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cormorant (Phalacrocorax carbo)

József Lehel1 & Adrienn Grúz2 & András Bartha3 & Imre Pintér4 & Zoltán Lénárt1 & László Major2 & László Menyhárt5 &

Rita Szabó2
& Péter Budai2

Received: 11 March 2021 /Accepted: 19 July 2021
# The Author(s) 2021

Abstract
Concentrations of 12 metals (As, Ba, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb and Zn) were examined in the pectoral and thigh
muscle of great cormorants (Phalacrocorax carbo). The samples were collected fromCentral Tisza-Jászság Nature Conservation
Area in Hungary. The tissue samples were analysed by inductively coupled plasma optical emission spectroscopy (ICP-OES).
The aim of the study was to examine the impacts of heavy metal pollution on the water birds, determine the concentrations of the
abovementioned metals in the different muscle tissues of these wetland birds, and provide the basic materials for monitoring the
environmental pollution. Among the investigated elements/metals, the detected concentrations of As, Ba, Cd, Co, Cr, Mo and Ni
were below the detection limit. Higher concentration of Cu, Hg, Mn and Pb was measured in the pectoral muscle compared to the
thigh muscle, but only in the case of Cu and Mn were found significant differences between the tissues. In the case of the Zn
concentration, the higher value was detected in the thigh muscle. There were no statistical differences betweenmales and females
in either metal concentrations.
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Introduction

Due to the rapid development of toxicology, more and more
researches and studies have been published that have reported
the pronounced toxicity of various compounds of metals.
Based on the results, the use of many metal compounds as
pesticides has been banned by the licensing authorities.
However, due to anthropogenic activities (widespread use of
metals and their continuous industrial emissions, industrial
and agricultural wastes, mining activities) and urban pollution
(e.g. incineration of municipal solid waste, road dust, heating),
the entire biosphere has become contaminated in different
levels (EFSA 2009; Alipour et al. 2013). At the same time,
they can enter the circulation from natural sources by erosion,
sedimentation, and decomposition as well. Thus, currently,
particularly due to the polluting effect of metals and their
enrichment in the food chain because of their cumulative
properties, they are a very important aspect in the protection
of the environment. To be able to evaluate the level of hazard
and the degree of exposure to any metal contamination, it is
necessary to carry out biological monitoring using biological
indicator species, e.g. wild birds (Furness and Greenwood
1993). The metal burden in the body of the birds has influence
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on the breeding, the growth, the moulting and migration of the
birds (Hutton 1981; Honda et al. 1985).

Different bird species, e.g. mallards (Anas spp.), cormo-
rants (Phalacrocorax spp.), gulls (Larus spp.), white storks
(Ciconia ciconia), common buzzard (Buteo buteo), feral pi-
geon (Columba livia domestica) and eagle owl (Bubo bubo),
which are located on higher trophic levels in the ecosystem,
are widely used as bioindicators for monitoring metal contam-
ination in the environment (Blus et al. 1993; Bearhop et al.
2000; Ortego et al. 2006; Guitart et al. 2010).

Metals can usually enter organisms through the digestive
tract, respiratory tract and integument and absorbed to varying
degrees depending on their physicochemical properties, size,
lipid solubility and ionization. They must cross through dif-
ferent biological membranes as they move within the body.
For the transportation, membrane transport proteins are need-
ed. These proteins behave as carriers or channel molecules in
the cell membrane. For most metals, these proteins have been
identified already. These can be quite selective, due to selec-
tive binding sites that recognize specific chemicals, so
transporting only one metal species but not another. The
absorbed metals enter the bloodstream and are transported to
organs and tissues. Metals absorbed from the gastrointestinal
tract first enter the liver by the portal circulation and enter the
systemic circulation only after passing through the liver. In the
blood, they mostly attached to red blood cells or various plas-
ma components; e.g. Pb, Mn and organic mercury compounds
are transported by red blood cells, while inorganic Hg com-
pounds, Cu, Cd and Zn, are attached to the albumin. During
distribution, compounds with high affinity for a tissue may
bind to them, which can lead to accumulation. In the case of
various metals, e.g. Hg, the accumulation may occur not only
in the body of the organism, but in the food chain as well
(biomagnification). Metals are especially excreted via urine
and faeces (through biliary clearance), but other routes may
be probable (Lehel and Laczay 2011).

The metals in the process of absorption, distribution and
redistribution can cause morphological or neurological chang-
es (Kim and Oh 2013), and the difference in the level of
distribution and accumulation in the tissues can be analysed
using the kidneys, liver, muscle tissues, feathers, bones, eggs
and excrement of the birds (Burger and Gochfeld 2000a;
Markowski et al. 2013).

The strongest members of the bird muscles are the wing-
moving pectoral muscles, which make up more than half of
the total body muscle mass, but in smaller, well-flying birds
(e.g. swallows) this proportion can be as high as 80%
(Bakonyi et al. 2003). The pectoral muscles of chickens are
frequently referred to as “white meat”, because chicken do not
fly, so the activity of these muscles is minimal, compared to
the sustainedly used thigh muscles, which are referred to as
“dark meat”, because it contains a large number of
myoglobin-containing cells, which derives its characteristic

darker colour to these muscles. This protein functions as an
oxygen-storage unit in the cells, providing oxygen to the
working muscles. Since cormorants and other birds are capa-
ble of flight, their pectoral muscles are dark as well (Jacob and
Pescatore 2013; Gill et al. 2020). However, within a muscle,
there are more types of fibres. Each muscle also has red and
white muscle fibres, the proportions of which also determine
the nature of each muscle. In addition, there are so-called also
intermediate muscle fibres, which indicate the transition be-
tween red and white ones (Fehér 2004).

In our study, we aimed to investigate the heavy metal pol-
lution (and essential metal content) of the pectoral and thigh
muscle of great cormorants (Phalacrocorax carbo) at area of
the Central Tisza-Jászság Nature Conservation Area of the
Hortobágy National Park Directorate, and thus the possible
metal pollution in the area, and to obtain information, similar-
ity or difference on metal accumulation in the two types of
muscle tissues.

Materials and methods

Material

In late January of 2020, in the Central Tisza (on the river
section below the dam near Kisköre), under the supervision
of the Nature Conservation Service, twenty cormorants were
shot as a population management activity to reduce the overall
cormorant numbers in the region. These birds were collected
after being shot with official permission (nature conservation
permit of the county government office, No JN-07/61/00253-
4/2020), based on Decree No. 13/2001 of the Minister of
Environment (2001), because this species induces economical
losses in the fish industry and is therefore non-protected. At
the necropsy, the experts of the Nature Conservation Service
determined the age and sex of the birds, and analysed the
stomach contents.

Samplings from pectoral and thigh muscles of 20 cormo-
rants including of both sexes with the same ratio (10 males, 10
females) were taken during the necropsy as well. Twenty
grams of both muscle tissue samples was placed into an indi-
vidually labelled plastic bag. All samples were placed in a
cooler bag and transported to the laboratory where they were
stored at −20°C until assayed.

Method

Laboratory processing and measurements

The heavy metal concentration of the samples was determined
in the analytical laboratory of the Department of Animal
Hygiene, University of Veterinary Medicine, using a Perkin
Elmer Optima 3300 DV inductively coupled plasma optical
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emission spectrometry (ICP-OES) as described by Grúz et al.
(2017). During the analysis, the following measurement pa-
rameters were applied: RF generator, 40 MHz; RF power,
1500W; nebulizer type, concentric (Meinhard Type A); neb-
ulizer gas flow rate, 0.9 dm3/min; cooling water flow rate, 1
dm3/min; sheath gas flow rate, 0.9 dm3/min; sample feeding
flow rate, 0.9 cm3/min; and observation height, 15 mm.

Nitric acid (HNO3) and hydrogen peroxide (H2O2) and a
microwave digester were used to extract the samples.

Analytical standards used in sample processing

Calibration was performed with ICPmulti- and mono-element
standards (Perkin Elmer Inc. USA; VWR International Ltd.,
England). The measurements were performed with argon gas
of 4.6 purity (Messer Hungarogáz Kft).

Sample preparation

For sample digestion, 0.5 g from each sample was weighted
into a CEMMARS6MARSXPreSS Teflon vessel. Then they
were decomposed by 5 ml nitric acid (69m/m%) and 5 ml
hydrogen peroxide (30m/m%) in a microwave digestion sys-
tem (Ramp: 35 min; temperature: 200°C; hold: 50 min; E:
1700 W). The sample was filled up to 25 ml and then diluted
twice.

The following metals were determined from the samples:
arsenic (As), barium (Ba), mercury (Hg), cadmium (Cd), co-
balt (Co), chromium (Cr), manganese (Mn), molybdenum
(Mo), nickel (Ni), copper (Cu), lead (Pb), zinc (Zn). During
the measurement, the limit of detection (LOD) of each metal
was as follows: 0.05 μg/g for Cd, Co, Cr, Cu, Mn, Zn; 0.2 μg/
g for Ni, Pb; 0.5 μg/g for As, Ba, Hg, Mo.

Statistical methods

Statistical analyses were performed using SPSS (version
25.0).

Given that in many cases we have censored data (censored
data: instead of a specific value, it is mentioned that “below
the limit of detection”), sex comparisons were performed
using the Mann-Whitney test. In the comparisons, due to the
large number, a Benjamini-Hochberg correction was applied
to the p values. This regulates that no more than 5% of the
pairs found to be significant are misclassified. After the cor-
rection, there was no significant difference between the sexes
in either case.

As there was no significant difference between the sexes in
either case, the 10 female and 10 male birds were treated
together, as a sample of 20 elements. Due to the censored data,
the comparison of tissue samples was performed with a non-
parametric Friedman test. This compares the data of an exact
tissue sample with all the other tissue samples of the same

bird. Pairwise comparisons were then performed using the
Wilcoxon test using Bonferroni correction for each body part
separately.

Results

Stomach content

In the stomach content, the following fish species were found
in the highest quantity: two carnivorous species, Zander
(Sander lucioperca) and Wels catfish (Silurus glanis), and
two omnivorous species, Danube streber (Zingel streber),
and Black bullhead (Ameiurus melas).

Evaluation of metals

The average concentrations ofmetals in birds of both sexes are
presented in Table 1.

The measured average concentrations of As, Ba, Cd, Co,
Cr, Mo and Ni were under the detection limit. In the case of
Cu, Hg,Mn, Pb and Zn, the majority of the individual findings
(Cu 100%, Hg 65–80%, Mn 100%, Pb 65–100%, Zn 100%)
and the mean concentrations were above the LOD, and were
higher in the pectoral muscle, than in the thigh muscle (except
the Zn concentration) (Table 2).

Comparison of sexes

No gender differences were found for pectoral and thigh mus-
cle. During the examination of the pectoral and thigh muscles,
outstanding lead concentration was detected in 1–1 cases.
Excluding them from the evaluation, there was no gender
difference.

Comparison of the two muscle tissue samples

Significant difference was obtained for each element, suggest-
ing that each metal accumulates in different concentrations in
different type of muscle tissues. Among the investigated
metals, the detected concentrations of Cu and Mn were sig-
nificantly higher in the pectoral muscle than in the thigh mus-
cle (Table 3).

Discussion

Among the investigated elements/metals, the detected concen-
trations of As, Ba, Cd, Co, Cr, Mo and Ni were below the
LOD. The measured values of Cu, Hg, Mn, Pb and Zn were
above the limit of detections; thus, they are discussed.
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Copper (Cu)

Cu is essential in low concentration for the normal growth,
cell metabolism, haemoglobin formation, antioxidant defence
system and structure and the function of many proteins
(Harms and Buresh 1987; Pesti and Bakalli 1996;
Underwood and Suttle 1999; Malik and Zeb 2009); however,
chronic uptake has many toxic effects on birds including the
reduced growth rates and egg production, and developmental
abnormalities (Jackson and Stevenson 1981; Chiou et al.
1999). In most animals, the muscle tissues contain about
4 mg Cu/kg dry matter (DM), and will not increase, even on
high-copper diet (NRC 2005). In our study, the average con-
centration of Cu in pectoral muscle was 6.9±1.2 μg/g dry wet
(dw) and in thigh muscle 3±0.9 μg/g dw. These concentra-
tions are lower compared to the concentrations found in the
literature (Table 4). According to the statistical comparison,
the concentration of Cu measured in pectoral muscle is signif-
icantly higher than that in the thigh muscle (P<0.001).
Generally, there is lack of information in the literature about
the comparison of Cu in both muscle tissues. However,
Carpene et al. (1995) noted that the concentration of Cu was
twice as high in the pectoral muscle of black-headed gulls
(Chroicocephalus ridibundus) than in its thigh muscle. Since
the structure of these muscle types are similar, the size of them
can be an explanation of the higher metal content, but more
specific further examinations are needed to be carried out in
this field.

Mercury (Hg)

Among heavy metals, mercury is one of the most toxic and
persistent elements entering the aquatic ecosystem. Wetlands
are important habitats for mating and foraging of many

wildlife species but are threatened by Hg pollution. In aquatic
systems during various biological processes, inorganic mer-
cury converted to methylmercury by anaerobic bacteria in the
sediment. Methylmercury is highly toxic, persistent and
bioaccumulative; it can be biomagnified in the aquatic food
chain (Bloom 1992; Nguyen et al. 2005), so the species on any
trophic level can be chronically exposed to Hg. Fish-eating
birds, like cormorants, consume fish from the top of the aquat-
ic food chain and receive the methylmercury that has accumu-
lated through the biomagnification process and in their habitat
as well (Lavoie et al. 2013). As known, in fish, the methyl-
mercury is accumulated mainly in the muscle tissues, while
inorganic mercury is in the gastrointestinal epithelium.
Accumulation of mercury in tissues is a slow process, so usu-
ally older animals have higher levels than younger animals.
Once it has accumulated in tissues, its reduction is very slow,
even consuming clean food and water. It has been examined
that regardless of the form of Hg, the tolerable dietary levels
for animals appear in levels in muscle tissues that may occur
toxicosis in humans (NRC 2005). Higher methylmercury up-
take can result in adverse behavioural, developmental, neuro-
logical, hormonal and reproductive effects (Scheuhammer
et al. 2007). Many studies have been published focusing on
the Hg pollution accumulated in the aquatic ecosystem, and in
the body of wetland bird species. The measured Hg concen-
trations in the pectoral and thigh muscle of cormorants found
in different studies are similar to the concentration found in
our experiment (Table 4).

Manganese (Mn)

Manganese is an essential element and one of the least toxic of
the essential elements (NRC 1995). The accumulation of ex-
cess manganese in the body is prevented by the gut (ATSDR
2000). Absorbed manganese excreted via the bile very rapid-
ly, even 1 h after ingestion (Malecki et al. 1996). Different
dietary factors affect the absorption of manganese, e.g. the
presence of calcium and phosphorus. High levels of dietary
calcium and phosphorus increase the symptoms of manganese
deficiency in chickens (Wilgus Jr and Patton 1939).
Organisms on lower levels of the food chain (e.g. plankton,
aquatic plants and some fish species) can accumulate Mn in
higher concentration, but the potential of biomagnification
from lower trophic levels to higher ones was not observed
(ATSDR 2012). Mn concentration in the muscle tissue of
wetland birds is less documented, but the data found in few
studies were higher than the measured concentration in our
study (Table 4). Significant differences were found between
the two muscle tissue types, and measured higher value in the
pectoral muscle, than in the thigh muscle (P<0.001). Similar
comparison was not found in the literature, likewise in the
case of Cu.

Table 2 Concentration of investigated metals in the muscle (average
±SD) (μg/g)

Sample Concentration of metal (average±SD) (μg/g)

Cu Hg Mn Pb Zn

Pectoral muscle 6.9±1.2 1±0.4 0.7±0.2 0.4±0.1 15.5±4.6

Thigh muscle 3±0.9 0.9±0.3 0.4±0.1 0.4±0.1 17.3±4.8

Table 3 Comparison of muscle samples by Wilcoxon test using
Bonferroni correction

Comparison of muscle sample Adjusted P value

Thigh muscle vs pectoral muscle Cu Mn

<0.001 <0.001
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Lead (Pb)

The main source of lead for waterfowl and other wetland
species are the various lead shots, and lead weights used in
sport fishing (Burger and Gochfeld 2000b; De Francisco et al.
2003). Many bird species take these as crushed stone to aid

digestion. These lead-containing formulas remain in the giz-
zard and dissolve at acidic pH, which results in a continuous
lead load. But if the bullet gets into the muscle, mostly it does
not cause poisoning because in an alkaline medium it does not
dissolve but encapsulates. Unlike mercury, biomagnification
of lead is not typical in the environment. In aquatic ecosystem,

Table 4 A comparison of different metal concentrations in muscle tissues of similar wetland species found in the literature with the measured metal
concentrations in this study

Bird species Heavy metal Pectoral muscle
(breast) (μg/g dw)

Thigh muscle
(leg skeletal) (μg/g dw)

Reference

Common name Latin name

Great cormorant Phalacrocorax carbo Hg 2.3±2 – Aazami et al. 2011

Great cormorant Phalacrocorax carbo Cu 42.6 – Aazami and KianiMeh 2017
Hg 2.3 –

Zn 71.9 –

Great cormorant Phalacrocorax carbo Hg 1.3±0.4 – Saeki et al. 2000

Great cormorant Phalacrocorax carbo Hg 1.1±0.3 (ww) – Nam et al. 2005

Great cormorant Phalacrocorax carbo Hg 1±0.3 – Houserova et al. 2005

Grey heron Ardea cinerea Cu 49.3±12.3 – Horai et al. 2007
Hg 0.4±0.4 –

Zn 74.0±13.1 –

Great white egret Ardea alba Cu 17.4±2.6 –

Hg 0.2±0.3 –

Zn 62.1±7.3 –

Intermediate egret Ardea intermedia Cu 14.4±2.6 –

Hg 0.03±0.03 –

Zn 64.6±10.3 –

Great cormorant Phalacrocorax carbo Cu 21.7±1.7 –

Hg 0.01±0.001 –

Zn 56.0±6.90 –

Cattle egret Bubulcus ibis Rural area – Yasmeen et al. 2019
Cu 12.6±0.0 – –

Hg 0.1±0.0 – –

Mn 3.4±0.0 – –

Pb 0.1±0.0 – –

Zn 30.9±0.0 – –

Neotropic cormorant Phalacrocorax brasilianus Pb 0.4–1.2 (ww) – Cid et al. 2009
Great grebe Podiceps major Pb 0.3–3.2 (ww) –

Black-headed gulls Chroicocephalus ridibundus Cu 14.3 ± 1.5 7.1 ± 1.7 Carpene et al. 1995
Zn 45.0± 7.5 99± 22

Herons and egrets
(pooled sample)

Ardea cinerea
Egretta alba
Egretta intermedia
Egretta garzetta
Bubulcus ibis
Nycticorax nycticorax

Mn 12.5 ± 15.9 – Kim et al. 2009
Pb 2.3 ± 2.9 –

Zn 52.5 ± 56.5 –

Great cormorant Phalacrocorax carbo Cu 6.9±1.2 3±0.9 This study
Hg 1±0.4 0.9±0.3

Mn 0.7±0.2 0.4±0.1

Pb 0.4±0.1 0.4±0.1

Zn 15.5±4.6 17.3±4.8

ww wet weight
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the highest lead concentrations can be measured usually in
benthic organisms and algae, and in species on lower trophic
level, e.g. carnivorous fish (NRC 2005). Its main sources of
uptake are contaminated soil and lead-contaminated drinking
water (Waldner et al. 2002). A higher dose of lead ingested
with food is better tolerated by the body than if it is taken up
with contaminated water (Galey et al. 1990). The efficiency of
lead absorption depends on the chemical form of the lead, the
consumed nutrients and the physiological condition of the
animals. For example, calcium and phosphate are effective
in reducing lead absorption (Varnai et al. 2001). Symptoms
of acute poisoning can develop in animals from the consump-
tion of contaminated food, the remains of an animal killed
with lead-containing bullets (Galey et al. 1990). Water hard-
ness, pH, salinity and organic matter influence the toxicity of
lead-contaminated water. The body burden of lead also
effected by the age of the organisms; young animals are more
sensitive, but muscle tissues do not accumulate larger quantity
of lead (except at very high doses) and after several weeks
when it reached its maximum in an organ, it began to decline
(NRC 2005). There are only few studies in the literature that
measured Pb concentration in pectoral and thigh muscle of
piscivorous bird species, but the found ones show similar
results to ours (Table 4).

Zinc (Zn)

Zinc is an essential element, and it is required for DNA repli-
cation, transcription and a cofactor for gene regulatory pro-
teins (Malik and Zeb 2009), but it may be toxic if accumulated
in tissues of birds in high concentrations. Even if it is relatively
nontoxic to birds and mammals and it is more tolerable in
higher concentration than in other metals, toxicosis occurs at
the dietary concentration in excess of 1000 μg/g. The absorp-
tion of Zn is determined by the amount of zinc in the animal’s
body, the total amount of the zinc in the diet and its intestinal
solubility, which is influenced by the chemical form and the
presence of the required inhibitors (Baker and Ammerman
1995; Lonnerdal 2000). In general, large amounts of iron,
calcium and phytate present in the body reduce the absorption
of zinc, while certain amino acids (e.g. histidine, cysteine)
increase it (NRC 2005). The skeletal muscle and bone accu-
mulate about the 85% of the total body zinc (O’Halloran
1993). The measured concertation in our study was lower than
the data found in the literature, for both types of the tissues
(Table 4). However, Carpene et al. (1995) measured twice as
high of Zn concentration in the thigh muscle of black-headed
gulls (Chroicocephalus ridibundus) than in its pectoral mus-
cle. Even if the concentration in thigh muscle was higher than
that in the pectoral, opposite like in the case of the other
metals, these results were not significantly different.

The highest metal concentrations of the wild birds are cer-
tainly due to the environmental pollution, and thus due to the

metal content of their nutrition. Even if the metal concentra-
tion is low in the different surface waters, due to their persis-
tence and bio-accumulative property, they can pollute fishes
and other members of the aquatic life (Eisler 1988). Many
factors, such as the solubility, bioavailability, feeding behav-
iour, species, age, size, reproductive state, fish health and hab-
itat of the species, affects the concentration of metals accumu-
late in the different parts of fish’s body (Cross et al. 1973;
Lawrence and Mason 2001; Perugini et al. 2014;
Anandkumar et al. 2017). According to several studies, in
omnivorous species, higher trace element concentrations can
be measured (Cheung et al. 2008; Cheng et al. 2016). Jia et al.
(2017) found, comparing carnivorous and omnivorous
species, that in the case of Cu, Mn and Zn, the concentration
was higher in omnivore fishes, while the Cd and Pb were in
higher concentration in carnivorous species. Hosseini et al.
(2015) had similar observation, that carnivorous fish accumu-
lated more heavy metals than herbivorous and omnivorous
species.

Also, there are differences between the accumulation of
heavy metals in marine and freshwater fishes. It was observed
that the organs of freshwater fishes accumulate heavy metals
more thanmarine fishes. This can be explained by the fact that
freshwater fishes tend to lose salts and gain water, while ma-
rine fishes tend to do the opposite, so they are less exposed
and vulnerable to heavy metal pollution (Nikinmaa 2014).

Potentially toxic elements were investigated by different
authors in the tissues (feathers, kidney, liver, muscle) of wa-
terfowl and terrestrial bird species of both sexes (Carpene
et al. 1995; Cid et al. 2009; Grúz et al. 2019; Lehel et al.
2013; Malinga et al. 2010; Mazloomi et al. 2008; Mirsanjari
et al. 2014; Sinkakarimi et al. 2018). However, no general
trend could be drawn for sex differences based on the scien-
tific literature.

Previously, toxic metals (As, Cd, Hg, Pb) in the feathers of
123 predatory birds (Long-eared owl [Asio otus], Barn owl
[Tyto alba], Tawny owl [Strix aluco], Little owl [Athene
noctua], Buzzard [Buteo buteo], Common kestrel [Falco
tinnunculus], Eurasian sparrowhawk [Accipiter nisus]) were
monitored by Grúz et al. (2019) in Hungary, but significant
differences were not detected between genders. However,
Mirsanjari et al. (2014) found in Iran that the concentrations
of Cd, Cu, Pb and Zn in the feathers of male great cormorants
(Phalacrocorax carbo) were significantly higher than female
ones.

Statistical differences were not found in the concentrations
of Hg and Pb in the liver of male and female cormorants
(Phalacrocorax carbo sinensis) in Hungary (Lehel et al.
2013).

Pb and Cd concentrations in bone, pectoral muscle, liver,
gonad and brain of piscivorous species such as Great grebe
(Podiceps major), Neotropic cormorant (Phalacrocorax
brasilianus) and, of omnivorous bird, Great kiskadee
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(Pitangus sulphuratus) were measured in Argentina, without
differences in their levels between males and females (Cid
et al. 2009).

Heavy metals such as Cd, Cu, Fe, Mn and Zn were moni-
tored in the pectoral muscle, kidney, liver, brain, gonads, heart
and feathers of Glaucous gulls (Larus hyperboreus) at Arctic
region (Bjørnøya, Jan Mayen). The concentrations of Cu in
the muscle and kidney were differed significantly only be-
tween the sexes (higher levels were detected in females)
(Malinga et al. 2010).

Concentrations of Cd, Cu, Fe and Zn were investigated in
the brain, gizzard, leg muscle, heart, breast muscle, intestine,
liver and kidney of Moorhen (Gallinula chloropus), Black-
headed gull (Larus ridibundus) and Black coot (Fulica atra)
in Italy. Zn concentrations were higher in the leg muscle than
in the pectoral muscle, but higher levels of Cu and Fe were
detected in the breast muscle compared with thigh muscle.
However, differences were not stated between genders
(Carpene et al. 1995).

However, Hg concentrations between males and females
were significantly different in the muscle and kidney of
Caspian Sea common cormorant (Phalacrocorax carbo) in
Iran (Mazloomi et al. 2008).

Sinkakarimi et al. (2018) studied the concentrations of Cd,
chromium (Cr), iron (Fe), Pb and Zn in the kidney, liver and
pectoral muscle of waterbirds, wintering Gadwall (Anas
strepera) and Common Teal (Anas crecca) in Iran. Sex dif-
ference was noted only in the liver of males.

Conclusion

The heavy and essential metal burden in the birds’ body is
mostly determined by metal accessibility, food quality and
environmental pollution presented in their nesting and feeding
site.

Based on our results, the detected concentrations of these
metals accumulated in pectoral and thigh muscle of great cor-
morants do not indicate that the habitat of the birds is contam-
inated by them on a level, which would cause toxicosis in the
animals, or in humans, since there is a possibility that they
consume the same fish species as the birds.

So, a routine monitoring of wildlife tissues in various areas
is important to collect information about the metal burden of a
region (rural or urban, land or water area).
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