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Abstract
Many studies report organic carbon stabilization by clay minerals, but the effects of land use and soil type on the properties of
humic acids (HAs) are missing. The aim of the paper is to determine the effects of land use and soil types on the characteristics of
HAs, which have a considerable influence on organic matter quality. It was hypothesised that the effect of the land use on HAs
properties depends on the particular size distribution. The research was performed in three ecosystems: agricultural, forest, and
meadow, located in Slovakia. From each of them, the samples of 4 soil types were taken: Chernozem, Luvisol, Planosol, and
Cambisol. The soil samples were assayed for the content of total organic carbon (TOC) and the particle size distribution. HAs
were extracted with the Schnitzer method and analysed for the elemental composition, spectrometric parameters in the UV-VIS
range, and hydrophilic and hydrophobic properties, and the infrared spectra were produced. The research results have shown that
the properties of HAs can be modified by the land use and the scope and that the direction of changes depends on the soil type.
The HAs of Chernozem and Luvisol in the agri-ecosystem were identified with a higher “degree of maturity”, as reflected by
atomic ratios (H/C, O/C, O/H), absorbance coefficients, and the FT-IR spectra, as compared with the HAs of the meadow and
forest ecosystem. However, as for the HAs of Cambisol, a higher “degree of maturity” was demonstrated for the meadow
ecosystem, as compared with the HAs of the agri- and forest ecosystem. The present research has clearly identified that the
content of clay is the factor determining the HAs properties. Soils with a higher content of the clay fraction contain HAs with a
higher “degree of maturity”.

Keywords Soils . Elemental composition . UV-VIS . HPLC

Introduction

The role of organic matter (OM), including humic substances
(HS), in the soi l format ion and development is

unquestionable. OM is also an important indicator of soil fer-
tility, and it plays an essential role in the efficiency of agricul-
ture, the quality of the environment and global climate chang-
es (Zech et al. 1997; Lal 2004; Schmidt et al. 2011; Tan 2014).

The content and properties of organic matter are condi-
tioned by the physicochemical properties of the parent rock
and climate conditions. However, the land use change is the
most dynamic factor of soil organic matter (SOC) changes
(Guo and Gifford 2002; Poeplau et al. 2011; Jonczak 2013;
Viscarra-Rossel et al. 2014; Kukuls et al. 2019; Kunlanit et al.
2019). In the temperate climate zone, the capacity of soil for
SOC storage increases in the following order: cropland < for-
est < grassland (Meersmans et al. 2008; Martin et al. 2011).
Leifeld et al. (2005) and Lettens et al. (2005) claim that the
forest SOC stocks can be higher than grassland stocks, and a
change in use from forest to farmland results in significant
declines in SOC stocks (Guo and Gifford 2002; Murty et al.
2002; Wei et al. 2014; Kunlanit et al. 2019). Wei et al. (2014)
report on the largest decrease in the SOC stock in topsoil (0–
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30 cm) in temperate regions - 52% followed by tropical re-
gions - 41% and boreal regions - 31% (the values are the
average decrease in the SOC stock for 3 periods - ≤10, 11–
50, > 50 years which lapsed since the woodland was trans-
formed into arable land).

One of the key SOC-stabilizing mechanisms is the soil
interaction with mineral particles (Sollins et al. 1996; Von
Lutzow et al. 2006). Due to a strong correlation between the
SOC stocks and the content of clay presented in numerous
research reports, the soil texture can be a promising factor
applied as the SOC storage indicator (Hassink et al. 1997;
Kaiser and Guggenberger 2000; Arrouays et al. 2006; Zinn
et al. 2007).

As already mentioned, one of the most important organic
carbon (OC) reservoirs is the soils of grasslands and forest
soils. For that reason, the meadow and forest ecosystems are
a land use preventing OC losses in soils. The OC losses trig-
gered by soil processes are gas emissions of CO2 and CH4 as
well as soluble organic carbon leaching to the groundwaters. It
has been demonstrated that meadow ecosystems help limiting
the OC losses from soil, and they are essential for the sustain-
able management of that element in the environment (Minami
et al. 1993; Conant et al. 2001; Mannetje 2002; Lal 2011;
Kampf et al. 2016).

Many reports point to progressive decreases in HS concen-
trations in soils converted from forest to arable land (Spaccini
et al. 2006; Gonzalez-Perez et al. 2007; Guimaraes et al. 2013;
Barancikova et al. 2016; Kunlanit et al. 2019), and as claimed
by Feller and Beare (1997), Watanabe et al. (2001), and
Jonczak (2013), the changes in land use can alter the chemical
properties of soil HS. HS (fulvic acids, HAs, and humins) are
the main fractions of SOM making its specific contribution to
soil fertility. HS constitute a considerable part of the resources
of OC and nitrogen (N) (Lal 1994; Milori et al. 2002; Zhang
et al. 2019). Those compounds take part in all the processes
which occur in soil and which affect its physical, chemical,
and biological properties. HS improve the soil buffering ca-
pacity, supply the plants with available micronutrients, and
immobilize organic contaminants and metals (McCarthy
2001; Yamashita et al. 2008; Canellas et al. 2010; Lanyi
2010). HS also determine the soil production potential, and
by participating in the global carbon cycling, they play envi-
ronmental functions (Hayes and Clapp 2001; Piccolo 2001;
Lal 2006). For that reason, it is important to understand the
nature, composition, and the dynamics of HS.

The molecules of HAs, with a humification progress, show
a growing stability, e.g., in terms of elemental composition
and spectroscopic properties (Dergacheva et al. 2012; Zhang
et al. 2019). For that reason, one of the basic indicators applied
to evaluate the properties of HAs is the elemental composition
and, determined with it, values of the H/C, O/C, and N/C
atomic ratios. The numerical values of atomic ratios facilitate
an approximation of the structure of the molecules of humic

acids by evaluating the degree of condensation of aromatic
rings (H/C ratio) and the degree of maturity (O/C, O/H, N/C
ratios) (Rice and MacCarthy 1991; Fuentes et al. 2007;
Canellas et al. 2010; Trubetskaya et al. 2013; Boguta et al.
2016).

An important criterion characterizing the HAs in terms of
the molecular composition and their origin is the values of
absorbance of their solutions in the UV-VIS range: A280,
A465, A665, and the coefficients of absorbance A2/4, A2/6,
A4/6, and ΔlogK. Coefficients A2/4, A2/6, A4/6, and ΔlogK
are important indices of the degree of advancement of the
humification of organic materials and the characteristics of
the HS produced, as well as changes in the properties of the
HAs which occur due to various anthropogenic factors
(Kumada 1987; Chin et al. 1994; Tan 1998; Gonet and
Debska 1999; Chen et al. 2002; Weishaar et al. 2003; Moran
Vieyra et al. 2009; Polak et al. 2011; Rodriguez et al. 2016).
For example, the research of the spectrometric parameters of
the HAs of soils collected from primary forests, secondary
forests, coffee plantations, and cultivated lands performed by
Watanabe et al. (2001) suggests that the degree of HAs humi-
fication varied from site to site.

Infrared spectroscopy (FTIR) has also been a technique
used for the structural characterization of HS, especially for
the identification of functional groups within the humus mac-
romolecule (Tan 1998; Cocozza and Miano 2002;
Pajaczkowska et al. 2003; Polak et al. 2011; Kukuls et al.
2019).

Some essential information on the transformation of HAs is
also provided by the results of high-performance liquid chro-
matography. Woelki et al. (1997), Preuße et al. (2000),
Banach-Szott and Debska (2006), Sierra et al. (2006), and
Debska et al. (2010), using the chromatographic analysis, sep-
arated the hydrophilic (HIL) and hydrophobic fractions
(HOB-1 and HOB-2). The ratios of those fractions affect the
solubility of HAs and, as a result, their migration deep down
the soil profile. According to Debska et al. (2007) and Debska
and Gonet (2007), with an increase in the degree of humifica-
tion, the share of the HIL fraction in the molecules of HAs
increases and the share of HOB fractions decreases. As a
result, the HAs molecules with a higher “degree of maturity”
showed a higher value of the HIL/ΣHOB ratio.

The aim of the paper has been to present the land use and
soil types effect on the characteristics of HAs determining the
OM quality in the soil of various types. There are many results
on the processes of OC stabilization by binding clay; however,
some results on the changes in elemental composition and the
other properties of HAs depending on the land use and soil
types are missing. It was hypothesised that the effect of the
land use on the properties of HAs will depend on the particle
size distribution (soil types). The research has been performed
in three ecosystems: agricultural, forest, and meadow, located
in various parts of Slovakia. The properties of HAs have been
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determined from the assay of the elemental composition, spec-
troscopy in the UV-VIS, and IR ranges and the HIL-HOB
propert ies applying the high-performance l iquid
chromatography.

Materials and methods

Materials

The experiment included 4 soil types: Chernozem (Ch),
Luvisol (Lu), Planosol (Pl), and Cambisol (Ca) (IUSS
Working Group WRB 2014), each in three types of ecosys-
tems: agri-ecosystem (AE), forest (FE), and meadow ecosys-
tem (ME).

The areas are located in different parts of Slovakia (Fig. 1).
Chernozem (Ch) comes from the location of Voderady
(48°16′N, 17°34′E), found on the northern border of the
Danube Basin. The geological structure shows the Neogene
strata, which consist mainly of claystones, sandstones, and
andesites, covered with younger quaternary rocks represented
by different fluvial and Aeolian sediments (Sajgalik et al.
1986). It is located in a warm climate region with an average
annual temperature of 9.6°C and the total annual precipitation
of 560 mm (Korec et al. 1997).

Planosol (Pl) comes from the location of Vavrecka (49°38′
N, 19°47′E), found in Horna Orava, which is part of the
Flysch Belt. The geological structure shows the alternation
of clay slates, sandstones, and conglomerates in the layers of
various depth. It is located in a cold climate region with an
average annual temperature of 4.6°C and the total annual pre-
cipitation of 1010 mm (Sajgalik et al. 1986).

Cambisol (Ca) comes from the location of Prietrz (48°40′
N, 17°26′E), on the Myjava Hills. The geological structure
includes the Carpathian flysch, which consists mainly of ma-
rine deposits of claystones, shales, and sandstones (Sajgalik
et al. 1986). It is located in a temperate climate region with an
average annual temperature of 8.0°C and the total annual pre-
cipitation of 681 mm (Korec et al. 1997).

Luvisol (Lu) comes from the location of Plave Vozokany
(48°06′N, 18°46′E), in the northeast of the Danubian Upland.
The geological structure involves clay, gravels, and sands
covered with quaternary sediments (Sajgalik et al. 1986). It
is located in a warm climate region with an average annual
temperature of 10.4°C and the total annual precipitation of
589 mm (Korec et al. 1997).

The agri-ecosystem included four crop rotations for each
soil and land use (Table 1). The fields in the agri-ecosystems
were located on different farms under real production condi-
tions. The forest ecosystems were natural forests with human
control, in all the cases they were hundreds of years of age.
The dominant species in the stands were on Chernozem -
Quercus, on Luvisol - Alnus, on Planosol - Picea, and on
Cambisol - Fagus, Quercus, and Carpinus. The meadow eco-
systems were created by man at least 30 years ago.

Methods

The soil samples were collected with the Egner stick in three
replications down to the depth of 0.30 m in the forest and
meadow ecosystems. In the agri-ecosystems, collections were
made in different fields with different crop rotations and dif-
ferent applications of farmyard manure (in 12 replications, the
depth of 0.30 m). The distance between the replications was
20 m in equilateral triangle. The distance between fields dif-
fered, depending on the locations; however, it was not more
than 2 km. The distance between the locations (Fig. 1) was not
more than 200 km. The sample replications for chemical anal-
yses were combined and carefully mixed, dried in room tem-
perature, and sieved (2 mm).

Basic parameters of soils

The particle size distribution was determined after dissolving
CaCO3 with 2 M HCl and the oxidation of OM-with 30%
H2O2. Silt, sand, and clay fractions were assayed applying
the pipette method (Van Reeuwijk 2002). In the soil samples,
the TOC was assayed applying wet combustion (Orlov and

Fig. 1 Soil sampling locations: 1
– Voderady, 2 – Vavrecka, 3 –
Prietrz, 4 – Plave Vozokany
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Grishina 1981). The soil pH was potentiometrically measured
in a supernatant suspension of a 1:2.5 soil/liquid mixture, and
the liquid was 1 M KCl (pHKCl) (Van Reeuwijk 2002).

Extraction of humic acids

HAs were extracted and purified according to the following
procedure (Debska et al. 2010):

– Decalcification (24 h) with 0.05 M HCl (1:10 w/v). After
centrifugation the residue was rinsed with distilled water
till neutral.

– The extraction (24 h) of the remaining solid with 0.5 M
NaOH (1:10 w/v), with occasional mixing, followed by
centrifugation.

– The precipitation (24 h) of HAs from the resulting alka-
line extract with 2 M HCl to pH=2 and centrifugation.

– The purification of the resulting HAs; the HAs residue
was treated with a mixture of HCl/HF (950 mL H2O, 5
mL HCl, 5 mL HF) over a 24-h period, followed by
centrifugation. This procedure was repeated three times.
The HAs residue was treated with distilled water until a
zero reaction to chloride was achieved.

The preparations were lyophilised and powdered in the
agate mortar. The ash content in the HAs preparations was
lower than 2%.

Characteristics of humic acids

The HAs separated were analysed for:

– Elemental composition (Perkin Elmer, series II CHN
analyser, Shelton, USA). The H/C, O/C, O/H, and N/C
atomic ratios andω (internal oxidation degree) were cal-
culated using the following formula:

ω ¼ 2Oþ 3N−Hð Þ : C
where O, N, H, C-content in atomic %.

– UV-VIS absorption spectra (Perkin Elmer UV-VIS
Spectrometer, Lambda 20, Ueberlingen, Germany). VIS
spectra were obtained from 0.02% HAs solutions in
0.1 M NaOH and UV-spectra after fivefold dilution.
The absorbance was measured at 280 nm (A280),
400 nm (A400), 465 nm (A465), 600 nm (A600), and
665 nm (A665) and used to calculate the coefficient
values:

– A2/4 – 280 nm and 465 nm absorbance ratio
– A2/6 – 280 nm and 665 nm absorbance ratio
– A4/6 – 465 nm and 665 nm absorbance ratio
– ΔlogK = log A400 - log A600 (sKumada 1987);
– Infrared transmittance spectra (Perkin-Elmer FT-IR

Spectrometer Spectrum BX, software Spectrum V2.00,
Llantrisant, Great Britain) over 400–4400 cm−1 were re-
corded for HAs (3 mg) in KBr (800 mg). To increase the
legibility of the spectra, deconvolution was applied, with
a filter making the bands of γ = 4 narrower and using the
process of smoothing, for which the length parameter was
l = 80% (Cocozza and Miano 2002).

– HIL and HOB properties were determined with liquid
chromatograph HPLC Series 200 with a DAD by

Table 1 The crop rotations for
soils Soils Vegetation Soils Vegetation

Chernozem Helianthus annuus Planosol Triticum aestivum L.

Triticum aestivum L. Zea mays

Zea mays Brassica napus var. napus

Hordeum vulgare Triticum aestivum L.

Triticum aestivum L. Zea mays

Helianthus annuus Zea mays

Triticum aestivum L. Hordeum vulgare

Zea mays Zea mays

Luvisol Medicago sativa Cambisol Medicago sativa

Helianthus annuus Medicago sativa

Triticum aestivum L. Triticum aestivum L.

Pisum sativum Brassica napus var. napus

Brassica napus var. napus Triticum aestivum L.

Triticum aestivum L. Zea mays

Helianthus annuus Helianthus annuus

Triticum aestivum L. Triticosecale
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Perkin-Elmer, Shelton, USA. The separation involved the
use of column X-Terra C18, 5 μm, 250 × 4.6 mm. The
solutions of HAs were applied in 0.01 M NaOH of the
concentration of 2 mg mL−1; the injection of the sample
was 10μL; solvent – acetonitrile –water; solvents flow in
the gradient (ratio H2O:ACN (v/v) over 0–6 min – 99.5:
0.5, 7–13 min – 70: 30, 13–20 min – 10: 90); detection –
at the excitation/emission wavelength (λex/λem) of 270/
330 nm. Based on the areas determined under peaks, the
share of HIL and HOB (∑HOB = HOB-1 + HOB-2 +
HOB-3) fractions in HAs molecules and parameter HIL/
∑HOB was determined (Woelki et al. 1997; Preuße et al.
2000; Debska et al. 2007).

Statistical analysis

The significance of differences of the parameters between land
uses (agri-ecosystem (AE), forest (FE), and meadow ecosys-
tems (ME)) within a soil type was evaluated with Duncan’s
post hoc test at p < 0.05.

The effect of the soil type and the land use on the properties
of HAs was defined with cluster analysis. The method in-
volves dividing the data set into groups to produce clusters
in which the elements are similar to one another and, at the
same time, different from the elements from the other groups.
The groups of similar treatments are presented in a form of
dendrogram. In a given group, the smaller the Euclidean dis-
tance, the more similar the objects. Data clustering was per-
formed with the Ward method. The analysis was made after
data standardization. The cluster analysis was performed
based on the elemental composition (C, H, N, O, H/C, O/H,
O/C, N/C, ω), spectrometric parameters (A280, A465, A665,
A2/4, A2/6, A4/6, and ΔlogK), as well as the HIL-HOB prop-
erties. The method involves dividing the data set into groups
to produce clusters where the elements are similar to one an-
other and, at the same time, different from the elements of the
other groups. The relationships between the share of clay, silt,
and sand fraction and the basic parameters of HAs were de-
fined using the Pearson’s correlation coefficients (P ≤ 0.05).
The above relationships were determined using statistics soft-
ware STATISTICA MS 12.

Results and discussion

Basic parameters of soils

One of the key factors controlling the rate of the SOM circulation
is field aggregates produced by combining clay particles with
organic particles (mineral-organic particles). The soils differed
significantly in terms of the particle size distribution (Table 2).
The highest content of silt and clay fractions and the lowest of the

sand fraction were recorded for Luvisol. Chernozem showed a
similar content of sand and silt fractions (34.9 and 36.6%, respec-
tively).Cambisol demonstrated a similar content of sand and clay
fraction (23.0, 24.5%, respectively) and Planosol a similar con-
tent of silt and clay. The lowest content of TOCwas reported for
Cambisol and the highest for Planosol. The analysis of correla-
tion did not show a significant dependence between the content
of clay and the content of TOC; however, as reported in litera-
ture, one cannot exclude the effect of clay on the stability of
SOM (Wiesmeier et al. 2019). As evident from the literature
reports (Six et al. 2002; Wiesmeier et al. 2015), it is not just the
quantity of the fine fraction but also its quality which drives SOC
retention in soils. Liang et al. (2009) andWiesmeier et al. (2015)
show that the correlation between SOC and clay strongly de-
pends on climate conditions, land use, and clay type. However,
as reported in literature (Wiesmeier et al. 2019), despite a lack of
significant correlations, one cannot exclude the effect of clay on
SOM stability.

Properties of humic acids

According to De Moraes et al. (2011), the changes in land use
practices can alter the chemical properties of soil HS. In this
paper, the changes in land use practices are clearly reflected in
the elemental composition (in atomic %) of HAs (Table 3).
The content of C in the molecules of HAs ranged from 33.38
to 39.55%, H from 35.57 to 43.81%, N from 2.55 to 4.21%,
and O accounted for 18.10–22.80%. The highest share of C
was recorded for the molecules of the HAs of Luvisol sampled
from the forest ecosystem. The lowest share of that element as
well as N was found for the HAs of Planosol (FE). The lowest
content of H and the highest content of O were recorded in the
HAs of Chernozem from the agri-ecosystem (AE).

Table 3 also presents the values of the C, H, O, and N
atomic ratios. With the values of H/C atomic ratio, one can
determine the degree of condensation of aromatic rings and, as
a result, the “degree of maturity” of the molecules of HAs. The
values of the H/C ratio for all the variants ranged from 0.91 to
1.31 (Table 3), which shows that the HAs analysed contained
the aromatic systems coupled with the aliphatic chain contain-
ing up to 10 atoms of C (Van Krevelen 1950). The parameter
used to describe the advancement of the process of humifica-
tion is also the degree of internal oxidation (ω) of the HAs
molecules and the O/C, O/H, and N/C ratios. Higherω, O/C,
and O/H values and lower H/C values correspond to the HAs
with a higher “degree of maturity” (Sanchez-Monedero et al.
2002; Gonet et al. 2007).

Dergacheva et al. (2012) stress that the value of the H/C
ratio depends on the conditions the HAs originated from. As
seen from the data presented (Table 3), the direction of the
changes in the elemental composition of HAs molecules was
conditioned by the soil type. The lowest values of the H/C and
N/C ratios as well as the highest values of the O/H ratio and
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the highest ω value were recorded for the molecules of the
HAs of Chernozem in the agri-ecosystem, while the lowest
values of the O/H ratio and the highest of the N/C ratio were
found for the HAs of Chernozem of the forest ecosystem. The

above dependencies point to the HAs of agri-ecosystem show-
ing the highest and the HAs of the forest ecosystem—the
lowest “degree of maturity” (Sanchez-Monedero et al. 2002;
Gonet et al. 2007).

Table 3 Mean values of elemental composition with standard deviation and atomic ratio of humic acids

Soils Ecosystems C H N O H/C N/C O/C O/H ω4

[% atomic]

Ch1 AE 38.93±0.293 35.57±0.38 2.71±0.04 22.80±0.18 0.91b2 0.070c 0.586a 0.641a 0.466a

FE 34.57±0.06 43.13±0.10 4.21±0.03 18.10±0.05 1.25a 0.122a 0.524c 0.420c 0.164c

ME 35.97±0.13 40.27±0.26 3.79±0.09 19.96±0.19 1.12a 0.105b 0.555b 0.496b 0.307b

Lu AE 37.74±0.06 38.21±0.21 2.67±0.19 21.37±0.30 1.01a 0.071a 0.566a 0.559a 0.333a

FE 39.55±0.68 37.23±0.92 2.92±0.07 20.30±0.61 0.94ab 0.074a 0.513c 0.545ab 0.307b

ME 37.71±0.64 38.73±0.19 2.90±0.05 20.66±0.85 1.03a 0.077a 0.548b 0.533b 0.300b

Pl AE 33.81±0.27 43.81±0.69 2.76±0.08 19.62±0.33 1.30a 0.082a 0.580b 0.448c 0.110c

FE 33.38±0.43 43.65±0.35 2.55±0.13 20.42±0.56 1.31a 0.076b 0.612a 0.468b 0.145b

ME 34.31±0.25 41.59±0.43 2.93±0.08 21.17±0.12 1.21ab 0.085a 0.617a 0.509a 0.278a

Ca AE 34.09±0.75 43.63±0.75 3.77±0.14 18.52±0.21 1.28a 0.111a 0.543ab 0.424c 0.138c

FE 35.40±0.51 41.77±0.12 3.26±0.12 19.59±0.24 1.18ab 0.092b 0.554a 0.469b 0.203b

ME 36.60±0.78 40.2±0.72 3.15±0.05 20.10±0.85 1.10b 0.086b 0.551a 0.502a 0.262a

1Ch Chernozem, Lu Luvisol, Pl Planosol, Ca Cambisol, AE agricultural ecosystem, FE forest ecosystem, ME meadow ecosystem
2Values followed by a lowercase letter are not significantly different at 5%
3 Standard deviation (n=3)
4ω - internal oxidation degree

Table 2 Basic characteristics of soil samples (mean values and standard deviation)

Soils Ecosystems Sand Silt Clay pH/
KCl

TOC
(%) (g kg−1)

Ch1 AE 29.8±2.02 40.4±1.1 29.8±2.0 7.28 17.9±1.7

FE 38.3±1.0 33.0±1.9 28.7±1.0 7.52 29.6±1.1

ME 36.7±0.9 36.3±0.6 27.0±1.1 7.57 29.1±1.0

Mean 34.9 36.6 28.5 25.5

Lu AE 13.2±0.8 58.0±0.8 28.8±0.3 5.85 14.8±1.9

FE 19.1±0.9 52.1±1.8 28.8±2.3 5.05 30.1±0.9

ME 14.5±1.0 51.5±1.1 34.0±2.1 6.56 18.9±0.6

Mean 15.6 53.9 30.5 21.3

Pl AE 63.9±0.7 14.0±0.7 22.1±0.3 5.97 20.9±1.9

FE 45.9±1.1 37.8±0.3 16.3±1.1 5.01 36.9±0.3

ME 60.4±0.8 17.9±2.2 21.7±1.4 6.01 22.5±1.0

Mean 56.7 23.2 20.0 26.8

Ca AE 34.9±0.6 44.3±1.0 20.8±1.2 7.08 13.0±1.0

FE 17.0±1.0 58.0±1.3 25.0±1.0 6.37 16.7±0.4

ME 17.1±0.6 55.1±0.9 27.8±1.5 5.93 11.6±0.7

Mean 23.0 52.5 24.5 13.8

1Ch Chernozem, Lu Luvisol, Pl Planosol, Ca Cambisol, AE agricultural ecosystem, FE forest ecosystem, ME meadow ecosystem, TOC total organic
carbon
2 Standard deviation (n=3)
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Of the HAs of Luvisol the highest content of C and the
lowest of H were noted for the HAs of the forest soil, whereas
the HAs of the arable soil showed the highest value ofω and
the O/C ratio. The HAs quality parameters in meadow soil, in
general, did not demonstrate any significant differences, as
compared with the molecules of the HAs of forest ecosystems.

Of the HAs of Planosol, the highest content of C and the
lowest content of H and, as a consequence, the lowest value of
the H/C ratio and the highest values of O/H and ω were
recorded for the HAs of meadow soil. The HAs of the agri-
ecosystem showed the lowest value of the O/C ratio.

As for the HAs of Cambisol, the lowest content of C and O
and the highest content of H and the highest value of the H/C
ratio and the lowest values of the O/H ratio andω were noted
for the HAs of the arable soil. Interestingly, the significant
differences were reported in the value of the O/H ratio and
parameter ω between the HAs of the soils of all the ecosys-
tems investigated.

The impact of the land use on the properties of HAs is
confirmed by the diagram of the relationships between the
values of the H/C atomic ratio and parameter ω (Fig. 2).
The molecules of the HAs of meadow soils showed similar
values irrespective of the soil type. As for the HAs of the other
ecosystems, that soil type was an additional factor determin-
ing their properties (e.g. HAs of Luvisol). Generally, the HAs
of Luvisol showed the highest contents of C and lower con-
tents of H, as compared with the HAs of the other soils
(Table 3). The highest C content in the HAs of Luvisol of
the forest ecosystem resulted in a low content of the H/C ratio
and a high value ofω, as compared with the HAs of the forest
ecosystem, of the other soil types.

The existing research results have indicated some depen-
dencies between the values of absorbance at the wavelength of
280, 465, and 665 nm and the structure of HAs. The lowest
values of absorbance coefficients were found for the HAs of
Luvisol irrespective of the land use and for the molecules of
the HAs of Chernozem sampled from the agri-ecosystem

(Table 4). As reported by, e.g., Kumada (1987), Howard
et al. (1998), Tinoco et al. (2015), and Filcheva et al. (2018),
lower values of absorbance and higher values of the following
coefficients, A2/4, A2/6, A4/6, and ΔlogK, point to a chemical
“young age” of HAs. Young humic acids show a lower degree
of condensation of aromatic structures and a lower molecular
weight, as compared with the HAs with a high degree of
humification. As results from the data presented in Table 4,
the HAs differed in the degree of maturity. Of all the HAs of
Luvisol, higher values of the coefficients of absorbance were
recorded for the HAs of meadow soil, as compared with the
HAs of forest soil and under agricultural use. Similarly, for the
HAs of meadow soil of Planosol, there were found higher
values of A2/6 and ΔlogK, as compared with the HAs of the
agri-ecosystems. However, the HAs ofCambisol under mead-
ow ecosystem use showed, in general, lower values of the
coefficients of absorbance as compared with the HAs of the
other variants. The values of the coefficients of absorbance
recorded for the HAs of Cambisols confirm the dependencies
reported by Jonczak (2013), who for the HAs of soils under
different land uses (forest, meadow, arable field, fallow, post-
arable afforestation) noted a higher maturity of humus in
stands with grass vegetation (meadow, fallow, afforestation
with birch with dense grass cover in forest floor) in relation
to other stands. Watanabe et al. (2001) have demonstrated that
the relationship between the land use and the degree of HAs
humification differed depending on the soil sampling site. On
the one hand, the degree of humification of HAs in the topsoil
was greatest under secondary forest and least under coffee
plantation, whereas for the soil sampled from another site,
the degree of humification of HAs was greater under agricul-
ture than under forests. According to the authors, the increase
in the degree of humification with decreasing amount of HAs
due to changing land use suggests selective decomposition of
the molecules or moieties of humic acids with low degrees of
humification.

HAs are built from structures with both hydrophobic and
hydrophilic properties. By applying the HPLC method, one
can divide the molecules of HAs into fractions which are HIL
and HOB in nature (Fig. 3). The fractions of the retention time
of 4.0–7.0 min show greater HIL properties, whereas the frac-
tions of the retention time between 14.0 and 25.0 min become
more and more HOB (Woelki et al. 1997; Preuße et al. 2000;
Debska et al. 2007, 2010, 2012). The share of HIL fractions in
the HAs molecules of the soil analysed was lower than the
share of HOB fractions, and it ranged from 15.90 (Lu FE) to
29.46% (Ch FE) (Table 5). With the patterns of chromato-
grams for the HOB fractions, for most HAs, there were sepa-
rated 3 smaller fractions: HOB-1, HOB-2, and HOB-3 (Fig.
3). Irrespective of the factors discussed (land use, soil type), of
those hydrophobic fractions, in general, the HAs recorded the
highest share of the HOB-2 fraction. It should be noted that
the biggest differences between the shares of fractions HOB-

Fig. 2 Relationship between the H/C atomic ratio values and parameter
ω, where H, C – content in atomic%,ω – internal oxidation degree, AE –
agri-ecosystem, FE – forest ecosystem, ME – meadow ecosystem
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1, HOB-2, and HOB-3 (Table 5) were identified in the mole-
cules of the HAs of the meadow ecosystem (6.22–8.94 pp).
The highest share of the ΣHOB fraction was recorded for the
HAs of the forest and agri-ecosystem of Luvisol and the low-
est for the HAs of the forest and meadow ecosystem of
Chernozem. Of the Chernozem HAs, the highest share of
ΣHOB was recorded for the HAs of the agri-ecosystem and
of the Planosol HAs and the Cambisol HAs in the meadow

ecosystem. The results point to a strong effect of the soil type
on the ΣHOB properties of HAs. The changes in the share of
the respective fractions resulted in changes in the value of the
HIL/ΣHOB ratio. The HAs isolated from the Luvisol, except
for ME, showed the lowest and the HAs extracted from the
Chernozem, except for AE, the highest values of the HIL/
ΣHOB ratio. The values of the HIL/ΣHOB ratio were similar
for the HAs of Cambisol of the agri- and forest ecosystem and
for the HAs of Chernozem of the forest and meadow ecosys-
tem. For the HAs of Chernozem, no significant differences
were found between the values of HIL/ΣHOB in the forest
and meadow ecosystem and as for the HAs of Planosol be-
tween the agri- and meadow ecosystem. The share of HIL and
HOB fractions and parameter HIL/ΣHOB is connected with
the degree of OM humification. The values of HIL/ΣHOB of
the parameter increase with an increase in the degree of ma-
turity of HAs molecules (Woelki et al. 1997; Preuße et al.
2000; Debska et al. 2007, 2010, 2012). It should also be em-
phasized that the proportions of both fractions determine the
solubility of HAs and, as a result, their migration deep down
the soil profile (Woelki et al. 1997; Debska et al. 2007).

Figure 4 provides sample FTIR spectra of the HAs. All
the spectra were identified with a presence of the same
absorption bands the ranges of which are presented in
Table 6. As a result of a detailed spectral analysis, it
was found that the intensity of the absorption bands in
the molecules of HAs depended on the land use. The
HAs of Chernozem and Luvisol under agricultural use
showed a higher band intensity in the range of 1730–
1710 cm−1, as compared with the molecules of the HAs
of the forest and meadow ecosystem. The intensity of the

Table 4 Mean absorbance values with standard deviation and coefficients of absorbance of humic acids

Soils Ecosystems 280 nm 400 nm 465 nm 600 nm 665 nm A2/4 A2/6 A4/6 ΔlogK4

Ch1 AE 3.94±0.123 2.24±0.17 1.32±0.03 0.551±0.034 0.300±0.014 2.98b2 13.1b 4.40b 0.609b

FE 2.73±0.2 1.04±0.06 0.571±0.026 0.156±0.005 0.084±0.003 4.78a 32.5a 6.80a 0.824a

ME 3.70±0.06 1.43±0.11 0.740±0.046 0.211±0.014 0.112±0.006 5.00a 33.0a 6.61a 0.831a

Lu AE 4.39±0.30 2.03±0.15 1.26±0.05 0.490±0.046 0.276±0.013 3.48b 15.9b 4.57b 0.617b

FE 4.50±0.09 2.04±0.14 1.20±0.09 0.497±0.024 0.276±0.016 3.75b 16.3b 4.35b 0.613b

ME 3.90±0.13 1.61±0.13 0.960±0.061 0.350±0.022 0.191±0.007 4.06a 20.4a 5.03a 0.663a

Pl AE 3.25±0.14 1.11±0.07 0.616±0.008 0.199±0.014 0.097±0.003 5.28a 33.5b 6.35a 0.746c

FE 3.15±0.06 1.03±0.07 0.564±0.018 0.178±0.008 0.085±0.006 5.59a 37.1a 6.64a 0.762b

ME 3.15±0.04 1.10±0.06 0.582±0.016 0.178±0.002 0.085±0.002 5.41a 37.1a 6.85a 0.791a

Ca AE 2.77±0.15 0.97±0.07 0.443±0.046 0.134±0.009 0.064±0.004 6.25a 43.3a 6.92a 0.860a

FE 3.23±0.07 1.12±0.11 0.591±0.012 0.172±0.007 0.084±0.003 5.47b 38.5b 7.04a 0.814b

ME 3.68±0.07 1.31±0.04 0.700±0.046 0.221±0.023 0.111±0.004 5.26b 33.2c 6.31b 0.773c

1Ch Chernozem, Lu Luvisol, Pl Planosol, Ca Cambisol, AE agricultural ecosystem, FE forest ecosystem, ME meadow ecosystem
2Values followed by a lowercase letter are not significantly different at 5%
3 Standard deviation (n=3)
4ΔlogK = log A400 - log A600

Fig. 3 Selected RP-HPLC chromatogram of humic acids of Chernozem
under agricultural use
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bands in the range of 3400–3100 cm−1 and 2960–2920
cm−1 was highest for the HAs of the forest soils. The
HAs of Luvisol, Planosol, and Cambisol of the forest
ecosystem demonstrated the lowest intensity of the bands
in the range of 1500 to 1000 cm−1. As for the HAs of
Chernozem, the lowest band intensity for the range from
1660 to 1000 cm−1 was recorded for the soils under agri-
cultural use.

To acquire complete information on the differences
(similarities) in the chemical composition of HAs, depending
on the soil type and the land use, the cluster analysis was
applied based on the elemental composition, spectrometric
parameters, as well as the HIL-HOB properties dividing the
HAs into two groups (Fig. 5). In the first one, two subgroups
were identified. The first subgroup included mostly the HAs
of the meadow ecosystem of the following soil types:

Table 5 Mean share of
hydrophilic and hydrophobic
fractions with standard deviation,
total share of hydrophobic
fractions (ΣHOB), and values of
HIL/ΣHOB ratio of humic acids

Soils Ecosystems HIL4 HOB-1 HOB-2 HOB-3 ∑HOB HIL/
∑HOB

Ch1 AE 19.74±0.443 24.26±0.64 28.17±0.16 27.83±0.25 80.26a2 0.246b

FE 29.46±2.23 70.54±2.15 nd nd 70.54b 0.418a

ME 29.19±1.75 27.24±0.77 24.77±1.00 18.80±0.57 70.81b 0.412a

Lu AE 17.75±1.25 26.28±1.31 30.59±1.51 25.37±1.48 82.25a 0.216b

FE 15.90±0.79 26.17±1.01 31.44±1.73 26.49±1.11 84.10a 0.189c

ME 25.46±1.27 21.08±1.37 27.30±1.31 26.16±1.01 74.54b 0.341a

Pl AE 23.61±1.20 24.18±1.17 28.63±1.27 23.57±1.28 76.39a 0.309b

FE 27.53±1.56 21.01±1.60 26.02±1.41 25.44±1.15 72.47b 0.380a

ME 22.90±1.22 25.43±1.67 29.66±1.16 22.01±0.72 77.10a 0.297b

Ca AE 25.67±1.33 74.33±.133 nd nd 74.33b 0.345a

FE 25.19±1.19 24.65±1.43 28.36±1.21 21.80±1.22 74.81b 0.337a

ME 22.17±1.4 25.83±1.71 30.47±1.16 21.53±0.93 77.83a 0.285b

1Ch Chernozem, Lu Luvisol, Pl Planosol, Ca Cambisol, AE agricultural ecosystem, FE forest ecosystem, ME
meadow ecosystem
2Values followed by a lower-case letter are not significantly different at 5%
3 Standard deviation (n=3)
4HIL the share of hydrophilic fraction, HOB the share of hydrophobic fraction

nd non-detectable (below detection limit)

Fig. 4 FT-IR spectra of humic acids of Planosol (Pl) showing the
dependence of transmittance (T) on the wavenumber; a in the range
from 3600 to 2500 cm−1, b in the range from 1800 to 1000 cm−1 (AE –

agri-ecosystem, FE – forest ecosystem, ME – meadow ecosystem).
Assignment of peaks (bands), see Table 5
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Planosol and Cambisol as well as the HAs of the forest eco-
system of Cambisol and HAs Planosol under agricultural use.
In the second subgroup, the most similar properties were
found for the molecules of the HAs ofChernozem in the forest
and meadow ecosystem. In the second group, similar proper-
ties were noted for the HAs isolated from Luvisol, irrespective
of the ecosystem, and the HAs extracted from Chernozem
sampled from the agri-ecosystem. As seen from the diagram,
both the soil type and the land use are the factor which deter-
mines the properties of HAs. With some approximation, one
can assume that Luvisol is the type of the soil which is mod-
ified even least considerably by the land use.

To ve r i fy the hypo thes i s fo rmu la t ed in the
Introduction, Table 7 presents the correlation coefficients
(significant for p ≤ 0.05) between the particle size

distribution and the properties of HAs. The HAs with a
higher “degree of maturity” (a negative significant corre-
lation between the clay content and content of H in HAs,
the values of H/C, A2/4, A2/6, A4/6 and positive between
the content of C and parameter ω and the values of ab-
sorbance) are characteristic for the soils with a higher clay
fraction content and a lower sand fraction content. Even
earlier Jindaluang et al. (2013) noted the effect of the
particle size composition, especially the content of the
clay fraction, on the content and the properties of SOM.
As seen from the research, the particle size distribution,
especially the content of the clay fraction, is the factor
affecting also the properties of HAs, mainly their elemen-
tal composition and spectrometric properties in the UV-
VIS range.

Conclusions

From H/C, O/C, O/H, and ω parameters and absorbance co-
efficients and the FT-IR spectra, it has been found that the
HAs of Chernozem and Luvisol in the agri-ecosystem show
a higher “degree of maturity”, as compared with the HAs of
the meadow and forest ecosystem. However, for the HAs of
Cambisol, a higher “degree of maturity”was demonstrated for
the meadow ecosystem, as compared with the HAs of the agri-
and forest ecosystem.

The research results have demonstrated unambiguously
that the properties of HAs can be modified by the land use
and the scope and that the direction of changes depends on
the soil type. The research has identified that the content of
clay affects the properties of HAs. Soils with a higher con-
tent of clay fraction include HAs with a higher “degree of
maturity”. It is seen from the positive (significant) values of

Table 6 List of peaks (bands)
present in FT-IR spectra Wavenumber (cm−1) Assignment1

3400–3100 O-H stretching of alcohols, phenols and acids, N-H stretching

3100–3000 C-H groups of aromatic and alicyclic compounds

2960–2920; 2850 asymmetric and symmetric C-H stretching of CH3 and CH2 group

1730–1710 C = O stretching of carboxyl, aldehyde, ketone group

1660–1620 C = O of stretching of amide groups; N-H deformation

1610–1600 C – C stretching of aromatic rings

1550–1530 N-H deformation, C = N stretching (amide II bands)

1520–1500 C-C stretching of aromatic rings

1460–1440 C-H asymmetric of CH3 and CH2

1420–1400 C-O stretching and OH deformation of phenols

1380–1320 C-N aromatic amine, COO-, C-H stretching

1280–1200 C-O stretching of aryl ethers, esters and phenols

1160–1030 C-O stretching alcohols, ethers and polysaccharides

1 Enev et al. 2014; Zhang et al. 2017; Hayes and Swift 2018

Fig. 5 Cluster analysis determined based on humic acid parameters (1 –
Chernozem, 2 – Luvisol, 3 – Planosol, 4 – Cambisol, AE – agri-
ecosystem, FE – forest ecosystem, ME – meadow ecosystem)
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the coefficient of correlation between the clay fraction con-
tent and the content of C in the molecules of HAs, the
values of the degree of internal oxidation and absorbance
values, and the negative (significant) correlations between
the content of the clay fraction and the content of H and
the values of the H/C, A2/4, A2/6, and A4/6 ratios.
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