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Abstract
In the last 40 years, novel viruses have evolved at a much faster pace than other pathogens. Viral diseases pose a significant threat
to public health around the world. Bovines have a longstanding history of significant contributions to human nutrition, agricul-
tural, industrial purposes, medical research, drug and vaccine development, and livelihood. The life cycle, genomic structures,
viral proteins, and pathophysiology of bovine viruses studied in vitro paved the way for understanding the human counterparts.
Calf model has been used for testing vaccines against RSV, papillomavirus vaccines and anti-HCV agents were principally
developed after using the BPV and BVDV model, respectively. Some bovine viruses-based vaccines (BPIV-3 and bovine
rotaviruses) were successfully developed, clinically tried, and commercially produced. Cows, immunized with HIV envelope
glycoprotein, produced effective broadly neutralizing antibodies in their serum and colostrum against HIV. Here, we have
summarized a few examples of human viral infections for which the use of bovines has contributed to the acquisition of new
knowledge to improve human health against viral infections covering the convergence between some human and bovine viruses
and using bovines as disease models. Additionally, the production of vaccines and drugs, bovine-based products were covered,
and the precautions in dealing with bovines and bovine-based materials.
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Introduction

Cattle belong to the Cetartiodactyla order of eutherian mammals,
which is phylogenetically distinct fromhumans, the primates order
(Murphy et al. 2004). Although cows aren't the closest animal to

humans, human and cow DNA sequences are nearly identical
(Zimin et al. 2009). Constructing a cattle–human comparative
map using radiation hybrid (RH) mapping, a genetic technique
for mapping mammalian chromosomes, revealed approximately
91% of the comparative coverage of the human genome sequence
(Everts-van der Wind et al. 2005).

Bovines have significant contributions to human foods, indus-
try, livelihood, medical research, and pharmaceutical develop-
ment. Although there are differences between humans and bo-
vines, the similarities between them are not tiny such as, but not
limited to, a) the same approximate gestation period of 280 days
between bovine and human (Schultz et al. 1973); b) the similar
timing of the immune system development and fetal placentation
(Baldwin andTelfer 2015), c) bovines respond in the sameway, to
a large extent, as humans to the viral infections such as respiratory
syncytial virus (RSV) (McCluskey 2003); d) the factors of disease
outbreaks in bovine populations and human settings are very sim-
ilar such as poor hygiene, crowding, a high rate of individuals
turnover in the facility, contaminated fomites, close contact, and
compromised skin integrity (Lanzas et al. 2010); e) bo-
vines and humans share many similar pathogens such as
coronaviruses, papillomaviruses, babesiosis, tuberculosis
and brucellosis (Haydon et al. 2002).
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In the eighteenth century, the amazing work of Edward
Jenner, the father of immunology, to vaccinate a boy with
cowpox, as a prior infection, against smallpox rendered the
boy immune to smallpox infection and paved the way for the
vaccination in its current form (Kues and Niemann 2004). The
development of the BCG vaccine (Waters et al. 2012), the
tuberculin skin test and the interferon-gamma test (Wood
et al. 1990), which were first introduced in cattle to prevent
and diagnose bovine tuberculosis and later extended to
humans, reflect the related accomplishments and discoveries
in bovine and human immunology (Baldwin and Telfer 2015).
Cattle and humans share various immune-physiological char-
acteristics, including the in utero development of the immune
system, which makes cattle an excellent model for human
immunology (Baldwin and Telfer 2015). Unlike rodent
models, cattle models have answers that improved our under-
standing of the immune system such as gamma delta (γδ)-T
cells (Baldwin and Telfer 2015), but they also contributed to
human health through beneficial clinical outcome (Hein and
Griebel 2003). γδ T cells are a special type of T cells that is
found in many peripheral tissues such as lungs, but is uncom-
mon in secondary lymphoid organs (Ribot et al. 2020).
Animal models are central in the production and testing of
vaccines and therapeutic drugs (Colby et al. 2017) and labo-
ratory animals are the main animal models for studying spe-
cific aspects of human pathogenesis and immunity, especially
mice (Lanzas et al. 2010). However, for the pathogen under
study, mice are more often surrogate model than natural mod-
el. Additionally, laboratory animals are commonly used as
organism-level models, but not to fix population-level issues.
Bovines are considered excellent candidates, coupled with
mathematical models, for population-level studies of infec-
tious disease dynamics (Lanzas et al. 2010), and that is attrib-
uted to that humans and bovines share pathogens (Woolhouse
and Gowtage-Sequeria 2005), in addition, as bovines are nat-
ural reservoir hosts/natural animal model for some human
pathogens (Cleaveland et al. 2001; Kues and Niemann 2004;
Buddle et al. 2005; Lanzas et al. 2010; Bem et al. 2011). Their
advantage lies in their very complexity, which mimics the
biologically relevant situation (of human disease) (Wiles
et al. 2006) in addition to, as previously mentioned, the similar
factors of disease outbreaks. Therefore, bovine populations as
farm animals are able to provide experimental models (Lanzas
et al. 2010), which is suitable for explaining the transmission
of human infectious agents at the population level, their dis-
ease pathogenesis and the triggered immune response. In ad-
dition, the biological information can be gained at the level of
organ or tissue from biopsies and autopsies samples, which
can be carried out easily and regularly (Lanzas et al. 2010).

The movements of infected animals are considered a cru-
cial factor in spreading cattle diseases (Gilbert et al. 2005),
such as Foot-and-mouth disease (Gibbens et al. 2001;
Bouma et al. 2003; Ortiz-Pelaez et al. 2006; Martínez-López

et al. 2008) and bovine virus diarrhea (Meyling et al. 1990;
Gethmann et al. 2015). Cattle trade between cattle farmers
occurs at a relatively high frequency creating a complicated
network (Brzoska et al. 2020). Some European countries have
built livestock movement databases, such as the Cattle
Tracing System (CTS) data archive in Great Britain
(England, Wales, and Scotland) (Gilbert et al. 2005), after
bovine spongiform encephalopathy (BSE), commonly known
as mad cow disease, investigations (Dubé et al. 2009). These
data give richer information about pathogens dynamics and
the benefits of these data exceed over than is typically avail-
able in wildlife or human systems (Lanzas et al. 2010).

To understand various diseases related to human health,
bovines have been used as models for infectious (Hein and
Griebel 2003; Lanzas et al. 2010) and non-infectious diseases,
such as Niemann-Pick type C disease (Woolley et al. 2020).
Cattle are one of the most used large animal models for acute
respiratory distress syndrome (ARDS) (Ballard-Croft et al.
2012) and useful animal model for human respiratory patho-
gens such as Tuberculosis (Hewinson et al. 2003), Chlamydia
psittaci infection (Reinhold et al. 2012; Ostermann et al.
2014), Human respiratory syncytial virus (Bem et al. 2011;
Jordan et al. 2015), through studying pathophysiology and
functional host-pathogen interactions in the mammalian lung
and even developing immune-based approaches such as diag-
nostic tests and vaccines (Pollock et al. 2001, 2006), i.e., vac-
cines against human tuberculosis and RSV (Gershwin et al.
1998; Hewinson et al. 2003; Buddle et al. 2005; Taylor 2013;
Gerdts et al. 2015). Cancer of the upper gastrointestinal tract
in cattle (bovine papillomavirus (BPV)-4 and bracken fern)
could act as models for the study of oncogenesis of papillo-
maviruses (Misdorp 1996), their molecular mechanisms
(Cotchin 1962, 1976) and discovering novel therapeutics
against (Misdorp 1996). The life cycle, genomic structures,
viral proteins, and pathophysiology of bovine viruses studied
in vitro paved the way for understanding the human counter-
parts such as Hepatitis C virus (HCV) that could not grow in
cell culture (Buckwold et al. 2003).

Endemic stability is defined as the epidemiological condi-
tion of a population, despite high levels of infection in the
population, clinical disease prevalence is low because immu-
nity is acquired at a young age when the disease has milder
manifestations (Coleman et al. 2001). Endemic stability has
been developed previously to characterize tick-borne disease
patterns in cattle (babesiosis and theileriosis in Australian and
African cattle, respectively). Recently, the control procedures
introduced for dengue virus (a viral disease spread by mos-
quitoes) were based on endemic stability (Egger et al. 2008).

Using oncolytic viruses for treating human cancers become
one of the most interesting areas of research. Oncolytic bovine
viruses such as Bovine herpesvirus type 1 (BHV-1)
(Rodrigues et al. 2010), type 4 (BHV-4) (Farzani et al.
2021), and BVD (Marchica et al. 2020), could play a
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promising role in this trend due to their tropism, selective
replication only in tumor cells, and possible synergic interac-
tion with other therapeutics. Other significant contributions of
bovines to human health (Kues and Niemann 2004; Redwan
2009) are using (A) bovine insulin for treating diabetes
mellitus; (B) bovine glucagon to prevent hyperglycemia; (C)
Aprotinin, a bovine protein-based drug, during complex sur-
gery such as heart and liver surgery for reducing bleeding; (D)
bovine heparin in the treatment of thrombotic conditions in
both medical and surgical indications; (E) gelatin extracted
from bovines, worldwide approved, in several pharmaceutical
products such as vaccines and drugs; (F) bovine hyaluronidase
(Wydase= Amphadase) as an adjuvant (spreading agent) to
increase the absorption and dispersion of the injected drug
and (G) Pancreatin (food grade), commercial mixtures of am-
ylase, lipase, and protease extracted from bovine pancreas, to
treat malabsorption syndrome due to certain pancreatic prob-
lems (Redwan 2009).

Here we review some examples of human viruses and their
bovine counterparts, elucidating the contribution of bovine
virology and immunity to human virus research and human
health in addition to the use of bovines as disease models
(Table 1).

DNA viruses in bovines and humans

Bovine and human papillomaviruses (BPV and HPV)

BPV and HPV are members of the Papillomaviridae family,
non-enveloped icosahedral structures, small circular ds DNA,
55–60 nm in diameter, 8000 base pairs, and are able to infect
all vertebrates (Crawford and Crawford 1963; Campo 1988;
Bernard et al. 2010). Their genome is made up of three differ-
ent regions; long control region (LCR) or upstream regulatory
region (URR) without ORFs, and the other two regions are

responsible for encoding early (E1–E8 ORFs) and late (L1
and L2 ORFs) genes (Borzacchiello 2007; Alberti et al.
2010). Replication and transformation are regulated by the
early genes (E1, E2, and E4). Capsid proteins are encoded
by the two late genes (L1 and L2), and LCR has the origin
of replication (ori) (Bogaert et al. 2007; Van Doorslaer 2013;
Bocaneti et al. 2016) (Table 2). Expression of early and late
genes occurs in epithelial cells in early maturation and differ-
entiated keratinocytes, respectively.

Papillomaviruses (PVs) are one of the world’s oldest viral
families (Rector and Van Ranst 2013) that infect a wide range
of hosts. They are originated in Africa then spread to all con-
tinents over one million years (Bernard 1994). Over 280 types
of PV are categorized into 35 genera (de Villiers 2013; Rector
and Van Ranst 2013). To date, roughly 170 types of HPV
have been categorized and classified into five genera; Alpha,
Beta, Gamma, Mu, and Nu-papillomavirus (Rector and Van
Ranst 2013), and around 24 pathotypes of BPV have been
described and categorized into four genera; Xi, Delta-,
Epsilon, and Dyoxi-papillomavirus (Roperto et al. 2019).
Although the actual numbers of HPV and BPV types may
exceed 200 and 30, respectively. Most PV infections are
asymptomatic without visible clinical signs. PVs are com-
monly found on the clinical normal skin of humans
(Doorbar et al. 2012).

In 1981, Zur Hausen et al. explained that the etiologic agent
of most cervical cancers is papillomavirus (zur Hausen et al.
1981). Cervical cancer is a serious malignancy that is consid-
ered the major cause of mortality among women (Bosch et al.
2002). Around 500,000 patients and 250,000 deaths globally
occur per year with cervical cancer (Arbyn et al. 2011) and
85% of cervical cancer cases occur in developing countries
where 75% of the world’s population lives (Marrazzo and
Holmes 2013). The HPV is suspected that is the possible
etiologic agent of other human cancers as oropharyngeal, anal,

Table 1 Bovine contribution to
the scientific research field Human viruses Contributions (Outputs)

Human papillomavirus (HPV) - Transformation

- Latency mechanisms

- Vaccine development

Human lymphotropic T cell virus (HLTV-1) - Leukemogenesis

- Antiviral drugs

Hepatitis virus C (HCV) - Antiviral drugs

Human immunodeficiency virus (HIV) - Broadly neutralizing antibodies

Human parainfluenza virus 3 (HPI3) - Vaccine development

Human rotaviruses - Vaccine development

Human respiratory syncytial virus (HRSV) - Pathophysiology and immunobiology

- Vaccine development

Human coronaviruses (HCoV) - Bovine-derived human polyclonal IgG

- Immune milk
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penile (Parkin 2006), lung, breast, bladder (Tolstov
et al. 2014), and esophageal cancers (Dillner et al.
1995; Lagergren et al. 1999; Syrjänen 2002; Lyronis
et al. 2005; Vieira et al. 2013). Therefore, it can be
said that 30% of all human cancers are caused by
HPV (Bravo et al. 2010). In 1982, Syrjänen was the

first who explained that there is a relationship between
HPV and esophagea l cancer (Syr jänen 1982) .
Esophageal cancer is the world's sixth cancer that
causes death (Antonsson et al. 2010; Herbster et al.
2012), and its mortality rate is 25% greater than that
of cervical cancer (Han et al. 1996).

Table 2 Summary of PV proteins

Replication proteins

E1 - Recognition of origin of replication (ori).
- binds to E2 protein, resulting in E1-E2 complex.
- participates in the recruitment of host cell replication proteins.
- exhibits intrinsic ATPase/helicase activity.

E2 - Acts as E6 and E7 transcriptional regulator.
- participates in the maintenance of the viral genome in its episomal form by promoting binding between these genomes and mitotic chromosomes

during cell division.

E4 - The most expressed protein of PVs and an important hallmark of PVs' pathogenic activity.
- occurs abundantly in the cytoplasm of the differentiated keratinocytes of papillomas.
- Unlike E1 & E2, E4 is produced later in the differentiation process.
HPV16 E4 has also been associated with the collapse of cytokeratin filaments, which thus suggests an auxiliary function in the process of viral exit

from cells.

Oncoproteins

E5 - Can induce both in vivo and in vitro transformation.

- The major BPV oncoprotein.
- Disrupt the Golgi complex leading to Inhibiting the expression of MHC-I and cyclooxygenase (COX). (An evolutionary mechanism of immune

evasion).
- Bind to PDGFR ending with promoting cell cycle deregulation, stimulating angiogenesis.
- interferes with normal gap junctions.
- disturbs the actin cytoskeleton.
- increases the motility of transformed cells.
- Disrupting the cell cycle during a productive BPV infection.
These mechanisms contribute to viral infection persistence
- Most of the tumors of cattle affected by enzootic hematuria express BPV2 E5.
- HPV E5 has weak transforming activity, in contrast to its bovine counterpart, BPV1 E5, which shows strong transforming activity.

E6 - A small oncoprotein without enzymatic activity.
- Characterized by the presence of a class I PDZ domain, (found in BPV and high-risk HPVs).
- BPV and HPV E6 oncoprotein promotes p53 downregulation.
- Inducing cell transformation and immortalization due to the up-regulation of telomerases.
- BPV E6 protein binds paxillin, which correlates with its transformation function.
- prevents apoptosis by degrading p53.
- prolongs cell life by telomerase activation.
- binds to PDZ domains within several proteins involved in cell polarity, proliferation, and signaling.

E7 - binds to proteins of the retinoblastoma family (RB),
- regulate the expression of genes during the S-phase of the cell cycle.
- binds and degrades key regulators of cell cycling, including retinoblastoma protein (pRb), p107, and p130.

Capsid proteins

L1 - used in PVs virus classification into different types (able to self-organize in pentameric structures that compose the viral capsid).
- Allowing the capsid anchorage to heparin sulfate receptors present in the cell membrane.
- L1 immunodetection has been considered the main evidence of productive infection, (the virus assembly).
- C-terminal of L1 plays a cardinal part in BPV’s infection and immunogenicity.
- produce VLPs that identical to that of intact viral particles.
- Strongly immunogenic inducing production of neutralizing antibodies.

L2 Component of the viral capsid.

Virus-like particles (VLPs) can be produced using prokaryotic and eukaryotic systems to express a combination of L1 and L2 or L1 alone

L3 A third structural protein (L3).
Present exclusively in BPV-4. However, its function remains unclear.
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Although majority of BPVs were detected in cutaneous
papillomas hitherto (Daudt et al. 2018), BPV also causes
esophageal, gastrointestinal, and bladder cancers. Death may
be the inevitable end of these cancers (Borzacchiello and
Roperto 2008; Kumar et al. 2015). In 1959, Olson, et al.
(Olson et al. 1959) were able to induce urinary bladder cancer
in calves by injecting bovine wart extracts. In 1992, it was
reported that bladder cancers consistently developed in cattle
that were fed bracken fern (Campo et al. 1992), leading to
enzootic hematuria, and the role of E5 oncoprotein of BPV-
1, 2, 13, and 14 was detected in bladder cancers (Wosiacki
et al. 2006; Balcos et al. 2008; Roperto et al. 2016; Russo et al.
2016). Consumption of bracken fern also predisposes the in-
cidence of esophageal carcinoma (Masuda et al. 2011), which
is directly associated with BPV-4 infection (Borzacchiello
et al. 2003; Masuda et al. 2011). The clinical signs of esoph-
ageal carcinoma in humans (Felin et al. 2008; Haster and
Owyang 2013) are similar to those in bovines (Borzacchiello
et al. 2003). Immunosuppression is the most common identi-
fied cofactor for HPV–induced cancers (Chaturvedi et al.
2009). Also, BPV causes papillomas (Fig. 1) that can trans-
form into cancers due to enhancing cofactors (biological,

immunological, environmental, and genetic) (Roperto et al.
2008). These cofactors delay the infection clearance and sub-
sequently promoting malignancy. Although PVs are species-
specific, cross-species infection by BPV1 and 2 was recorded
in equine species (Campo 2006), giraffe, sable antelope, buf-
faloes, and yaks (Pangty et al. 2010; Van Dyk et al. 2011;
Bam et al. 2013). BPV-5, besides BPV-1, and -2, were found
in ruminal wart-like lesions in buffaloes and cattle (Kumar
et al. 2015). Feline sarcoid-associated papillomavirus DNA
was also amplified from four bovine fibropapillomas and five
inflammatory skin lesions that are homologous to BPV-2 with
non-productive infection (Teifke et al. 2003; Munday and
Knight 2010). All the previous cross-species infections by
BPV confirm the hypothesis that cattle may be the natural host
of feline sarcoid-associated papillomavirus (Munday and
Knight 2010).

The similarities between BPV and HPV were reported
based upon the phylogenetic analyses (García-Vallvé et al.
2005). BPV1 virion has a very similar structure to HPV1
(Baker et al. 1991). Unlike the two early proteins in HPV E6
and E7, E5 is expressed during BPV replication in cattle
(Campos et al. 2013). The possibility of using HPV E6 and

Fig. 1 Papillomavirus life cycle. Viral lodgment starts from tissue
micro-injury (because these viruses cannot actively penetrate the skin of
their host), but other routes were reported as infected lymphocytes (viral
hematogenous infection to the skin or urinary bladder), infected semen,
and infected milk. After tissue micro-injury, heparin sulfate proteoglycan
(HSPG) receptors that present on the basement membrane (BM) provides
access to the basal keratinocytes, are exposed to L1 binding leading to
conformational changes in capsid icosahedral structure, exposing the L2
N-terminal to be cleaved by extracellular furin protein that presents in the
cell membrane inducing a second capsid conformational change,
allowing L2 to bind to different receptors, such as integrin 24. Viral entry;
virions internalization by clathrin-dependent endocytosis mechanism,
resulting in cytoplasmic vesicles that associate to lysosomes, the lyso-
somal acid content release promotes pH alterations in capsid proteins,
resulting in viral DNA release. BPV genome is found in episomal form

and HPV genome can integrate into fragile sites of the host genome.
Differentiation triggers the production of the PV early proteins that force
the suprabasal cell to reenter the S-phase of the cell cycle resulting in cell
cycle continuation. Amplification process: PVs induce the S-phase entry
because they do not codify polymerase, stimulating cell proliferation, and
inducing mitotic stress. As a result, many cell cycle checkpoints are ab-
rogated. Consequently, an accumulation of mutations resulting in cyto-
genetic aberrations and progression into cancer occurs in cells that are
persistently infected by these viruses. The productive infection occurs
within the terminal differentiation and keratinization of an infected cell.
PV late genes expression and viral assembly occur close to the cell sur-
face and viral particles are released only after the epithelial cell sloughing
from the epithelial surface and not by causing cell lysis. Thus, the viral life
cycle is completed without directly causing cell death and without sys-
temic viremia
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E7 in humans as a vaccine has been discussed (Borysiewicz
et al. 1996; He et al. 2000; Yao et al. 2013), based on
the therapeutic action of BPV E6 and E7 (Campo
1997). The single skin lesion in cattle could contain
different BPV types (Claus et al. 2009; Carvalho et al.
2012; Kumar et al. 2013) as in human skin lesions, co-
infection by different HPV types have been frequently
detected (Antonsson et al. 2000). BPV plays a pivotal
role as a model for HPV studies and vaccine develop-
ment (Borzacchiello and Roperto 2008). Understanding
the complicated interaction between HPV and human
cancer has been shown by studies of BPV-associated
lesions and BPV-infected cell lines. Based upon the
ability of BPV to transform cells (Meischke 1979), it
facilitates understanding the pathogenic mechanisms that
lead to cancer (Araldi et al. 2016) and subsequent de-
velopment of protective HPV vaccines and vaccine bio-
technology (Munday 2014). Immunity to PV infection
was pr incipal ly s tudied using the BPV model
(Dvoretzky et al. 1980), but developing a HPV vaccine
followed the HPV16 and BPV1 L1 expression in insect
cells (Zhou et al. 1991). The most important feature of
L1 alone is having the intrinsic capacity for the assem-
bly of virus-like particles (Kirnbauer et al. 1992). Not
only for L1-based vaccine but also, L2-based vaccine
demonstrated its protective effect in cattle, reinforcing
the use of L2 in the future as a second vaccine against
HPV infections (Lunardi et al. 2013), and may be used
as a prophylactic and multivalent vaccine due to its
cross-neutralizing epitope (Campo and Roden 2010).

Cervarix and Gardasil are the available prophylactic
virus-like particles (VLP) vaccines against HPV with ac-
ceptable safety and tolerance (Ribeiro-Müller and Müller
2014). L1 VLP vaccine is a prophylactic vaccine and has
no therapeutic effect in humans (Koutsky et al. 2002;
Vandepapelière et al. 2005; Hildesheim et al. 2007). The
immunity produced by L1 or L2 VLP-based vaccines can
be mediated only by neutralizing antibodies (Gambhira
et al. 2007; Day et al. 2008, 2010; Schiller et al. 2010)
or with an extra contribution by T cell–mediated response
(Jarrett et al. 1991). The disadvantages of PV vaccines are
the limited protection for certain PV types and the high
cost of production. An alternative way to yeast and insect-
cell is using Escherichia coli for expression of recombi-
nant protein for vaccine production because E. coli do not
require L1 VLP and is more stable (Ribeiro-Müller and
Müller 2014). Another trend is using prostate cancer an-
tigen, BPV VLP vaccines in transgenic adenocarcinoma
of the mouse prostate (TRAMP), which showed safety
and efficacy exceed over other vaccines. This vaccine is
nominated to be used for patients in active-surveillance or
patients with a high-risk of localized prostate cancer
(Simons et al. 2020).

RNA viruses in bovines and humans

Bovine leukemia virus (BLV) and human T cell leukemia virus
type-1 (HTLV-1)

A century passed between the discovery of bovine leukemia
virus (BLV) and human T cell leukemia virus type 1 (HTLV-
1) (Leisering 1871; Gallo 2005). In 1979 and 1980, HTLV-1
was recovered from many people who suffered from adult T
cell leukemia (ATL) (Poiesz et al. 1980a, b). HTLV-1 was
established as the first retrovirus directly relevant to malignan-
cy in humans (reviewed in (Matsuoka and Jeang 2007)).
Worldwide, HTLV-1 infected 10–20 million people (Proietti
et al. 2005), and it is endemic to some areas in Africa, Japan,
and the Caribbean (Watanabe 2011).

Although enzootic bovine leukosis (EBL) was first report-
ed in 1871 (Leisering 1871), most BLV infections in cattle are
asymptomatic. Typical bovine leukemia has two forms; spo-
radic bovine leukosis and EBL (Gillet et al. 2007). The only
route of BLV transmission is contact with infected cells
through wet proboscis of insects because the free viral parti-
cles are unstable and inefficient in the infection phase (Cuesta
et al. 2018). BLV-infected cattle are typically infected for life
due to viral maintenance through clonal expansion of infected
lymphocytes (Lezin et al. 2009). One of the common features
of BLV-induced leukemogenesis is p53 mutation that occurs
within the host genome and consequently, the essential p53
functions are disturbed (Ishiguro et al. 1997; Zhuang et al.
1997; Tajima et al. 1998). BLV may pass with a self-
attenuating process to escape from immunosurveillance
(Gillet et al. 2007) so, no direct detection of BLV viruses or
proteins in peripheral blood (Lagarias and Radke 1989; Jensen
et al. 1991).

Gag, pro, pol, and env are basic retrovirus genes (Fig. 2)
that used to produce infectious virions and are flanked by two
identical Long terminal repeats (LTRs) (Aida et al. 2013). The
two identical LTRs are responsible for viral replication (Aida
et al. 2013). The pX is a unique sequence present in both BLV
and HTLV-1 genome between the env gene and 3′ LTR. pX is
neither a host cell nor an oncogene. In vitro immortalization of
primary cells has been confirmed for both viruses (Grassmann
et al. 1989; Willems et al. 1990). For both viruses, the surface
unit (SU) and transmembrane unit (TM) proteins are encoded
by env gene and their functions are accomplishing binding
and attachment to cellular membrane receptors during viral
entry (Lairmore 2014). Due to the common features in their
structure, BLV and HTLV-1 viruses were grouped into a new
single group (genusDeltaretrovirus) in the retroviruses family
(Gillet et al. 2007). Both viruses share genomic similarities,
routes of transmission, and similar pathogenesis (Lairmore
2014) (Fig. 3). In the pX region, two regulatory proteins,
Tax and Rex, are encoded (Aida et al. 2013). The BLV pX
region encodes R3 and G4 proteins and the HTLV-1 pX
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region encodes p12I, p13II, and p30II (Sagata et al. 1984;
Franchini et al. 2003). Unlike BLV genome, the HTLV-1
genome encodes a unique gene HBZ by the minus strand
chain for basic leucine zipper factor (Gaudray et al. 2002),
suggesting that the Tax protein has a crucial role in inducing
the BLV leukemogenesis. In oncogenesis, the Tax protein
affects the repair mechanisms for damaged DNA that contrib-
ute to an accumulation of mutations (Aida et al. 2013). So,
BLV or HTLV-induced tumors take many years to appear
after the first contact with these viruses.

Recently, Tax protein gained the attention of most re-
searchers because of the belief in its key role in leukemogen-
esis for both BLV and HTLV-1 (Katoh et al. 1989; Tanaka
et al. 1990; Willems et al. 1990). In addition, it is the key
protein involved in viral replication (Aida et al. 2013). Tax
is structurally distinguished by the presence of amino-terminal
zinc finger and by a leucine-rich activation domain (Chen
et al. 1989; Tajima and Aida 2000), and any alterations or
substitutions entirely in them stop tax's transactivation

activity. For both BLV and HTLV-1, the Tax gene is also
highly conserved indicating the importance of the encoded
Tax protein for virus replication and spread (Lairmore
2014). VLP were generated in mammalian cells by gag
polyprotein overexpression (Callahan et al. 1976; Wang
et al. 2004) providing a way to produce VLP-based vaccines
similar to PVs vaccines.

The cross-reactivity between BLV and HTLV-1 capsid an-
tigens (CA) is based on the common epitope BLV p24
(Morgan et al. 1983; Zandomeni et al. 1991), suggesting an
evolutionary relationship between BLV and HTLV-1. BLV
p24 and viral DNA were discovered in bovine mammary tis-
sue, in which researchers have looked into the possibility of
the presence of BLV in humans in the same tissue (Buehring
et al. 1994). Also, an immune cross-reaction was found be-
tween the nucleocapsid (NC) proteins of BLV and feline leu-
kemia virus (FeLV) (Morgan et al. 1983), suggesting that the
bovine is the natural host of this virus (Lairmore 2014) and
transmitted to human afterward. Viral expression in cultured

Fig. 2 Summary of BLV and HTLV-1 genes and their precursors
and proteins produced (structural and enzymatic). Gene: Gag,
Precursor: Pr44gag, Proteins: P15/MA (bind the genomic viral RNA -
interact with the lipid bilayer of the viral membrane - proteolytically
processed to generate three fragments: p10, a seven amino acids product,
and p4) - P12/NC (Tightly bind to the packaged genomic RNA) - P24/CA
(The major constituent of the capsid (CA) of BLV virions - The major
target for the host immune response). Gene: Pro (Prt), Precursor:
pr66gag-prt, Proteins: p14/Prt (Protease). Gene: Pol, Precursor: Pr145,
Proteins: P80/RT+IN (contains all of the tryptic peptides of the gag-
protease precursor - encodes reverse transcriptase (RT), (RNA dependent
DNA polymerase). Gene: Env, Precursor: Pr72env, Proteins: Gp51/SU
(The extracellular SU is very immunogenic, a useful tool for diagnostics
and vaccine development) - Gp30/TM (The TM transmembrane protein
is a key factor in cell fusion during transmission and is involved in signal
transduction via immunoreceptor tyrosine-based activation motifs
(ITAM) present in the cytoplasmic tail). Gene: pX, Precursor: Tax
ORF, Proteins: Tax (p34) (Transcriptional activator of viral expression -

target of the host immune response with T and B epitopes - Oncogenic
potential - Activation of NF-kappa B (NF-κB) pathway - Inhibition of
DNA repair of oxidative damage, increase accumulation of mutations in
cellular DNA - Induction of DNA damage, cellular senescence and apo-
ptosis - directly binds to tristetraprolin (TTP), a post-transcriptional mod-
ulator of TNFα expression – regulate many cellular proteins by direct
binding) - Rex (p18) (Nuclear export of viral mRNAs - post-transcrip-
tional regulation) - R3 (p5) (The maintenance of high viral load) - p12I
(Maintenance of viral infectivity - Activation of nuclear factor of activat-
ed T cells (NFAT) pathway) - G4 (p11) like p13II (The maintenance of
high viral load - Oncogenic potential) - p13II (Suppression of viral repli-
cation - Interaction with farnesyl pyrophosphate synthetase - Activation
of Ras-mediated apoptosis) - p30II (Suppression of viral replication -
Regulation of gene transcription by binding with p300 - Enhancement
of Myc transforming potential) - HBZ (Inhibition of HTLV-1 transcrip-
tion - suppression of the classical pathway of NF-κB - Enhancement of
TGF-β signaling - Oncogenic potential)
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BLV-infected B-lymphocytes increased through
deacetylation inhibition by histone deacetylase inhibitors
in vitro (Achachi et al. 2005). This observation has served as
a basis for increasing the virus-infected cells in HTLV-1 pa-
tients using histone deacetylase inhibitors to create targets for
immune-mediated elimination. In vitro antibodies from some
leukemic cattle can inhibit the reverse transcriptase activity
(Gillet et al. 2007). Although nucleoside triphosphate analogs
are potent inhibitors against human immunodeficiency virus
reverse transcriptase (HIV-RT), they are ineffective against
reverse transcriptase of BLV (Perach and Hizi 1999). The
BLV model has also recently shed light on novel possibilities
for HTLV-induced disease treatments (Gillet et al. 2007).

Bovine viral diarrhea virus (BVDV) and hepatitis C virus (HCV)

HCV is the world’s most common cause of chronic hepatitis
that progresses to end-stage liver diseases, such as cirrhosis
and carcinoma (Liang et al. 2000). HCV is a Flaviviridae
virus that belongs to the genus Hepacivirus. It was first iden-
tified in 1989 (Choo et al. 1990; Houghton 2009). Although
HCV infection is often asymptomatic, it is estimated that 150
million chronic HCV infections, and over 350,000 deaths
each year from HCV-associated liver disease (Choo et al.
1990; Liang et al. 2000; Houghton 2009). It is worth

mentioning that numbers of HCV infections increase by mil-
lions every year worldwide (Mohd Hanafiah et al. 2013). So,
the need for finding a therapy for HCV is most urgent than a
vaccine. Most patients in developing countries are devoid of
new medicines, and safe vaccines are still not available
(Drummer 2014; Pawlotsky 2014). BVDV belongs to the ge-
nus Pestivirus from the Flaviviridae family. Many clinical
diseases in bovine species are caused by BVDV including
respiratory, digestive, and reproductive manifestations
(Baker 1995). Cytopathogenic and non-cytopathogenic bio-
types of BVDV were identified based on their impact on host
cells (Mendez et al. 1998).

BVDV and HCV are small, enveloped, positive-stranded
RNA viruses encoding a single polyprotein precursor that is
subsequently translated into ten different proteins by proteases
from both the host and the virus. All proteins are encoded in a
single, long ORF flanked by 5′ and 3′ untranslated regions
with the structural proteins in the N-terminal end and the non-
structural proteins at the C-terminal end (Poole et al. 1995;
Popescu et al. 2011). The 5′ terminus of the BVDV genome is
not capped as in the HCV genome, and the start of translation
is regulated by an internal ribosomal entry site (Poole et al.
1995). In the region encoding for the two heterodimer-
forming envelope proteins gp25 (E1) and gp53 (E2) of
BVDV polyprotein, there are six potential N-glycosylation

Fig. 3 BLV life cycle. BLV can be transmitted between bovines via
horizontal and vertical transmission. Milk and insects play a role in
BLV transmission. As well, HTLV-1 could be transmitted via horizontal
and vertical transmission. Milk, sexual intercourse, and blood transfusion
are routes of HTLV-1 transmission. Transfer of infected maternal lym-
phocytes to offspring is a natural transmission route of both BLV and
HTLV-1. So, efficient transmission for both BLV and HTLV-1 requires
cell-associated infection. The anti-BLV antibodies were clearly identified
in the human serum. That is awakened the idea of a possible zoonotic

disease. BLVmight be transmitted to humans through unpasteurized milk
or undercooked meat when bovine products were uncontrolled. Then,
BLV had transmitted from person to person, like HTLV in body fluids
once the virus was integrated into the human host genome. Both BLV and
HTLV-1 infections are prevalent throughout the world. BLVwas isolated
from breast tissues. Designing eradication plans and improving preven-
tive strategies are mandatory when the link between BLV and breast
cancer is confirmed
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sites and in the region encoding for gp48 (E0) (a hydrophilic
secreted protein of unknown function), there are eight poten-
tial N-glycosylation sites (Zitzmann et al. 1999).

BVDV utilizes the low-density lipoprotein (LDL) receptor
to enter cells like HCV. Both viruses use a functionally iden-
tical internal ribosome entry site (IRES) for translation and an
NS4A cofactor with its homologous NS3 serine protease.
Both have a similar NS3 helicase/NTPase, a mechanistically
similar NS5B RNA-dependent RNA polymerase, and a seem-
ingly equivalent mechanism of virion maturation, assembly
and egress (Buckwold et al. 2003).

Due to the high degree of similarity (Isken et al. 2007),
BVDV has been most widely used in vitro as a surrogate
model for understanding HCV replication (Weiskircher et al.
2009) and the discovery and development of anti-HCV agents
because HCV does not replicate efficiently in cell cultures
(Henzler and Kaiser 1998; Bhattacharyya et al. 2003;
Buckwold et al. 2003; Yanagida et al. 2004; Romero et al.
2006; Zhang et al. 2010). To date, no HCV vaccine is avail-
able. Of the anti-HCV drugs, Interferon (IFN) and Ribavirin
are available, but a combination of both is an expensive ther-
apy and also induces several side effects (Bhattacharyya et al.
2003; Yanagida et al. 2004). The nonstructural protein 5B
(NS5B) of BVDV has been formally validated as a target for
antiviral drug discovery against HCV (De Clercq 2007).
Consequently, HCV NS5B RNA-dependent RNA-polymer-
ase (RdRp) is currently the most studied and used as a
target for developing safe anti-HCV drugs. HCV NS5B
RdRp is attractive for drug discovery due to its vital role
in viral replication and the lack of RdRps in humans
(Baginski et al. 2000; Paeshuyse et al. 2006; Puerstinger
et al. 2007). The HCV p7 protein is necessary for HCV
infectivity (Sakai et al. 2003) and is considered a pivotal
target for anti-HCV therapy. Long-alkyl-chain iminosugar
derivatives with antiviral activity against BVDV could
inhibit the ion channel role of the p7 protein (Pavlović
et al. 2003). Similarly, the small molecule BIT225 inhibits
BVDV in vitro (Luscombe et al. 2010). 2′-C-methyl-cyti-
dine showed an inhibitory activity against BVDV, and
later showed to inhibit HCV RNA replication in the rep-
licon assay (De Francesco and Migliaccio 2005). NM-283
(Valopicitabine) is an oral prodrug of 2′-C-methyl-cyti-
dine, was synthesized for obtaining a molecule with
higher oral bioavailability than its parent molecule, 20-
C-methyl-cytidine (Pierra et al. 2006). NM-283 is now
being evaluated in phase II clinical trials for the treatment
of chronic HCV infection (Tian et al. 2021).

BVDV, as a non-human pathogen virus, can interact with
human CD46 and can cause apoptosis to human myeloma
cells showing its specific oncolytic activity for multiple mye-
loma (MM) cells and is a possible alternative to the human
viruses, such as measles virus and adenovirus, for an oncolytic
approach in MM treatment (Marchica et al. 2020).

Discovery of novel HCV-like viruses in many hosts began
after 2011, indicating the widespread of Hepaciviruses
(Kapoor et al. 2011; Baechlein et al. 2015; Scheel et al.
2015; Hartlage et al. 2016). In 2015, Ghana and Germany
reported the first cases of bovine Hepacivirus (BovHepV)
(Baechlein et al. 2015; Corman et al. 2015). BovHepV is a
hepatotropic virus such as HCV without an obvious zoonotic
risk (Baechlein et al. 2015). Establishment of BovHepV as a
novel HCV model (Baechlein et al. 2015) is based on the
chronicity and high viral loads in the liver of infected cattle.
More interest is demanded in investigating the zoonotic po-
tential of BovHepV and its impact on human health
(Baechlein et al. 2015).

Bovine and human immunodeficiency viruses (BIV and HIV)

HIV was discovered in 1983. It was identified as the cause of
acquired immunodeficiency syndrome (AIDS) after being iso-
lated (Barré-Sinoussi et al. 1983; Gallo et al. 1983). After a
period of the belief that the human oncovirus HTLV-III was
the causative virus of AIDS (Popovic et al. 1984), it was
eventually renamed HIV-1 and taxonomically separated from
HTLV. HIV killed over than 35 million since epidemic
(Vemuri et al. 2020).

In 1969 during research on bovine leukosis in Louisiana,
USA, bovine immunodeficiency virus (BIV), first designated
bovine visna-like virus, was accidentally detected and isolated
from infected Holstein cow (Van Der Maaten et al. 1972).
BIV is a member of the lentivirus genus, subfamily
Orthoretrovirinae from the Retroviridae family (King et al.
2011). BIV triggers a chronic infection in buffalo and cattle.
BIV does not cause a specific disease, but it may cause im-
munosuppression in calves (Zhang et al. 1997). BIV infects
the immune system cells mainly, monocytes/macrophages
and lymphocytes (Gonda et al. 1987).

BIV is morphologically, genetically, and antigenically
closely related to HIV-1 (Gonda et al. 1987). BIV R-29 isolate
was demonstrated that it is very similar to HIV (Gonda et al.
1985, 1986, 1987). Both BIV and HIV-1 genomes contain the
structural genes gag, pol, env, and several accessory genes,
including tat, rev, vif, vpw, vpy, and tmx (Avidan et al. 2006).
The genes vif, Tat, gag, pol, and env, of BIV and HIV-1 have
some sequence similarity (Bhatia et al. 2013). BIV causes
chronic inflammatory disease compared to HIV-1 that causes
severe immunodeficiency (Bhatia et al. 2013). Moreover, in
certain cases, BIV may be used as a surrogate animal model
for HIV research (Bhatia et al. 2013).

Calves experimentally infected with BIV R-29 isolates
displayed intermittent lymphocytosis and lymphadenopathy
without any obvious clinical indications (Carpenter et al. 1992;
Onuma et al. 1992; Suarez et al. 1993). Virus-specific antibodies
found in calves against BIV R-29 strain (Whetstone et al. 1990)
were primarily to p26, which is the most immunodominant
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protein of BIV (Abed et al. 1999). Also, cattle infectedwith BLV
produced antibodies that can inhibit HIV-1 reverse transcriptase
activity in vitro (Gillet et al. 2007).

Advances in understanding the viral life cycle are focused
on endeavors to discover and develop anti-HIV drugs (De
Clercq 2007). The key activator of viral gene expression is
the Tat protein, which mediates a strong induction of the de-
velopment of all viral transcripts by binding specifically to its
cognate site, the transactivator response factor (TAR).
Previous research on BIV Tat peptidomimetics contributed
to the discovery of BIV2, a highly effective BIV Tat-TAR
inhibitor. Using NMR techniques, the structure of BIV2 com-
plex with BIV TAR was determined. Furthermore, the BIV
Tat-TAR interaction was used as a model in discovering re-
lated peptidomimetic inhibitors of the Tat-TAR interaction in
HIV-1 via exploiting the important information about RNA
recognition, derived from the BIV Tat-TAR interaction
(Athanassiou et al. 2007).

Since they can deliver the new gene by infecting the cell,
viruses are often used as vectors. When used in humans, the
viruses have been modified so that they do not cause disease.
Vectors derived from BIV are an appealing alternative to
those derived from HIV-1 (Matukonis et al. 2002) as virus-
based gene transfer system.

Recombinant virus-like particles (VLPs) have been developed
as a safe substitute to live or inactivated viruses for immunolog-
ical, virological, and vaccine studies such as influenza virus-like
particles (Bright et al. 2007; Pushko et al. 2007; Quan et al. 2010;
Lua et al. 2014). Influenza VLPs comprised of hemagglutinin
(HA), neuraminidase (NA), and matrix (M1) proteins. The gag
of BIV (Bgag), in place of M1, can be used to prepare VLPs for
several influenza subtypes (Tretyakova et al. 2016). Quadri-
subtype H5/H7/H9/H10VLPs were prepared using Bgag, which
may be used as a first line of defense in the event of an outbreak
involving H5, H7, H9, or H10 avian influenza viruses while a
new vaccine against the culprit virus is being developed
(Tretyakova et al. 2016).

Interestingly, Cows were immunized with HIV env produced
potent broad neutralizing antibodies with long heavy-chain com-
plementarity-determining region 3 (HCDR3), which can easily
attack the CD4-binding site (CD4bs) on the Env trimer, but the
situation in humans is different. Also, the pace of developing a
broadly neutralizing antibody (bnAb) to the CD4bs of HIV Env
in cows is noteworthy when compared with the length of time
taken to generate equivalent antibodies in humans by natural
infection (over five years) (Sok et al. 2017).

Bovine and human parainfluenza viruses 3 (BPIV-3
and HPIV-3)

HPIV-3 is the etiologic agent of lower respiratory tract dis-
eases. It belongs to genus the Respirovirus from the
Retroviridae family and is closely related to BPIV-3

(Welliver et al. 1986). Currently, no vaccine or drug was de-
veloped for the treatment of HPIV-3 (Hall 2001; Durbin and
Karron 2003; Bartlett et al. 2007). BPIV-3 is one of the rea-
sons for bovine respiratory disease complex (BRDC)
(Snowder et al. 2006), whose immunosuppressive action re-
sults in severe bronchopneumonia due to bacterial co-infec-
tion, especially in stressed animals (Haanes et al. 1997).
BPIV-3 be longs to genus the Resp i rov i ru s o f
Paramyxov i r idae f ami ly (Adams e t a l . 2016) .
Approximately 25 % of both viruses are antigenically related
by cross-neutralization (van Wyke Coelingh et al. 1988). The
hemagglutinin–neuraminidase (HN) and fusion (F) proteins of
BPIV-3 and HPIV-3 share more than 75% of their amino acid
sequences. (Bailly et al. 2000), and the two viruses share at
least five neutralization epitopes on the HN and F proteins
(Coelingh et al. 1986; Klippmark et al. 1990). Furthermore,
between BPIV-3 and HPIV-3, the major viral non-
glycoproteins N, M, and L are greater than 85 % related
(Pennathur et al. 2003).

Attenuated BPIV3 is utilized as a virus vector backbone to
produce a safe, effective RSV vaccine (Haller et al. 2003).
BPIV-3 is used to enhance both humoral and cellular immu-
nity as a live virus vaccine in human beings against HPIV-3
disease based on the similarity between the two viruses.
Neutralizing antibodies against HN and F play a key role in
resistance to HPIV-3. In phase 2 clinical trials, a live-
attenuated BPIV-3 vaccine was intranasally administered si-
multaneously with other routine vaccines (Greenberg et al.
1999; Lee et al. 2001) to infants aged 2, 4, and 6 months, a
booster immunization at 12–15 months of age showed safety
and well tolerance of BPIV-3 in infants.

In human clinical studies, another live-attenuated HPIV-3
vaccine candidate was developed by reverse genetics that
yielded a recombinant BPIV-3 (rBPIV-3), phenotypically
similar to the bioderived BPIV-3 (Haller et al. 2000, 2001).
Furthermore, the growth in serum-free (SF) Vero cells of
BPIV-3, r-BPIV-3, or B/HPIV-3, chimeric bovine/human
parainfluenza virus type 3, did not affect vaccine yield, viral
replication, immunogenicity, or efficacy in primates
(Pennathur et al. 2003).

Bovine and human rotaviruses (BRV & HRV)

In 1969, rotavirus (RV) had been discovered in diarrheic cattle
(Mebus et al. 1969). Rotavirus multiplies in the intestinal epithe-
lium leading to malabsorption, which causes severe diarrhea and
toxemia (Organization 2009). Rotaviral diarrheas are common in
calves and could cause death due to severe dehydration or sec-
ondary bacterial infections (Holland 1990; Saif 1990; Chauhan
and Singh 1996). BRV is considered economically important
and zoonotic pathogens (Parashar et al. 2006). In 1973, RVs
were first identified as a significant cause of acute gastroenteritis
in babies and young children (Bishop et al. 1973; Flewett et al.
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1973). Every year, RV cause around one hundred million cases
of hospitalizations and deaths of children less than 5 years of age
worldwide (Parashar et al. 2003, 2006).

Developing countries are likely to have the largest share of
RV-caused deaths for socioeconomic and epidemiological
reasons (Angel et al. 2007). Rotavirus-specific serum IgA
levels typically correlate with intestinal IgA levels following
natural infection in children (Franco et al. 2006), and rotavirus
T cell responses are associated with the development of pro-
tective antibodies (Offit et al. 1993).

Rotaviruses are a member of the Reoviridae family, which is
an 11-segment, double-stranded RNA genome with non-
enveloped, icosahedral symmetry (Estes and Cohen 1989;
Pesavento et al. 2006). Six structural proteins are present, which
constitute three concentric layers. The viral genome is
surrounded by the inner layer and contains the scaffolding pro-
tein VP2, the RNA-dependent RNA polymerase VP1 and VP3
(a guanylyl transferase and methylase). The intermediate layer,
which is a major structural protein, is made of VP6. The neutral-
izing antibodies are the targets of two virus surface proteins, VP4
and VP7, and either antibody can mediate defense. Six nonstruc-
tural proteins (NSP1–6) are formed in infected cells. OnceVP4 is
cleaved by intestinal trypsin, VP5* and VP8* are formed (an
asterisk is to denote post-translational product), and interact with
cellular receptors inducing infection.

Gene reassortment occurs at high frequency when two ro-
taviruses co-infect the same cell producing progeny viruses with
mixed genes from both parental strains (Greenberg et al. 1981),
with evidence for the zoonotic potential of animal rotaviruses to
humans, leading either to a reassortment between animal and
human rotaviruses circulating in humans (Gentsch et al. 2005)
or causing disease (Martella et al. 2006; Matthijnssens et al.
2006). The generation of RV group A genomic diversity princi-
pally is caused by the reassortment (Estes and Greenberg 2013).
The same evolutionary origin was proposed for bovine strains
A5-10 and A5-13, and human DS-1-like strains (Komoto et al.
2016). Reassortment events between bovine and human RV
group A strains may have produced the bovine strains A5-10
and A5-13 (Komoto et al. 2016).

In addition, rotaviruses generally exhibit substantial host-
range restriction (HRR), in which most human rotaviruses are
highly attenuated in ‘heterologous’ animal hosts and vice versa
(Angel et al. 2007). Based on gene reassortment and HRR,
RotaShield and RotaTeq vaccines were developed (Angel et al.
2007). Both vaccines have been licensed in many countries.

RotaTeq vaccine has been designed to contain various sero-
types to which a child could be exposed. It is a pentavalent
vaccine consisting of five rotavirus strains, which are all derived
from a parental WC3 bovine rotavirus strain and carry a gene
from rotaviruses of human origin (a gene encoding VP4 or VP7)
(Perez-Schael et al. 1997; Vesikari et al. 2006). TheWC3 bovine
virus grows well in vitro, but in contrast to Rotarix, the human
rotavirus, is excreted by less than 6% of children (Vesikari et al.

2006). Induction of neutralizing serotype-specific antibodies was
the gold standard for measuring immunogenicity to the RotaTeq
vaccine (Clark et al. 2006).

Bovine and human respiratory syncytial viruses (BRSV
and HRSV)

In 1970, BRSV disease was described in cattle for the first
time (Paccaud and Jacquier 1970). BRSV causes a major re-
spiratory disease in young calves resulting from seasonal out-
breaks globally (Valarcher and Taylor 2007; Gershwin 2007).
Cattle could be infected with HRSV (Thomas et al. 1984). In
most veterinary researches, BRSV has been discussed in the
context of bovine respiratory disease rather than from a
human-centered perspective (Bem et al. 2011).

HRSV is considered an important cause of respiratory tract
disease in humans (Ruuskanen and Ogra 1993).HRSV causes
community outbreaks due to its stable transmission all the
year-round reaching the peak during the winter months
(Yusuf et al. 2007). The disease affects children under six
months of age, frequently leads to hospitalization, often in
intensive care for mechanical ventilation (Everard and
Milner 1992), or causes the death of neonates and children
in the presence of risk factors such as congenital heart defects
and asthma. Also, more than 33 million infections, more than
3 million hospitalizations, and almost 200,000 deaths are in
children under the age of 5 years per year (Nair et al. 2010).
Not only children, but the elderly and adults could also be
infected with HRSV (Falsey et al. 2005). HRSV infection in
children is an immunologic process (interaction between the
virus and the serum antibody). So, vaccine-induced serum
antibody without local respiratory antibody does not protect
against HRSV illness (Kim et al. 1969).

BRSV and HRSV are members of the genus Pneumovirus,
the family Paramyxoviridae, are enveloped viruses with a
negative-sense, non-segmented RNA genome and a length
of 15,000 nucleotides. Virions have the same structure as each
other, consisting of a nucleocapsid enclosed in a lipid enve-
lope. The viral genome encodes eight structural proteins; the
surface glycoproteins G, the fusion proteins F, the small hy-
drophobic SH protein (three viral transmembrane proteins),
the nucleoprotein N, the phosphoprotein P, the transcription
processivity factor M2-1, and the large polymerase subunit L
(four nucleocapsids/polymerase proteins), and the matrix pro-
tein that presents on the inner face of the envelope (M). Two
unique nonstructural proteins (NS1 and NS2) are present in
high levels in infected cells (Easton et al. 2004). SH protein
acts as a strong antiapoptotic protein and the function of G and
F proteins is the binding and entry of HRSV and BRSV
(Fuentes et al. 2007) into the host cell. Both viruses are genet-
ically and antigenically closely related. Bovines play a dual
role in HRSV researches as an animal model or alternative
animal pneumovirus model, i.e., BRSV (Bem et al. 2011).
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Animal models are heavily used in the search for new med-
icines and vaccines for HRSV disease, in vivo pathophysio-
logical and preclinical efficacy tests for potential therapies and
vaccines. Animals are a significant link between studies of
tissue culture and human phase I trials (Bem et al. 2011).
Due to ethical and practical reasons besides, the scare in au-
topsy and biopsy findings with severe HRSV disease in
humans make our knowledge about pathogenesis in humans
is minimal. BRSV in calves could be used as a model to study
the pathogenesis and immunity of RSV because calves are
large animals allowing screening of the immune response by
body fluids' collection and analysis of mucosal immune re-
sponses. Vaccines against RSV are available in cattle but not
in humans till now (Meyer et al. 2008). To date, no HRSV
vaccine is available for infants because of the absence of an
animal model, the need for immunization of young infants, the
risks in use of live vaccines, and the risk of vaccine-associated
disease (Meyer et al. 2008). The subunit vaccines were
yielded after intensive research on the HRSV vaccine which
has been evaluated in animal models, such as calves (Blodörn
et al. 2014; Taylor et al. 2014), and under clinical trials in
humans (Green et al. 2015; Taylor et al. 2015; August et al.
2017; Beran et al. 2018). Studies conducted on laboratory
animals generally, not refer to or extend to humans and cattle
(Siegrist 2001; Rudd et al. 2005; Murawski et al. 2009;
Willcocks et al. 2013). The RSV vaccines seemed to be effi-
cacious in rodents, but they have not worked in humans
(Guzman and Taylor 2015).

In contrast to infection that occurs without prior vaccina-
tion, vaccine-enhanced disease (VED) occurs when a person
who has received a vaccine develops a more severe type of the
disease when exposed to the virus afterward. VED phenome-
non is also reported with other viruses (Huisman et al. 2009)
such as measles and SARS-CoV-1.

In the 1960s, vaccination trials of children with formalin-
inactivated RSV (FI-RSV) vaccine not only elicit protection
against RSV infection but also provoke enhanced morbidity
and mortality in vaccines (Knudson et al. 2015) and termed as
enhanced respiratory syncytial virus disease (ERD).
Surprisingly, ~80% of the vaccinated children experienced
serious disease and were hospitalized after acquiring a natural
RSV infection, as compared to only ~5% of a control group
(Fulginiti et al. 1969; Kapikian et al. 1969; Belshe et al. 1982).
RSV infection in children who have previously received a FI-
RSV vaccine is linked to increased disease and pulmonary
eosinophilia, which is thought to be caused by an overactive
memory Th2 response (Castilow et al. 2007). To date, no only
single mechanism is responsible for VED, the potential mech-
anisms involved in this phenomenon are humoral ADE, cel-
lular CD4 activation, DC/trans, and aberrant T-cell response
(reviewed in (Huisman et al. 2009)).

The same scenario that occurred in calves when vaccinated
with FI-BRSV vaccine showed that the vaccine-induced

disease phenomenon is due to enhancing a Th2 mediated im-
mune response (Gershwin et al. 1998; Kalina et al. 2004). So,
calf vaccinated with FI-BRSV vaccine was used as a model of
vaccine enhanced respiratory syncytial virus pathophysiology
(Gershwin et al. 1998) in children. This model enabled re-
searchers to produce RSV vaccines besides understanding
RSV immunobiology (Gershwin et al. 1998). The innate im-
mune response in calves is activated by RSV infection, which
results in the production of pro-inflammatory cytokines and
chemokines (Das et al. 2005; Valarcher and Taylor 2007;
Sacco et al. 2012; Gershwin 2012). BRSV- and HRSV-
infected macrophages and epithelial cells produce
Interleukin 1 beta (IL-1β) (Werling et al. 2002; Bermejo-
Martin et al. 2008; Fach et al. 2010; Taylor et al. 2014), which
orchestrates the pro-inflammatory response enhancing
interferon-gamma (IFN γ) production.

RSV infection is detected by various pattern recognition
receptors (PRR) such as RIG-I receptors, Toll-like receptors
(TLR), and nucleotide oligomerization domain (NOD)-like
receptors, inducing the production of type I IFN that in turn
have antiviral effects on neighboring non-infected cells
(Saminathan et al. 2019). RSV, on the other hand, is more
resistant to type I IFN's antiviral effects than other paramyxo-
viruses (Atreya and Kulkarni 1999; Schlender et al. 2000).
Both the cellular antiviral responses and IFN induction are
suppressed by the action of NS1 and NS2 of both human
and bovine RSV (Schlender et al. 2000; Bossert et al. 2003;
Ling et al. 2009). In calves, tumor necrosis factor-alpha
(TNF-α) production differs according to the age (Antonis
et al. 2010) besides the deficiency in TNF-α production by
monocytes in newborns in response to TLR agonists, indicat-
ing the less serious RSV disease in babies and calves under a
month of age (Levy 2007).

It is suggested that BRSV and HRSV NS proteins possess
commonmechanisms and cellular targets, and the NS proteins
of both viruses showed a protective activity (Bossert and
Conzelmann 2002). The two viral nonstructural proteins,
NS1 and NS2, enable BRSV to escape from the cellular re-
sponses to IFN-α/β. A chimeric BRSV with HRSV NS genes
(BRSV h1/2) showed a differential IFN escape capacity in
cells from different hosts, providing a basis for the rational
development of live-attenuated RSV vaccines (Bossert and
Conzelmann 2002).

HRSV and BRSV infection does not cause life-long immu-
nity, and re-infection is usually subclinical (Van der Poel et al.
1994). HRSV and BRSV diseases share many features, such
as similarity in disease development depends on age (Van der
Poel et al. 1994; Grell et al. 2005; Antonis et al. 2010), unique
lung histopathology (Bennett et al. 2007), BRSV co-infection
with bacteria, such as Mannheimia and Haemophilus species
(BRDC) (Srikumaran et al. 2007). It was also recorded that the
significant similarities in the lung structural features with the
overlapping clinical symptoms of respiratory disease
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(Kirschvink and Reinhold 2008). In temperate climates, both
viruses cause annual winter respiratory disease outbreaks
(Stott and Taylor 1985). The highest incidence of serious dis-
ease is in infants and calves under six months of age, and the
majority of infections are to those 1–2 years of age (Stott and
Taylor 1985). BRSV and HRSV replicate primarily in ciliated
airway epithelial cells and type II pneumocytes (Viuff et al.
1996; Johnson et al. 2007; Welliver et al. 2008), and stimulate
a variety of pro-inflammatory cytokines and chemokines
(Valarcher and Taylor 2007; Bermejo-Martin et al. 2008;
Rosenberg and Domachowske 2012), which direct the expres-
sion of cellular adhesion molecules and recruitment of neutro-
phils beside lymphocytes to the lung, resulting in bronchiolitis
and interstitial pneumonia.

Bovine and human coronaviruses (BCoV/HCoV)

Coronaviruses (CoV) are single-stranded positive-sense
RNA, 26 to 32 kb, enveloped, pleomorphic, 60 to 220 nm in
diameter viruses, containing the spike (S) glycoproteins, ap-
proximately 12 to 25 nm in length (Saif et al. 2019). The
subfamily Coronavirinae contains the four genera Alpha-,
Beta-, Gamma-, and Deltacoronavirus (Corman et al. 2018).
Coronaviruses (CoV) are common human and bovine patho-
gens, cause many infections such as enteric, respiratory, and
neural infections. BCoV causes respiratory and enteric infec-
tions in cattle (Clark 1993) while HCoV isolate OC43 the
causative agent of common cold in humans. In 1937, avian
infectious bronchitis (IB) was the first characterized coronavi-
rus (El-Sayed and Kamel 2021). Human coronaviruses
(HCoV) were identified in the 1960s and later, the bovine
coronavirus (BCoV) in the 1970s (El-Sayed and Kamel
2021). To date, seven different CoVs have been identified in
humans. HCoV-OC43 (McIntosh et al. 1967) and -229E
(Hamre and Procknow 1966) were isolated for the first time
in the 1960s. HCoV-NL63 (Van Der Hoek et al. 2004) and -
HKU1(Woo et al. 2005) were discovered only in 2004 and
2005, respectively. Three epidemic CoVs have emerged in
humans in the last 2 decades, severe acute respiratory syn-
drome (SARS)-CoV, the Middle East respiratory syndrome
(MERS)-CoV and severe acute respiratory syndrome 2
(SARS)-CoV-2 discovered in 2003, 2012 and 2019, respec-
tively (Drosten et al. 2003; Zaki et al. 2012; Zhou et al. 2020).

Bovine coronaviruses (BCoV) and human coronavirus
OC43 (HCoV-OC43) belong to the family Coronaviridae,
order Nidovirales, subfamily Coronavirinae. O-acetylated si-
alic acid or similar derivative are recognized by HCoV-OC43
and BCoV as cell receptors (Vlasak et al. 1988) for viral bind-
ing and entry, and they are usually transmitted through the
fecal-oral or respiratory route. On the contrary, SARS corona-
virus and human coronavirus 229E (Matrosovich et al. 2015).
BCoV is closely related to respiratory HCoV isolate OC43,
they shared 95% genetic identity, suggesting that BCoV is an

ancestor of human CoV-OC43 (Vijgen et al. 2005), or alter-
natively, they might have arisen from a common ancestor
(Hasoksuz et al. 2007). Molecular clock analysis of genome
sequences suggested that HCoV-OC43 originated from a zoo-
notic transmission event of a bovine coronavirus (BCoV) and
dated their most recent common ancestor between the 1890s
(Vijgen et al. 2005, 2006) and the 1950s (Lau et al. 2011).
That is what led Vijgen et al. to theorize that the 1889-1890
“Russian flu” pandemic may have resulted in SARS-like in-
terspecies transmission event, owing to the extensive depop-
ulation of cattle herds between 1870 and 1890, which was
associated with the highly pathogenic bovine respiratory dis-
ease (Greger 2007). BCoV, as a useful virus model, is para-
digmatic of how CoVs are able to cross the interspecies bar-
riers, establishing its derivatives as separate viral lineages af-
fecting the respiratory and/or enteric tract of humans (HCoV-
OC43), swine (Porcine Hemagglutinating Encephalomyelitis
Virus; PHEV), horses (equine coronavirus, ECoV), and dogs
(canine respiratory coronavirus, CRCoV) (Decaro and
Lorusso 2020), and that may be attributed to the accumulated
genetic diversity of BCoVs (Zhang et al. 2007).

The global pandemic of Coronavirus Disease 2019
(COVID-19) has now infected nearly 160 million people
worldwide, resulting in over 3.3 million deaths (WHO,
2021). Since its etiologic agent, SARS-CoV-2, was isolated
and identified in early January 2020, the entire scientific com-
munity has been hardly working to find an effective cure and
develop a vaccine to control the pandemic (Dhama et al.
2020a; Izda et al. 2020). Animal spillover and cross-species
jumping events of SARS-CoV-2 have been identified, and
zoonosis is being investigated (Dhama et al. 2020b; Tiwari
et al. 2020; Sharun et al. 2021). Respiratory BCoV shares
some common features with SARS-CoV and SARS-CoV-2,
such as BCoV has a broad host-range (interspecies transmis-
sion) including wild ruminants, zoonotic potential, and respi-
ratory and gastrointestinal tropisms (Saif and Jung 2020).
Passive immunity in humans via the consumption of bovine
immune milk (bovine immunoglobulins) has been studied for
tens of years. Short-term protection against COVID-19 could
be provided in humans as a result of drinking microfiltered
immune milk from cows that were immunized against SARS-
CoV-2 (Jawhara 2020). Colostrum or antibodies-rich milk
from cows can be used to treat human diseases caused by
viruses and bacteria (Hurley and Theil 2011; Saied and
Metwally 2019), such as SARS-CoV-2 (Jawhara 2020;
Batista da Silva Galdino et al. 2021).

Transchromosomic bovines (TcB) offer a promising plat-
form for the production of rapidly-produced fully human
polyclonal immunoglobulin G (IgG) in large amounts for in-
hibition of Middle East Respiratory Syndrome coronavirus
(MERS-CoV) in vivo (Luke et al. 2016). Only one MERS-
CoV neutralizing antibody (nAb) isolated from Tc has been
evaluated in phase I trials (SAB-301) (Zhou et al. 2019),
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which showed safety and well tolerability in humans (Beigel
et al. 2018). Interestingly, in a recent study, TcB was used to
produce a polyclonal, fully human, anti-SARS-CoV-2 immu-
noglobulin (Liu et al. 2021) after hyperimmunization of TcB
twice with plasmid DNA encoding the SARS-CoV-2Wuhan-
Hu-1 strain Spike strain S gene (Wu et al. 2020), then repeat-
edly immunized with S protein purified from insect cells. The
resultant anti-SARS-CoV-2 immunoglobulin was termed
SAB-185 and efficiently neutralized SARS-CoV-2, and vesic-
ular stomatitis virus (VSV) SARS-CoV-2 chimeras in vitro
(Liu et al. 2021).

Bovine-derived products

Antibodies have been used in the therapy of infectious dis-
eases since the late nineteenth century, in which von Behring
and Kitasato have worked on using serum therapy for treating
diphtheria and tetanus (Behring 1890). For more than a cen-
tury, polyclonal immunoglobulin-based medicinal products
have been used successfully to treat virus-caused illnesses.
Many components in bovine milk have immunomodulatory
and antimicrobial properties (Ulfman et al. 2018). For viral
pathogens, immunized bovines give polyclonal IgG mole-
cules which were shown to be effective in prophylaxis for
human viruses such as HIV, human simplex virus (HSV),
and SARS-CoV-2.

Cows that were immunized by a single Env trimer immu-
nogen, generated bovine broadly neutralizing antibodies
(bnAbs) with the characteristic long heavy-chain CDR3 loops
to HIV (Sok et al. 2017). it has been suggested that bovines
have the advantageous ability to generate super-antibodies
against other human pathogens (Walker and Burton 2018).
Colostrum from cows vaccinated with conventional bovine
rotavirus vaccine, displayed antibodies with in vitro anti-
human rotavirus activity (Civra et al. 2019). bIgG promotes
adaptive antiviral T cell responses and protects against RSV
infection in vitro and in vivo. Therefore, purified bIgG can be
added to infant formulas to pass some of the beneficial effects
of raw bovine milk to microbiologically stable infant formulas
(Nederend et al. 2020), which not undergo heat treatment to
avoid reducing the protective effect of bovine milk (Mainer
et al. 1997; Loss et al. 2015). Bovine lactoferrin (BL), protein
found in cow milk, indirectly reduces human norovirus infec-
tion via inducing the innate interferon responses (Oda et al.
2021) and has a therapeutic potential against SARS-CoV-2
(Batista da Silva Galdino et al. 2021). Additionally, BL is an
effective modality against Zika and Chikungunya viruses
(Carvalho et al. 2017). Lactoferrin may be useful in reducing
the cytokine storm associated with severe COVID-19 infec-
tion (Kell et al. 2020), inhibiting the SARS-CoV-2 binding to
the host cells (Kell et al. 2020).

In 1998, transgenic cattle were produced (Chan et al. 1998;
Cibelli et al. 1998), and in 2002, transchromosomal cattle
were used to produce human polyclonal antibodies (hPABs)
as useful therapeutic agents (Kuroiwa et al. 2002) via intro-
ducing human artificial chromosome (HAC) vector into bo-
vine primary fetal fibroblasts using a microcell-mediated chro-
mosome transfer (MMCT) approach. Human albumin serum
(HAS), a human plasma protein, was produced in the mam-
mary gland of transgenic cattle (Kues and Niemann 2004) and
entered phase I trials for production of recombinant human
serum albumin (rHSA) in humans. When transchromosomic
bovines (TcB) were vaccinated, fully human IgG produced
that does not need enzymatic treatment to prevent anaphylac-
tic reaction and serum sickness associated with heterologous
species IgG. Furthermore, human IgG from TcB has a longer
half-life and retains the effector functions associated with the
Fc, removed by enzyme treatment. Human IgG from TcB also
provides medical products based on polyclonal immunoglob-
ulin without the need for human donors or inactivated/
attenuated vaccine antigens (Hooper et al. 2014).
Transchromosomal cows have also been used to rapidly gen-
erate fully polyclonal neutralizing antibodies to MERS-CoV,
Hantavirus, Venezuelan equine encephalitis virus, and Ebola
virus (Hooper et al. 2014; Dye et al. 2016; Luke et al. 2016;
Gardner et al. 2017; Beigel et al. 2018), showing the feasibil-
ity of using this platform to develop therapeutics to tackle
emerging viral threats. Perhaps the first step in the road to
mAb isolation from TcB has been done through yielding both
polyclonal (SAB-100) and monoclonal (53C10) antibodies
produced from the transchromosomic (Tc) cattle platform
against influenza viruses. 53C10 mAb was capable of neutral-
izing diverse clades of the hemagglutinin-1 (H1) subtype in-
dicating its potential role in treating H1 influenza virus infec-
tion in humans (Gao et al. 2020). The transgenic technology in
bovines would solve many disadvantages of biopharmaceuti-
cal products such as immunogenicity, biosafety, cost-
competitive (Redwan 2009), and production of therapeutic
antibodies on a large scale. Transgenic cattle act as a novel
model for infectious and non-infectious diseases. A novel gly-
cosylated anti-CD20 monoclonal antibody was produced in
the milk of transgenic cattle demonstrated superior efficacy
over Rituxan, the first therapeutic recombinant monoclonal
antibodies (mAb) to treat non-Hodgkin lymphoma (Grillo-
López et al. 1999), against B-cell lymphomas in severe com-
bined immunodeficiencymice (Zhang et al. 2018). Antibodies
produced in TcB could solve the respiratory viruses-
associated antibody-dependent enhancement (ADE) phenom-
ena (Weingartl et al. 2004; Tseng et al. 2012). Recent studies
showed that the anti-SARS-CoV-2 antibodies (antibody-
based vaccines) could increase the severity of COVID-19
(Arvin et al. 2020; Lee et al. 2020) and multiple viral infec-
tions such as RSV (Graham 2016) and measles (Polack 2007)
through ADE, which results in failed vaccine trials.

47012 Environ Sci Pollut Res (2021) 28:46999–47023



Concerns and precautions

Pathogens infecting livestock can come from wild animals as
an infection or re-infection (Gortázar et al. 2007; Conner et al.
2008) and viruses, in particular, few RNA viruses such as
MERS-CoV and Hendra virus (Cunningham et al. 2017), are
the main and the most recently emerged pathogens of wildlife
(Dobson and Foufopoulos 2001; Pedersen et al. 2007) (Fig.
4). Many newly identified human virus species have been
found in humans for a considerable time but have only recent-
ly been recognized (Woolhouse and Gaunt 2007). Viruses
undergo a biological evolution according to the evolutionary
history of life. But, at the time of their discovery, an interesting
question will arise: where these viruses firstly originated in
animals or humans? More than half of pathogens that infect
humans can infect other hosts (Woolhouse and Gowtage-
Sequeria 2005), and most pathogens in farm animal popula-
tions are in human communities (Pearce-Duvet 2006; Lanzas
et al. 2010). The high population densities of farm animals
result in increased rates of pathogen transmission, acting as
sources for emerging viruses for humans (Cleaveland et al.
2001; Morse et al. 2012). Human pathogens (189 (13.5%) of
1399) are viruses (~81% RNA viruses and ~19% DNA virus-
es), but in the last 40 years, there is an increase in the novel
viruses much faster than other pathogens (Woolhouse and
Gaunt 2007) especially in presence of new technologies
(Morales-Sánchez and Fuentes-Pananá 2014). Twenty-three
percent of all malignancies in humans are associated with
pathogenic organisms (Organization 2003; zur Hausen 2009;

Brücher and Jamall 2014), mostly viruses (Ewald and Swain
Ewald 2015). Bovines are one of the most common animal
species that are directly or indirectly responsible for transmit-
ting infections from animals to humans (Baechlein et al.
2015). In addition to being an important food source, this is
due to their high population density and diversity in commu-
nication with humans and other species (Lu et al. 2018). Most
non-human milk consumed by humans comes from cows, as
this animal is used extensively in commercial production.
Bovine meat consumption comes in the third rank after pig
meat and poultry, respectively. Antimicrobial-resistant patho-
gens through food intake (meat or milk), direct contact with
patient animals, waste management, and the use of manure as
fertilizer, can be transmitted from cattle to humans (Marshall
and Levy 2011). Interestingly and according to the phyloge-
netic studies, cattle were also recipients of parasites and mi-
crobes that spread from humans (Morand et al. 2014).

Concerns about using bovine materials from infected with
bovine spongiform encephalopathy-infected cattle (BSE),
such as bone, serum, and tissue of the nervous system, which
could transmit the infectious agent to people, where
Creutzfeldt-Jakob (CJD) disease could be caused. The benefit
of vaccination outweighs the potential risk of vaccine contam-
ination (Marwick 2000). Also, the same concerns are about
using of vaccines, produced on allogeneic cell lines in humans
(Benedictus and Bell 2017), and colostrum-containing dietary
supplements (Kasonta et al. 2014) from PregSure-treated
cows, PregSure is an inactivated BVD vaccine for cattle, but
their risk for the reaction of transmitting alloantibodies, that

Fig. 4 The possible ways of transmission of viruses. Viruses are
present around in the environment as inactive microbes where the life
cycle of viruses begins after entering the living body. Wild animals are
reservoir hosts for many emerging viruses, and bovines play an important
role in the spread of viruses from wildlife to a human directly or
indirectly. Furthermore, the air, water, and food are other routes of

transmission of viruses besides the anthropogenic activities leading to
pathogen spillover. Vaccination of farm animals, including bovines, is
the strategy for improving animal health and protecting human health,
andmedicines are valuable and urgent against diseases that do not possess
vaccines until now
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responsible for developing bovine neonatal pancytopenia
(BNP) in cattle, to human lymphoblasts is not totally scientif-
ically confirmed.

Conclusion

“And there is no creature on (or inside) the earth or a bird that
flies with its wings except (that they are) nations like you.”
(Cattle 38), the Noble Quran (Saied and Metwally 2019).
Although there are differences between bovines and humans,
the similarities are not tiny or far. The convergence of human
health with animal health, under the concept of One Health,
opens a new dimension in this era for solving and controlling
many urgent topics. The idea of exploiting certain bovine
characteristics to learn about human viral infections is gaining
widespread application. Bovines can make significant, rapid
contributions to better understand and improve therapies for
human viral infections. “In our battle with microbes, we have
a number of weapons in our armamentarium” Dr. Anthony S.
Fauci said, is one of the world's leading experts on infectious
diseases. Viral diseases are an important challenge to the
health of the public worldwide. Unfortunately, most viral dis-
eases are often asymptomatic in humans and cattle; the need
for survey by using advanced technologies in diagnosis is a
prompt need. All that suggested the presence of zoonotic dis-
eases but in a hidden mask. Scientists are striving to find out
drugs and vaccines due to the urgent need to combat viral
diseases, especially in their speed pace.

Bovine could be used for, via their immunization with a spe-
cific human virus, the production of broadly neutralizing anti-
bodies, in serum and colostrum of bovines, against human virus-
es such as HIV, MERS-CoV, and Hantavirus (reviewed in
(Saied and Metwally 2019)) besides using transchromosomic
(TcB) bovines as a platform for producing human polyclonal
and monoclonal antibodies as a therapeutic modality to combat
emerging viral threats such as MERS-CoV, Hantavirus,
Venezuelan equine encephalitis virus, influenza virus, and
Ebola virus, and provides a possible strategy for developing pas-
sive immunotherapy against coronaviruses such as SARS-CoV-
2. Bovine viruses-based vaccines such as RotaTeq vaccine and a
live-attenuated BPIV-3 vaccine were showed their safety and
well tolerance in humans and infants at the age of 12-18 months.
Other human vaccines that are based on bovine viruses have
shown promising results. As well recent studies reported using
bovine viruses-based therapies such as BVD in treatingMM and
BPV in treating prostate cancers.

Prevention of transmission of zoonotic pathogens from the
bovine-derived products into the clinical application into hu-
man health is a crucial aspect that requires sensitive and reli-
able screening methods. Associated with the somatic cloning
technology, conditional gene expression, and gene targeting
wil l make cat t le non-suscept ib le to spongiform

encephalopathy (BSE), and give the scientists the chance to
create useful bovine models for human diseases and as pre-
clinical testing for vaccines. Exclusion of colostrum collected
from PregSure-treated cows for colostrum powder
manufacturing should be taken into account (Kasonta et al.
2014). Overall, bovines and their products showed promising
outputs that warrant further research to clarify their contribu-
tion to this field and against other viruses such as influenza
viruses and COVID-19. Future work including bovine viruses
for vaccine development and TcB as a platform for the gener-
ation of human poly and mono antibodies against human vi-
ruses is crucial. This review is the first of its type that describes
some human viruses for which bovines have contributed to
their combating, offering different aspects of benefits from
using bovines against human viral infections. We are sure
the review topic will reshape the recent future.
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