher carbon exposures (Wen et al. 2020a).
Furthermore, Wen et al. (2020b) reveal an asymmetric rela-
tionship between the carbon price and stock returns in China.

A rise in carbon price shows a higher spillover effect on the
stock market than a decrease in the carbon price. Fang et al.
(2018) find that in different countries, the correlation of car-
bon and stock returns are significantly multifractal.

This paper is related to two strands of literature. The first
strand is the literature analyzing the correlation between the
carbon price and the stock returns of green energy companies.
Since the electricity sector is the main participant in the
European Union Emissions Trading Scheme (EU-ETS), the
carbon price has a strong interdependence with electricity
stock returns (see Tian et al. 2016; Ji et al. 2019; Kanamura
2019; Keeley 2019; Zhu and Ancev 2020). Tian et al. (2016)
find that the carbon price affects the volatility and magnitude
of electricity stock returns. The volatility of electricity stock
returns is significantly driven by carbon price volatility.
Besides, the carbon-intensive electricity companies are vul-
nerable negatively affected by the carbon price, compared to
the less carbon-intensive electricity companies. Ji et al. (2019)
suggest that the carbon price impacts the stock return of elec-
tricity companies with varying degrees of spillover effects.
Large electricity companies receive a higher but less stable
spillover effect from the carbon price than the small ones.
Zhu and Ancev (2020) investigate that the carbon price tends
to raise the electricity prices, which enhances the expectation
of the stock returns of the electricity companies. The metal-
lurgical sector is another important participant in the EU-ETS.
Moreno et al. (2017) find that carbon price affects the opera-
tion of a firm, which is contributed to the fluctuation of the
stock returns.

The second strand relates to the methodology in analyzing
the correlation of return series. The GARCH family method is
the most popular one in analyzing the correlation of the energy
market (see Balcilar et al. 2016; Jiang et al. 2019; Hung 2019;
Muhammad et al. 2021; Meng et al. 2020;). Applying a
Markov regime-switching dynamic correlation, Balcilar
et al. (2016) generalized the autoregressive conditional
heteroscedasticity (MS-DCC-GARCH) method to capture
the time-varying risk spillover effect from the energy futures
prices and carbon prices. With the employment of a
two-regime threshold vector error correction with the DCC-
GARCH model, Muhammad et al. (2021) analyze the nonlin-
ear price transmission mechanisms from the crude oil price to
the green energy stock returns. Another method that is widely
utilized is the quantile regression approach (see Tan andWang
2017; Zhu et al. 2018; Jiang et al. 2020; Duan et al. 2021). Zhu
et al. (2018) use a panel quantile regression approach to in-
vestigate the affection of carbon price on the stock returns of
European carbon-intensive industries. They conclude that the
influences show heterogeneous and asymmetric character in
different quantiles. Duan et al. (2021) apply the
quantile-on-quantile (QQ) regression and the causality-
in-quantiles approach to analyze the asymmetric and
negative impacts of energy prices on carbon prices.
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From the literature above, it can be summarized that the
extant literature on the effect of the carbon price on the green
energy market focuses on the electrical sector. However, giv-
en that many other green energy industry companies, such as
the wind, solar industries, are contributing to the green devel-
opment, it is virtual to investigate that to what extent they are
affected by the carbon price. Motivated by this, we collect
different kinds of indexes that reflect the stock returns of dif-
ferent green energy industries to investigate the dynamic cor-
relation between the carbon price and the stock returns of
green energy industries.

Research methodology

Quantile regression analysis

We first adopt the quantile regression model1 to get some
basic results in measuring the dynamic effects of the carbon
price on the stock returns of green energy sectors:

Qτ Comtð Þ ¼ μ0;τ þ β0
1;τCt ð1Þ

where Ct is the carbon price at time t, Comt is the stock returns
of the green energy sectors at time t. The coefficient β denotes
the impact of the carbon price on green energies over
quantiles. The advantage of the quantile regression model is
that it does not need any distribution assumption but has an
optimal solution. To be more specific, it takes a sample with

the empirical distribution randomly: bFy θð Þ ¼ 1
n ≠ yi≤θf g.

Quantile-on-quantile approach

The quantile-on-quantile (QQ) model, proposed by Sim and
Zhou (2015), has been widely applied in studies of economic
activities (See Jiang et al. 2020; Naifar et al. 2020).

In this part, we introduce the main part of this approach to
analyze the dynamic relationship of the carbon price and the
stock returns in the green energy sectors. The QQ method,
combining a nonparametric method to illustrate the dynamic
structure over quantiles, is an expansion of the traditional
quantile regression methods. Then, to test the effect of the
carbon price on stock returns in green energy sectors, we
begin our study from a regression equation with Taylor ex-
pansion (first-order) to decompose the quantile regression co-
efficient βθ(∙) that we are interested in:

Comt≈βθ0 Cτð Þ Ct−Cτð Þ þ μθ
t ð2Þ

where Ct is the carbon price at time t, Comt is the stock returns
of the green energy sectors at time t. θ means the θth quantile,

μθ
t is the quantile residue, and β

θ′(Ct) is the partial derivative of
βθ(Ct).

Following Mo et al. (2019), we solve a local optimization
problem by replacing Ct and C

τwith the empirical counterpart
and further the local linear regression’s estimates b0 and b1 are
used to replace β0 and β1:

minb0;b1∑
n
i ρθ Comt−b0−b1 bCt−bC
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where ρθ(u) is the quantile loss function with ρθ(u) = u(θ −
I(u < 0)), I is an indicator function, and K(∙) refers to a con-
ventional kernel function. Following Sim and Zhou (2015),
Sim (2016), and Shahbaz et al. (2018), the Gaussian kernel is
introduced here to calculate the neighborhood of Cτ. Besides,
the bandwidth parameter2 h = 0.05 is considered in this paper.

Quantile coherency approach

The quantile coherency approach proposed by Baruník and
Kley (2019) is a novel method that can calculate the general
dependence by quantiles of the joint distributions in different
frequencies. In this paper, we use it to study the dependence
between the carbon price and the stock returns of green energy
sectors as frequencies and quantiles change.

Set the carbon price and the stock returns of green energy
sectors be two stationary series as X = {xt} and Y = {yt},
respectively. Then, the dynamic dependence between X and Y
can be defined as follows:

ð4Þ
where −π ≪ ω ≪ π, τ ∈ [0, 1], ϜX, Y, ϜX, X, and ϜY, Y denote
quantile cross-spectral and quantile spectral densities of pro-
cesses {xt} and {yt}, respectively.

Hedging effects

To verify the results of the QC approach, we further introduce
the hedging effects (HE) index (Basher and Sadorsky 2016),
which is a measurement of the hedging effect. We first calcu-
late the risk-adjusted performance of the hedged portfolio and
the unhedged portfolio in each series. Set RH, t is the return on
a hedged portfolio including carbon trading and stock in green
energy sectors:

RH ;t ¼ RS;t−γtRC;t ð5Þ

1 See Koenker and Bassett (1978) for a textbook treatment.

2 We have worked on some other alternative bandwidth values working as
robustness check which can be obtained upon request.
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where γt means the hedge ratio, and RS, t and RC, t denote the
stock return in green energy sectors and the carbon price at
time t, respectively. Hence, given information with It − 1, the
variance of the hedged portfolio conditional is

var RH ;tI t−1
� � ¼ var RS;tI t−1

� �
−2γtcov RC;t;RS;tI t−1

� �

þ γ2t var RC;tI t−1
� � ð6Þ

The optimal hedge ratios (OHRs) that minimize the condi-
tional variance var(RH, tIt − 1) on the information set at time t
− 1 is following Baillie and Myers (1991):

γ*t I t−1 ¼
cov RS;t;RC;tjI t−1

� �
var RC;tjI t−1

� � ð7Þ

Following Basher and Sadorsky (2016), we utilize a mul-
tivariate generalized orthogonal GARCH (GO-GARCH)
model of Weide (2002) and assume a multivariate affine
NIG distribution. As in the quantile cross-spectral approach,
the mean equation also includes an auto-regressive (AR(2))
term and a constant. For example, a long position in the stock
of green energy sector hedge with a short position in the car-
bon trading market can be calculated as follows:

γ*t jI t−1 ¼
hSC;t
hC;t

ð8Þ

where hSC, t is the conditional covariance, and hC, t is the
conditional variance of the carbon price. And the HE index
is calculated as:

HE ¼ varunhedged−varhedged
varunhedged

ð9Þ

Data and statistics

In this paper, we use the daily data spanning from 14 October
2013 to 30 December 2020 with 1568 observations to analyze
the dynamic relationship between the carbon price on the
stock return of the green energy market. The dataset includes
two types of data. First, we adopt the emission certificates
(EUA), which are determined by the EU emission trading
system (ETS) as the carbon price. Second, we use the
Wilder Hill Clean Energy Index (hereafter ECO), the S&P
Global Clean Energy Index (hereafter S&P), European
Renewable Energy Index (hereafter REIX), the Clean
Energy Technology Index (hereafter TEC), World Solar
Energy Index (hereafter SOLAR), and the Global Wind
Energy Index (hereafter WIND) to represent the green energy

market, including solar, photovoltaic, wind, and other renew-
able energy3.

To show the fluctuations of all the indexes, we plot the
time-paths of seven original data of stock returns of green
energy firms in Fig. 14. ERIX, S&P, TECH, and WIND fluc-
tuate smoothly before 2020 but rise rapidly after 2020, which
underwent a two-year lag according to EUA. Besides, ECO
and SOLAR turned out to decline before 2016, remain steady
on a low level from 2016 to 2020, and increase after 2020.

The descriptive statistics for carbon price return and other
green energies index returns are shown in Table 1. It can be
seen that the mean of each series is positive, and the normality
test suggests that all series do not follow a normal distribution.
Besides, from the skewness, all the series are negative, which
means that the carbon price always leads to a negative shock
on the green energy markets. The ADF test implies that all the
time series are stationary.

Fig. 2 shows Pearson’s correlation matrix, which illustrates
the varying degree of dependence between all the pairs. It can
be noticed that the carbon price return has a positive correla-
tion with all the series except ECO. Among the green ener-
gies, most of them have a strong dependence on each other,
which means that these series can be integrated.

Empirical analysis

Quantile regression with rolling windows

In this part, we first utilize the conventional quantile regres-
sion with 7 quantiles to analyze the effects of the carbon mar-
ket on the green energy markets. The quantile results are
shown in Table 2. It is suggested that all pairs have significant
explaining power except the EUA-ECO pair. Specifically, the
effects of all pairs are positive at all quantiles except for 3

3 (1) The ECO index is computed by the American Stock Exchange as an
equal-dollar-weighted index for a set of companies involved in activities re-
lated to the use of cleaner energies and conservation. (2) The S&P index is
computed as the weighted value of 30 companies around the world with clean
energy production and clean energy equipment and technology activities. (3)
The REIX index traces the price of the 10 largest and most liquid stocks from
the list of Energy Company in the field of renewable energy, such as wind,
solar, biomass, and water energy. (4) The TEC index is selected to delegate the
clean energy technology sector and we use FTSE ET50 as a proxy for this
index, which is a weighted index consisted of 50 global firms that have core
business in clean energy technologies. (5) The SOLAR index consists of the
largest companies in the fields of photovoltaic energy and thermal solar appli-
cations. Each component has a minimumweight of 5%. The remaining weight
is allocated according to market capitalization. The SOLAR index is
rebalanced every quarter and an index review takes place every six months.
(6) The WIND index is selected to delegate the clean energy wind sector and
we use ISE Global Wind Energy Index as a proxy for this index, which tracks
public companies that are active in the wind energy industry based on analysis
of the products and services offered by those companies.
4 The data source are as follows: EUA is from Wind database. ECO,
S&PGCE, TEC, and WIND are from Investing.com. ERIX and SOLAR are
from https://www.sgindex.com.
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insignificant negative coefficients for the EUA-ECO pair at
the quantile level of 0.25, 0.5, and 0.9, separately. The regres-
sion coefficient of the low quantile (10%) is bigger than the
regression coefficient of the high quantile (90%), which indi-
cates that the impact of the carbon price plummet is greater.
EUA-ERIX shows a relatively strong co-movement, which is
mainly because the REIX index is composed of the 10 largest
and most liquid stocks in the green energy field.

Though the results of the conventional quantile regression
show a basic co-relationship of the series, it does not illustrate
the dynamic co-movement of them. So, we then apply the
rolling window quantile regression (Naifar et al. 2020) with
#95 to further explain the varying effect of carbon price shock
on the green energy markets over time. The results are shown
in Fig. 3. We mainly discuss the effect of the carbon price on
the green energy market in 10 quantiles and 90 quantiles.

From Fig. 3, it is easy to find the quantile regression coef-
ficients differ with time. It also shows that the carbon price
return is easier to shock the green energy market when some

extreme events happen, like the COVID-19 that spread glob-
ally after 2020. Besides, it reveals that the most significant
coefficients are in EUA- ERIX pair due to a high level of
the dashed gray line. This is also consistent with the results
shown in Table 2. As for all the pairs, after 2020, the variation
of crude oil on S&P, TECH, WIND, and SOLAR is high
according to the red line with a high quantile (90%). The blue
line with a lower quantile (10%) turns out to be a lower level
than the red line in all pairs.

Quantile-on-quantile results

In this part, we use the quantile-on-quantile method to analyze
the varying effect of the carbon price returns on the green
energy markets with results in Fig. 4. It can be seen that the
effects change with quantiles and the effect shows
heterogenetic and asymmetrical characters following
Hammoudeh et al. (2014).

Fig 1 Time series plot of the
carbon price and stock returns of
green energy sectors

Table 1 Descriptive statistics

EUA ERIX ECO S&P TECH WIND SOLAR

Mean 0.0527 0.0446 0.0002 0.0342 0.0276 0.0212 0.0207

Median 0.0557 0.0704 0.0183 0.0558 0.0411 0.0330 0.0655

Max 5.6710 4.5027 5.8642 4.6432 3.8552 4.2818 5.1024

Min -8.2380 -5.6332 -7.2006 -5.2417 -4.4842 -5.3579 -7.4565

Std. dev. 1.3502 0.7045 0.8116 0.6607 0.5418 0.5851 1.0452

Skew -0.5894 -0.5703 -1.2154 -0.5943 -0.7518 -0.7322 -0.5205

Kurt 8.0743 9.2073 16.3446 11.7559 12.3686 13.6058 8.0499

J.B 1773.05*** 2602.34*** 12020.44*** 5101.15*** 5882.11*** 7489.01*** 1736.89***

ADF -18.0843*** -15.8498*** -19.0523*** -16.2070*** -15.2790*** -16.3096*** -16.2240***

Obs 1568 1568 1568 1568 1568 1568 1568

Notes: J.B is normality test results. ADF is unit root test results. ***p < 0.01; *p < 0.05; *p < 0.01. Obs is observation numbers
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As for the EUA-ERIX pair, the overall effects of the carbon
price on the green energy stock return are mainly positive. At
higher quantiles of the carbon and a lower quantile of the green
energy, the effects turn negative. While in other major quantiles,
it shows a positive effect. In addition, as the quantile of the green
energy increases, the slope coefficient increases, as well. An
obvious asymmetrical character can be summarized at a high
quantile of carbon, higher quantile of ERIX. A similar asymmet-
rical property can be seen in the EUA-TECH pair. As for the
EUA-ECO pair, the effects are evenly distributed between -0.5
and 0.5. the asymmetric property is not so obvious. Regarding
the EUA-S&P pair, in most zones, the effects are average. But in
a lower quantile of green energy, the carbon prices with different
quantile have a different effect on the green energy. Regarding
the EUA-WIND pair, the average effect is positive. But with
carbon in higher quantile and green energy in lower quantile,
the effect is negative. Besides, as the green energy is in high
quantile, the effect shows an inverted U-shaped distribution. At
the middle quantile of the carbon, the slope coefficient is the
highest. An asymmetric character can be seen from this pair.

At last, following Shahzad et al. (2016) and Al-Yahyaee
et al. (2019), we applied the quantile regression (QR) and the
quantile-on-quantile (QQ) regression to test the validity of the
QQ estimates. We get a similar result from the two methods5,
which means the results are valid.

QC method results and hedging effects

To further analyze the different time-frequency (short, medi-
um, and long) impact of the carbon price on the stock return of

the green energies, we utilize the quantile coherency (QC)
approach, in which the 0.1, 0.05, and 0.5 quantiles are
involved, following Maghyereh and Abdoh (2020) and Jiang
et al. (2020). The results are shown in Fig. 5. In actual invest-
ment activities, zero or negative terms in the QC matrix are
signed as good choices which could reduce risks. Comparing
the three time-frequency, the short-term one turns out to dis-
play the best hedging effect, which indicates that
high-frequency trading in the carbon trading market and the
green energy stock market can obtain a higher yield.

To be more specific, the short-term QC matrix shows that,
at the lowest quantile (1%) of the carbon price and the highest
quantile (50%) of the green energies, the carbon and green
energy market show the best hedging effect with lots of zero
and negative terms. It shows that all the green energies except
SOLAR at a high quantile level can be good candidates for
hedging the risk from the carbon trading market. At a higher
quantile (5%) of the carbon price, all the green energies at a
high quantile level show a good hedging effect on the carbon.
While for the highest quantile (50%) of carbon and green
energies, ERIX does not show a good hedging effect while
others are a good choice. Similarly, the medium-term QC
matrix illustrates that in each quantile horizon of the carbon
price, ECO, S&P, and SOLAR at the high-frequency level are
always good hedging tools. In the long-term, at the lowest
quantile level of the carbon price, only WIND in the high
quantile level is not fit for hedging. At a 5% level of carbon
and 50% level of green energies, TECH is not a good choice
for hedging. It is interesting that when the carbon is at a high
level of 50%, ERIX and WIND at 5% level show good hedg-
ing effects. All the results verify that hedging strategies differ
with quantiles, which is consistent with Selmi et al. (2018).

The QC results show lots of choices of hedging candidates
in the short-term, fewer choices in the long-term, and the
medium-term choices are the least. It indicates that it is more
effective to hedge in the short term. What is interesting is that,
when the carbon price is at the extreme quantile (bear market),
more zero relationships are found between the carbon price
and green energy. While the carbon price is at the middle
quantile (normal market), hedging strategies are less. So when
the carbon price experiences the bear market, investors can
benefit from it.

We further investigate the hedging effect from the perspec-
tive of the time domain. Following the definition of the hedge
ratios and hedging effect in Eqs. (8) and (9), we calculate the
HE indexes and hedge ratios of the carbon and green energies.
The results are shown in Fig. 6. Based on our sample data, we
choose different rolling windows. In Fig. 6, (600, 30) means
that the model is fitted by 30 observations with 600
one-period-ahead forecasts.

Besides, we can obtain some revelations from Fig. 6(a).
The ratio tells us how many units of carbon we should buy
or sell when setting a portfolio of buying a green energy index.5 The results can be obtained upon request.

Fig. 2 Pearson’s correlation matrix between carbon returns and stock
returns in green energy sectors
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All the hedging ratios are positive, which indicates that a short
position in the carbon trading market is beneficial for inves-
tors. For instance, as for the EUA-TECH and the EUA-ERIX
pairs, the ratios are relatively higher and positive. The ratio

coefficient of the EUA-TECH is 0.43, which means a portfo-
lio with 100 units long position of TECH index and 43 units
short position of the carbon can obtain a higher hedging
benefit.

Fig. 3 Rolling-window quantile regression estimates of the impact of carbon returns on green energy indices return with windows=95. Notes: the blue
line and the red line are the 10% and 90% quantile, separately. The black line is the fraction of the statistically significant coefficients across the quantiles

Table 2 Quantile results for the carbon price on the stock return of green energy sector

Quantile 0.05 0.10 0.25 0.50 0.75 0.90 0.95 OLS

EUA-ERIX 0.2085*** 0.1378*** 0.1021*** 0.0618*** 0.0627*** 0.0493* 0.0473 0.0983***

(0.0235) (0.0325) (0.0153) (0.013) (0.0127) (0.0267) (0.034) (0.0129)

EUA-ECO 0.0277 0.0099 -0.0022 -0.0214 -0.0271* -0.0343 -0.0691* -0.0094

(0.0411) (0.0319) (0.0178) (0.0135) (0.0154) (0.0231) (0.0367) (0.0152)

EUA-S&P 0.1506*** 0.1178*** 0.0749*** 0.0414*** 0.0286** 0.0036 0.0657* 0.0804***

(0.0399) (0.0249) (0.0142) (0.01) (0.0126) (0.0228) (0.0383) (0.0122)

EUA-TECH 0.1716*** 0.1054*** 0.0650*** 0.0440*** 0.0293*** 0.0398** 0.048 0.0817***

(0.0339) (0.0208) (0.0115) (0.0083) (0.0098) (0.017) (0.0323) (0.0099)

EUA-WIND 0.1610*** 0.1041*** 0.0444*** 0.0367*** 0.0400*** 0.0401** 0.0481* 0.0725***

(0.0298) (0.0206) (0.014) (0.0097) (0.012) (0.0184) (0.0291) (0.0108)

EUA-SOLAR 0.2169*** 0.1338*** 0.0903*** 0.0534*** 0.015 0.0358 0.0508 0.0942***

(0.0625) (0.0339) (0.0242) (0.0194) (0.0225) (0.0305) (0.0582) (0.0194)

Notes: ***p < 0.01; *p < 0.05; *p < 0.01. Standard errors are in the parenthesis
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Fig. 6(b) shows the hedging effects. Except for the ERIX
and ECO, the portfolios of the green energies have relatively
higher hedging effects, which supports that the carbon trading
market supplies an effective way to hedge risks from the stock
market in green energy sectors. Besides, it also provides evi-
dence that the hedging effects are heterogeneous since carbon
is not a good choice to hedge risks from the ECO index and
exhibits a weak hedge effect in ERIX. As the rolling windows
change, the hedging effects vary, too.

Conclusions

This paper is aimed at analyzing the dynamic relationship of
the carbon price on the stock returns in green energy sectors.
By utilizing a series of quantile models, adopting a daily
dataset span from 14 October 2013 to 30 December 2020,
we investigate the dynamic correlation of the carbon and

green energy stock returns in different quantiles and calculate
the hedging effects, which supplies some indication for inves-
tors to optimize their portfolio.

Basically, by utilizing the rolling quantile regression mod-
el, we find that the coefficients change with time and are
vulnerable to some special events, like the COVID-19 which
spread quickly after 2020. Among the six green energy stock
indexes, the ERIX shows a high co-movement with the carbon
price, which is also confirmed by the results gained from the
QQ model. By utilizing the QC model, we find that investors
can benefit more in the short term to hedge between carbon
trading and the green energy stock market. That means
high-frequency trading in those two markets can earn a higher
hedging effect. We further compute the hedging effects and
hedge ratios of the carbon and green energy stock indexes
from the perspective of the time domain. The results show
that all the hedging ratios are positive. A portfolio with a long
position of green energies and a short position of carbon can

Fig. 4 The QQ estimates for carbon returns on green energy indices returns. Notes: these results report the slope coefficientcβ1 θ; τð Þ in the z-axis with
the quantiles (x-axis) of green energy indices returns (θ) and the quantiles (y-axis) of carbon returns (τ)
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Fig. 5 Quantile coherency (QC) matrices for carbon and green energy indices. Notes: above the diagonal line, we set non-significant values at the 5%
significance level into zero. Red presents positive values, and blue presents negative values

Fig. 6 Hedging effects and hedge
ratios for carbon and green energy
indices. Notes: (600, 30) means
that the model is fitted by 30
observations with 600 one-
period-ahead forecasts
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obtain a higher hedging benefit. It is also demonstrated that
hedging effects are heterogenetic. So, as for investors, the
hedging strategies should be adjusted in different
backgrounds.
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