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Abstract
Establishing a fair platform for allocating carbon emission responsibility worldwide determines the sustainability and efficiency
of the world’s climate policy and framework. In the context of global environmental load displacement and CO2 transfer, this
paper endeavors to examine the relationship between economic complexity and embodied carbon emissions based on cross-
country panel data. Our study utilizes the generalized method of moments (GMM) approach to estimate our dynamic models
covering 34 OECD countries and 24 non-OECD countries from 1995 to 2015. The empirical results show a heterogeneous
impact of economic complexity on embodied carbon emissions in exports (EEE) and imports (EEI). Besides, the scale effect,
composition effect, and technology effect are also significant drivers of embodied carbon emissions. The improvement of
economic complexity can decrease the marginal effects of export scale and export structure on foreign EEE (but not domestic
EEE) significantly, while the marginal positive impacts of technology on EEE can be further enhanced by economic complexity
growth.Moreover, there is no strong evidence to prove the significant indirect impacts of economic complexity on foreign carbon
emission embodied in imports, while economic complexity has significantly positive indirect impacts on domestic carbon
emission embodied in imports only through import scale. In the subsample regressions, we found asymmetric impacts of
economic complexity between high-income countries and low- and middle-income countries.
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Introduction

Economic globalization has greatly facilitated the develop-
ment of the world economy by allocating productive resources
worldwide efficiently, such as labor, capital, and technology.
However, the extension of the global value chain (GVC) has
also resulted in the so-called environmental load displacement
or CO2 leakage, which is defined as the transboundary flow of
pollutants and “displaced” environmental degradation from
the consumption-based view (Muradian et al. 2002). Under

the GVC system, some developing countries at the low end of
the GVC division tend to undertake the pollution-intensive
industries from developed countries and suffer from serious
environmental problems. The principle of producer responsi-
bility in the present global climate policy framework fails to
account for the imbalance between foreign consumption and
local environmental degradation in some developing countries
(Muradian et al. 2002; Fei et al. 2020). Therefore, it is crucial
to calculate the carbon emission embodied in trade (EET),
which is defined as the sum of direct and indirect carbon
emissions in goods’ production and trade process (Peters
and Hertwich 2008). To achieve worldwide sustainable devel-
opment is also one of the crucial aspects of green develop-
ment, which refers to a modern mode of development
established under the challenges of natural energy and re-
source management capacity, and recognizes sustainable de-
velopment through environmental protection (Fang et al.
2020c). An efficient carbon trading platform is crucial to the
cost reduction of pollution prevention and the realization of
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integration between environmental and economic benefits
(Zhong et al. 2018; Fang et al. 2020a).

With the deepening and broadening of GVC, the volume of
carbon emissions embodied in exports (EEE) or imports (EEI)
is significant in OECD countries and four developing countries
(Brazil, China, India, and Russia). Among these countries, EEE
or EEI is usually 10–20% higher than domestic production
(Ahmad and Wyckoff 2003). Besides, it has been estimated
that the size of the global CO2 leakage increased by nearly
80% from 1995 to 2007 (Sato 2014; Lenzen 2016). Assessing
the EET and its determinants has attracted much attention in the
academic field in recent years. By using various decomposition
techniques based on the input-output tables, many studies have
calculated the EET for individual countries, such as Machado
et al. (2001) for Brazil, Sánchez-Chóliz and Duarte (2004) for
Spain, Peters and Hertwich (2006) for Norway, Mäenpää and
Siikavirta (2007) for Finland, Su et al. (2017) for Singapore,
Wang et al. (2018) for India, and Du et al. (2020) for China.
Meanwhile, some studies have attempted to examine the driv-
ing factors of EET. For example, EET could vary with GDP
(Islam et al. 2016), total population (Islam et al. 2016; Huang
and Zhao 2018), technological level (Wang et al. 2020), trade
openness (Islam et al. 2016), trade structure (Wang et al. 2019),
financial development (Huang and Zhao 2018), trade in inter-
mediate goods (Fei et al. 2020), and so on. However, as far as
we know, no study has examined the determinants of EET
comprehensively at the empirical level. Besides, a multidimen-
sional evaluation system should be established to capture the
complexity of the environmental system (Fang et al. 2020b). In
this context, researchers should provide more insights on how
to control EET and allocate the responsibility for carbon emis-
sions worldwide.

As an indicator evaluating economic development, eco-
nomic complexity is often considered by policymakers when
they shape national economic and energy policies (Neagu and
Teodoru 2019; Yilanci and Pata 2020; Yu and Qayyum 2021).
Developed by Hidalgo and Hausmann (2009), the economic
complexity index (ECI) captures each country’s capability in
producing goods. Countries with higher ECI can produce
more complex and knowledge-based products, thus indicating
a more advantageous product space (Yu and Qayyum 2021).
On the contrary, in simpler economies, individuals and firms
produce a fewer range of products with less knowledge.
Therefore, in some studies examining the environmental im-
pacts of ECI, ECI is often connected to economic develop-
ment (Yilanci and Pata 2020) or structural transformation
(Doğan et al. 2020). However, existing studies found conflict-
ing results about the nexus between economic complexity and
carbon emissions. A suppressing effect of ECI growth has
been found on carbon emissions by Can and Gozgor (2017)
and Doğan et al. (2020). Based on different sample and esti-
mation techniques, more researchers found that the increase in
ECI may further deteriorate environmental quality (Lapatinas

et al. 2019; Neagu and Teodoru 2019; Yilanci and Pata 2020).
Some researchers even found an inverted U-shaped relation-
ship between economic complexity and carbon emissions
(Dogan et al. 2019; Neagu 2019).

Even though the relationship between economic complex-
ity and carbon emission has been analyzed extensively, there
is a huge research gap on linking economic complexity (or
economic transformation) with carbon embodiment in trade.
Therefore, one of the key research problems of this paper is to
examine the direct impacts of economic complexity on a set of
decomposed EET indicators. Besides, as Grossman and
Krueger (1991) dissected the determinants of EET into scale
effect, composition effect (or the structural effect), and tech-
nology effect (or the emission intensity effect), another key
research problem of this paper is to analyze how economic
complexity affects EET indirectly through these channels.
Intuitively, the increase in ECI often indicates the structural
transition towards a more industrialized and knowledge-based
economy. The industrialization of an economy also accom-
panies accelerating energy consumption, thus increasing local
carbon emissions (Bai et al. 2020). Therefore, countries with
higher ECI could experience excessive environmental degra-
dation due to the expansion of more diverse and complex
production and goods (Swart and Brinkmann 2020). By con-
trast, countries with lower ECI mainly focus on the procession
of intermediate goods and raw material or agricultural goods
production. Therefore, the decline in environmental quality in
simpler economies is limited. Countries being “pollution
heaven” can alleviate environmental degradation by develop-
ing more environmental-friendly technologies and producing
cleaner products (Yilanci and Pata 2020).

From the above argument, it is necessary to examine the
nexus between economic complexity and EET based on
cross-country panel data. The nexus between economic com-
plexity and EET has been indefinite. Therefore, this paper con-
tributes to the existing literature in the following two aspects: (i)
To the best of our knowledge, this paper takes the first attempt
to examine the relationship between economic complexity in
EET based on cross-country panel data. (ii) This paper, for the
first time, utilizes a set of decomposed EET indicators as de-
pendent variables and tests their determinants by using the gen-
eralized method of moments (GMM) technique. For these two
reasons, we expect that the empirical findings of this paper
would enrich the existing literature in environmental
economics.

The remainder of this paper proceeds as follows: the
“Literature review and theoretical analysis” section summa-
rizes and compares the existing literature and establishes the-
oretical foundation; the “Data and methodology” section in-
troduces the data source and methodological framework; the
“Findings and discussionS6” section contains the estimation
results and analysis; and the “Conclusions” section concludes
the whole paper and provides some policy implications.
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Literature review and theoretical analysis

Literature review

Nexus between economic complexity and carbon emissions

In recent years, an increasing number of studies examine the
environmental impacts of economic complexity. There is no
definite conclusion about the relationship between economic
complexity and carbon emissions. Researchers draw opposite
conclusions based on different sample data and estimation
techniques. Existing research found three possible effects of
economic complexity on carbon emission: positive impacts
(the increased economic complexity could lead to environ-
mental degradation), negative impacts (the increased econom-
ic complexity could improve environmental quality), and an
inverted U-shaped relationship.

The first empirical study that tests the nexus between eco-
nomic complexity and carbon emission was conducted by
Can and Gozgor (2017) based on France’s time-series data
from 1964 to 2014. Their DOLS (dynamic ordinary least
squares) estimation results show that economic complexity
has a suppressing capacity on France’s carbon emission.
Based on the panel data for 28 OECD countries in 1990–
2014, Doğan et al. (2020) used various estimation techniques
like augmented mean group (AMG), FMOLS (full modified
ordinary least square), DOLS, panel ARDL (autoregressive
distributed lagged model), and fixed effect method to test
the liaison between economic complexity and carbon emis-
sion. They also concluded that an increase in renewable ener-
gy consumption and ECI, as structural economic transforma-
tion towards more knowledge-based production, could miti-
gate further environmental degradation problems for devel-
oped countries like OECD members. After establishing a
Product Emission Intensity Index (PEII) for 67 countries be-
tween 1976 and 2012, Romero and Gramkow (2021) conclud-
ed that a 0.1-unit increase in the economic complexity index
could lead to a 2% decrease in carbon emission of the next
period.

However, other scholars reached opposite conclusions
based on the different sample and estimation techniques. In
a country-panel setting covering 88 countries from 2002 to
2012, Lapatinas et al. (2019) adopted the fixed-effects 2SLS
(two-stage least squares) method and concluded that the neg-
ative impact of the economic complexity on air quality is
robust and significant. In other words, it is more likely that
countries that produce more complex goods are exposed to
inferior air quality (higher carbon emission or PM2.5). This
conclusion is also applicable to the case of 25 EU (European
Union) members for the period of 1995–2016. Based on
FMOLS and DOLS techniques, the empirical research of
Neagu and Teodoru (2019) shows that countries with higher
ECI are faced with higher risks of pollution. Using the time-

series data of China from 1965 to 2016, Yilanci and Pata
(2020) utilized the Fourier ARDL procedure to test the valid-
ity of the EKC hypothesis in China, that is, the relationship
between economic development and environmental perfor-
mance. Their empirical results indicate that the EKC hypoth-
esis does not hold in China’s case, and economic complexity
could impede environmental quality in the short term and long
term because China’s current economic complexity does not
encourage green technology.

Some scholars found an inverted U-shaped relationship
between economic complexity and carbon emissions. Neagu
(2019) confirmed this conclusion by employing the
cointegrating polynomial regression, panel FMOLS, and
DOLS techniques based on panel data of 25 selected EU
countries in 1995–2017. He pointed out that the increase in
carbon emissions in the first stage of economic complexity
advances could be resulted from the dominance of the scale
effect, that is, a larger proportion of resource and energy
consumption embedded in the production of more complex
and sophisticated goods. However, in the second stage, a
higher economic complexity could suppress carbon
emissions due to the dominance of technological effect, that
is, higher efficiency in energy use. Dogan et al. (2019) also
reached the same conclusion by applying a panel quantile
regression approach to selected panel data covering 55 coun-
tries in 1971–2014. They pointed out that economic complex-
ity enhanced carbon emissions in lower-middle and higher
middle-income countries while controlling carbon emissions
in high-income countries. Pata (2021) also concluded that an
inverted U-shaped EKC relationship is valid in the case of the
USA between economic complexity and environmental pol-
lution based on the combined cointegration test and three dif-
ferent estimators for the period from 1980 to 2016.

Research on the determinants of EET

Grossman and Krueger (1991) dissected the determinants of
air pollution into scale effect, composition effect (or the struc-
tural effect), and technology effect (or the emission intensity
effect). To be specific, the scale effect captures the simple
intuition that the expansion of economic activity could in-
crease the total amount of pollution. The structural effect reg-
ulates that changes in production or consumption structure
have ambiguous impacts on environmental quality because it
is not sure whether the country’s production or consumption
would become more pollution-intensive. Lastly, the technol-
ogy effect states that technological advancement could reduce
pollution per unit of output or pollution intensity. Based on
this framework, in recent years, many researchers have stud-
ied the determinants of carbon emissions embodied in trade by
more advanced decomposition methods based on three popu-
lar environmental input-output analysis (IOA), which are sin-
gle region input-output (SRIO), bilateral trade input-output
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(BTIO), and multi-region input-output (MRIO) models (Sato
2014). Xu and Dietzenbacher (2014) applied structural de-
composition analysis (SDA) to estimate the embodied carbon
emission in 40 countries from 1995 to 2007, and the estima-
tion results confirmed the importance of structural effect and
emission intensity effect to the changes in EET. By
performing index decomposition analysis (IDA), Dong et al.
(2010) and Wu et al. (2016) used the data of carbon emission
and China-Japanese trade between 1990–2000 and 2000–
2009, respectively. They concluded that the decrease in emis-
sion intensity was a strong driver for the decrease of embodied
caron emission, while growth in trade volume acted as a major
driving force for the growth of embodied emission. Su et al.
(2017) conducted the first comprehensive analysis of
Singapore’s embodied carbon emissions by using SDA based
on IOA. Their findings show that the scale effect (the expan-
sion of export volume and export-oriented industries) and
emission intensity effect (energy efficiency) are significant
driving factors for the changes in Singapore’s emissions.
Based on the MRIO framework and spatial econometric
models, Zhong et al. (2018) unraveled the spatial carbon emis-
sion interchanges for 39 economies from 1995 to 2011. They
concluded that the energy and industrial structure have spatial
spillover effects on EET, while the impact of energy
efficiency is not significant because the market responses
could offset the decrease in carbon emission resulted from
improved energy efficiency. Wang et al. (2019) decomposed
the embodied carbon emission in China-German trade from
1995 to 2009 at the sectoral level by using SDA. They pointed
out that the emission intensity effect acted as the most prom-
inent driving force for reducing the net EET, followed by the
structural effect of German’s final demand and intermediate
input and the scale effect of China’s final demand.

Some researchers have added other variables into their
econometric models and reached interesting conclusions.
Islam et al. (2016) tested the impact of trade openness on
embodied carbon emission by employing the fixed-effect
model based on sizeable country-level panel data covering
187 countries in 1990–2011. Their empirical results show
that a one-unit increase in trade openness could lead to a 10–
23% increase in EET, while GDP has positive impacts on
EEE (to increase embodied emissions in exports) and neg-
ative impacts on EEI (to decrease embodied emissions in
imports). After measuring the EEE for China based on the
MRIO model for the period of 1995–2011, Fei et al. (2020)
found that trade in intermediate goods was a driving factor
for the fast growth of emission embodied in China’s ex-
ports. Besides, with the deepening of GVC (global value
chain) participation, the positive impact of the GVC divi-
sion on EEE became even stronger. Based on STIRPAT
(Stochastic Impacts by Regression on Population,
Affluence and Technology) model, the empirical results of
Wang et al . (2020) confirmed the importance of

technological progress to embodied carbon emission in
China’s high- and new-technology industries.

Theoretical analysis

Based on the above analysis of existing literature, it can be
concluded that the scale effect, composition effect, and tech-
nology effect are primary influencing factors of EET. As an
important indicator of economic transformation, economic
complexity may exert its impact on EET directly or indirectly
through the above three effects (see Fig. 1). Higher economic
complexity or a more knowledge-based production system
may have ambiguous impacts on EET together with scale
effect, composition effect, technology effect, and other fac-
tors. Besides, economic complexity also has growth effects
as countries with higher economic complexity have better
GDP performance (Hartmann et al. 2017), which could lead
to larger trade volume, thus affecting EET indirectly. The
second indirect influence channel of economic complexity is
through the composition effect. Dynamic changes in product
space often cause structural changes in the products that one
country exports or imports. The final influencing direction is
dependent on the overall carbon intensity after structural
changes in product space. Another distinct influencing mech-
anism consists in the technology effect. A more complex pro-
duction system is often the result of production capability
improvement and technology progress. Similarly, the final
impact of this channel relies on whether the improved tech-
nology contains low carbon intensity or high carbon intensity.
Therefore, this study proposes the following hypotheses for
empirical tests:

Hypothesis a: Economic complexity has significant di-
rect impacts on EET after controlling the scale effect,
composition effect, technology effect, and other factors.
Hypothesis b: Economic complexity will affect EET sig-
nificantly and indirectly through the scale effect, compo-
sition effect, and technology effect.

Data and methodology

Data characteristics

This study aims to test the impact of economic complexity on
trade-embodied carbon emission (million Tonnes) for 34
OECD countries and 24 non-OECD countries from 1995 to
2015. The selected countries account for nearly 90% of the
world’s total GDP, 90% of the world’s total merchandise trade
and 70% of the world’s total population in 2015. Therefore,
sample countries covered in this paper can represent the basic
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economic patterns of most countries around the world.
Sample countries included in this study are summarized in
Table 8 in the Appendix.

Table 1 lists the variables employed in the paper and their
detailed explanation. Specifically, our dependent variables,
EEI and EEE, include a set of decomposed variables that
measure the embodied carbon emission in export and import.
A more detailed explanation of the dependent variables is
shown in Table 9 in the Appendix. OECD Trade in
Embodied CO2 Database provides extensive data on trade-
embodied carbon emissions for various industries. Economic

complexity is the core independent variable in this paper and
the annual country-level data is available at OEC (The
Observatory of Economic Complexity). The remaining vari-
ables in Table 1 are all explanatory variables that have been
considered as the determinants of embodied carbon emissions
by existing literature (Islam et al. 2016; Fei et al. 2020). These
variables’ data source is from theWorld Bank database, WTO
database, and WITS (World Integrated Trade Solution)
database.

Figure 2 depicts the changes in the decomposed embodi-
ment of carbon emissions from 2005 to 2015, including FEEE

Fig. 1 Impact mechanism of economic complexity on EET

Table 1 Explanation of key
variables Variable Explanation

EEI Embodied emission in imports (in million tonnes)

EEE Embodied emission in exports (in million tonnes)

eci Economic complexity index

lnexport Logarithm of annual merchandise exports (in million USD)

Ilnimports Logarithm of annual merchandise imports(in million USD)

lnExportShare Logarithm of manufactures exports (of total merchandise exports, %)

lnImportsShare Logarithm of manufactures imports (of total merchandise imports, %)

lnExportsInter Logarithm of intermediate goods exports (in thousand USD)

lnExportsInterShare Logarithm of the share of intermediate goods exports (of total merchandise exports, %)

lnImportsInterShare Logarithm of the share of intermediate goods imports (of total merchandise imports, %)

lnImportsInter Logarithm of intermediate goods imports (in thousand USD)

lnAHSWeighted Logarithm of the effectively applied weighted average tariff for intermediate goods (%)

lnPOP Logarithm of the total population

lnGDPP Logarithm of GDP per capita (in the current USA)

lnintensity Logarithm of CO2 emissions intensity (kg per 2010 USD of GDP)

RD Research and development expenditure (of GDP, %)
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(foreign carbon emission embodied in exports), DEEE (do-
mestic carbon emission embodied in exports), FEEI (foreign
carbon emission embodied in imports), and DEEI (domestic
carbon emission embodied in imports). More specifically,
FEEE captures the CO2 emissions embodied in imported in-
termediate goods and services into a domestic industry. DEEE
measures the CO2 emissions embodied in exports that have
been generated anywhere in the domestic economy. FEEI
captures the foreign CO2 emissions embodied in gross imports
of country/region c with origin in exporting industry i in
exporting country/region partner p. Similarly, DEEI captures
the domestic CO2 emissions embodied in gross imports of
country/region c with origin in exporting industry i in
exporting country/region partner p (Wiebe and Yamano
2016). The sum of these variables evaluates the total trade-
embodied carbon emission. In general, it can be seen that the
top countries that contain high trade-embodied carbon emis-
sions are China, India, the USA, Japan, South Korea, and
Germany. Moreover, the total trade-embodied carbon emis-
sions have increased a lot from 2005 to 2015 for developing
countries like China and India. Besides, it can also be found
that foreign carbon emissions embodied in imports account
for a substantial part of its total EET for developed countries
represented by the USA. However, developing countries

represented by China have been exporting products that con-
tain high domestic carbon emissions.

Table 2 summarizes the descriptive statistics of our explan-
atory variables. It illustrates that the variable of interest, ECI,
which ranges from −1.5 to 2.5 with a mean value of 0.715 in
the pooled sample, shows a much higher mean value for high-
income countries than low- and middle-income countries.
This indicates that high-income countries have more capacity
to produce more complex and knowledge-based products than
low- and middle-income countries on average in our sample.
Besides, according to the mean value, high-income countries
also show more advantage in other economic elements, such
as import and export scale of both manufactured goods and
intermediate goods, GDP per capita, and R&D. By contrast,
low- and middle-income countries exhibit higher mean value
in lower effective tariff for intermediate goods and total
population.

Regression framework

By referring to existing studies related to the driving factors of
trade-embodied carbon emissions (Islam et al., 2016; Fei
et al., 2020; Wang et al., 2020), a dynamic panel regression
model that incorporates the lagged dependent variable has

Fig. 2 Composition of embodied carbon emission by country in 2015 (upper) and 2005 (down)
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been established to examine the impact of economic complex-
ity on EEE and EEI as Eqs. (1) and (2):

lnEEEit ¼ α0 þ α1L:EEEit þ α2ECIit þ α3lnexportit

þ α4lnExportShareit þ α5lnExportInterit

þ α6lnExportInterShareit þ α7lnintensity

þ α8lnAHSWeighted þ α9lnPOP

þ α10lnGDPP þ α11lnRDþ μit ð1Þ
lnEEIit ¼ β0 þ β1L:EEEit þ β2ECIit þ β3lnimportit

þ β4lnImportShareit þ β5lnImportInterit

þ β6lnImportInterShareit þ β7lnintensity

þ β8lnAHSWeighted þ β9lnPOP

þ β10lnGDPP þ β11lnRDþ εit ð2Þ

In Eq. (1), the dependent variable, lnEEEit, represents the
logarithm of embodied carbon emissions embodied in exports
from country ito rest of the world in year t. This variable can
be further decomposed into domestic carbon emission and
foreign carbon emission embodied in exports, which are
expressed as lnFEEEit and lnDEEEit in later regressions.
Similarly, in Eq. (2), the dependent variable is embodied car-
bon emission in imports in the manufacturing industry. lnEEIit
measures the carbon emissions embodied in country i’s im-
ports to the rest of the world in year t. OECD database also
provides the decomposed data on this variable, including
lnFEEIit and lnDEEIit. L. EEEit is the lagged one-period

dependent variable, which is employed to observe the path
dependence of embodied carbon emissions in the model.
ECIit is the variable of interest, and its estimated coefficient
α2 and β2 measure the impact of economic complexity on
EEE and EEI. lnexportit, lnimportit, lnExportInterit, and
lnImportInterit are the proxies for the scale of manufactured
goods trade and intermediate goods trade. The estimated co-
efficients of lnExportShareit, lnExportInterShareit,
lnImportShareit, and lnImportInterShareit evaluate the struc-
tural effect of manufactured goods trade and intermediate
goods trade, respectively. The remaining variables are all con-
trol variables, including lnintensity, lnAHSWeighted, lnPOP,
lnGDPP, and lnRD (see Table 2 for more details).
Specifically, lnintensity can reflect the technological level
while lnAHSWeightedmeasures local trade policy, the impor-
tance of which has been discussed by Wang et al. (2020) and
Böhringer et al. (2017). Besides, lnPOP, lnGDPP, and lnRD
are typical variables included in STIRPAT models.

To test the possible impact mechanism, this paper has
added relevant interaction terms between economic complex-
ity, export/import, share of export/import, carbon intensity
into Eqs. (1) and (2), including eci ∗ ln export, eci ∗ ln import,
eci ∗ ln ExportShare, eci ∗ ln ImportShare, and eci ∗ ln
intensity.

This paper employs the generalized method of moments
(GMM) approach to estimate this dynamic model, which has
been frequently used in empirical studies to avoid statistical
problems like endogeneity, measurement error, and
heteroscedasticity (Ganda 2019). Ganda (2019) also pointed
out that the GMM approach is very suitable under the panel
data setting that contains larger cross-sectional units (N) than

Table 2 Descriptive statistics of
explanatory variables Variable Pooled sample Subsample (mean)

Mean SD Min Max N High
income

Low and middle
incomes

eci 0.715 0.778 −1.476 2.468 638 1.084 .111

lnexport 11.60 1.348 8.037 14.67 638 11.844 11.193

lnExportShare 4.014 0.585 2.034 4.582 638 4.081 3.906

lnimports 11.65 1.262 8.276 14.70 638 11.874 11.276

lnImportsShare 4.234 0.137 3.746 4.519 638 4.232 4.237

lnExportsInter 16.91 1.461 11.58 19.75 638 17.193 16.457

lnExportsInterShare 3.042 0.505 0.765 3.967 638 3.155 2.856

lnImportsInter 17.10 1.212 14.36 19.91 638 17.214 16.907

lnImportsInterShare 3.091 0.247 2.163 4.034 638 3.008 3.226

lnAHSWeighted 1.352 0.435 −0.083 2.783 638 1.405 1.267

lnPOP 16.93 1.491 14.09 21.04 638 16.373 17.828

lnGDPP 9.623 1.127 6.161 11.54 638 10.332 8.464

lnintensity −1.058 0.709 −2.878 0.535 638 −1.377 −.536
RD 1.350 1.064 −1.206 4.514 638 1.83 .564
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the time period (T). This paper has the panel data of 58 coun-
tries (N = 58) from 2005 to 2015 (T = 11). Therefore, the
GMM technique is appropriate for the estimation of Eqs. (1)
and (2) when compared to other estimation techniques. The
GMM method was initially developed by Arellano and Bond
(1991) who resolved their econometric model by taking the
first difference of the equation, also known as difference
GMM. Later, based on this approach, Blundell and Bond
(1998) obtained their system GMM estimators by using in-
strumental variables. However, the difference GMMapproach
assumed uncorrelated error terms and the variables are weakly
endogenous. Therefore, this study will utilize the one-step
system GMM approach because the one-step system GMM
is believed to be more efficient, as suggested by Blundell and
Bond (1998) and Bond (2002). We will use the Sargan tests to
check the validity of instrumental variables and AR(1) and
AR(2) to test residuals’ autocorrelation. GMM estimation as-
sumes that the residuals have first-order autocorrelation but
not second-order autocorrelation.

Findings and discussion

Full sample results

Table 3 lists the empirical results of Eqs. (1) and (2) based on
the pooled sample. For EEE, the coefficients ECI are all sig-
nificantly positive at the level of 5% in columns (1) and (2),
indicating that a one-unit increase in economic complexity can
result in a significant rise in FEEE and DEEE by 18.8% and
16.5%, respectively. Greater industrialization and economic
development, represented by increasing economic complexi-
ty, have resulted in excessive environmental degradation in
EEE, both domestic and foreign. In column (1), the coefficient
of lnexport and lnExportShare is all positive and significant,
indicating positive scale effect and structural effect of
manufactured product exports on FEEE. Specifically, a 1%
growth in the export of manufactured goods could increase
FEEE by 0.356% significantly at the level of 5%, while a 1%
rise in the share of manufactured goods could increase FEEE
by 0.434% significantly at the level of 1%. As for intermediate
goods, the estimated coefficient of lnExportInter is positive
and significant at a 1% significance level. This implies that the
expansion of intermediate goods exports has a significant pro-
moting effect on FEEE, which is also consistent with the pre-
diction of Grossman and Krueger (1991). However, the struc-
tural effect of exporting intermediate goods is significant at
the 1% level but is negative, implying that FEEE could be
reduced significantly by 0.317%when the proportion of inter-
mediate goods export increases by 1%. Ricci (2007) pointed
out that intermediate goods related to more massive embodied
emissions tend to contain higher productivity. Therefore, an
increased export share of intermediate goods that are

pollution-intensive could be a sign of the upstream movement
of carbon leakage, thus reducing FEEE. In column (2), it can
be seen that the DEEE is only significantly affected by the
export scale of intermediate goods, but not the export scale,
share of manufactured goods, and share of intermediate
goods.

In Table 3, it can be seen that the GMM estimator of ECI is
positive and significant at the level of 1% in column (3), but
not significant in column (4). This shows that economic com-
plexity has a positive and significant impact on FEEI, while its
impact on DEEI is statistically insignificant. With a larger
comparative advantage in knowledge-based goods, the coun-
try can import more pollution-intensive products that are em-
bodied with considerable foreign carbon emissions by
exporting more complex goods. Besides, as can be seen from
column (3), the coefficients of lnimport and lnImportShare are
all positive and significant at the level of 5%, indicating pos-
itive scale effect and structural effect of manufactured goods
on FEEI. Expressly, a 1% growth in the import scale of
manufactured goods could increase FEEI by 0.233% signifi-
cantly. Other aspects being equal, a 1% rise in the share of
manufactured goods imports could increase FEEI by 0.43%.
Besides, the estimated coefficients of lnImportInter and
lnImportInterShare are positive but insignificant in statistics.
Similarly, there is no sufficient evidence to conclude that
DEEI is significantly affected by the scale effect or structural
effect of manufactured goods imports and intermediate goods.

Furthermore, the technological effect, measured by carbon
emission intensity, is significantly positive in columns (1)–(4).
This means that a lower technological level, represented by
higher carbon emission intensity per GDP, could further dete-
riorate the local environment by releasing higher embodied
carbon emissions. The empirical results show positive and
significant coefficients of lnAHSWeighted (α8 > 0) in columns
(1) and (2), indicating that higher effective tariffs on interme-
diate goods have significantly positive impacts on FEEE and
DEEE.

Tables 4 and 5 list the GMM estimation results after adding
relevant interaction terms. For FEEE, the estimated coeffi-
cients of the interaction terms are all significantly negative
in columns (1) and (2), indicating that the improvement of
economic complexity can decrease the marginal effects of
export scale and export structure on FEEE significantly. In
general, the increase in economic complexity could lead to a
product space with lower carbon, thus reducing the overall
FEEE. For DEEE, the interaction terms of eci*lnexport and
eci**lnExportShare are negative but insignificant, indicating
no indirect impacts of economic complexity on DEEE
through the scale effect and the composition effect. Besides,
the coefficients of eci*lnintensity are significantly positive for
FEEE and DEEE, which means that the marginal positive
impacts of technology can be further enhanced by economic
complexity growth and the technological progress resulted

54022 Environ Sci Pollut Res (2021) 28:54015–54029



from economic complexity improvement brings low carbon
intensity. For FEEI, all the interaction terms have insignificant
coefficients, thus rejecting Hypothesis b. This means that eco-
nomic complexity cannot affect FEEI significantly through
the proposed indirect mechanism.Meanwhile, economic com-
plexity has significantly positive indirect impacts on DEEI
through import scale, while no significant indirect impacts
are found through composition effect and technology effect.

Subsample regression results

Given the massive gap in political, economic, and social as-
pects between high-income countries and low- and middle-
income countries, the estimation of Eqs. (1) and (2) may suffer
from heterogeneity problems. Besides, there may exist a het-
erogeneous impact of economic complexity on EET in differ-
ent country groups, which could even show a clear distinction

Table 3 Pooled sample
regression results (1) (2) (3) (4)

lnFEEE lnDEEE lnFEEI lnDEEI

eci 0.188** 0.165** 0.164*** 0.035

(2.42) (2.49) (2.92) (1.53)

lnexport 0.356** 0.106

(2.47) (1.51)

lnExportShare 0.434*** −0.076
(4.31) (−1.36)

lnExportsInter 0.422*** 0.255***

(2.58) (3.75)

lnExportsInterShare −0.317* −0.073
(−1.94) (−1.25)

lnimports 0.233** 0.004

(2.20) (0.08)

lnImportShare 0.430** −0.017
(2.54) (−0.35)

lnImportsInter 0.038 0.018

(0.38) (0.42)

lnImportsInterShare 0.000 −0.055
(0.00) (−0.73)

lnintensity 0.150** 0.548*** 0.153*** 0.061**

(2.16) (6.83) (3.09) (2.01)

lnAHSWeighted 0.154*** 0.133*** 0.019 0.008

(3.02) (3.38) (0.38) (0.54)

lnPOP −0.069 0.221*** 0.364*** 0.050*

(−0.91) (3.56) (5.76) (1.70)

lnGDPP −0.195* 0.119 0.242*** 0.016

(−1.80) (1.56) (3.53) (0.54)

RD −0.004 0.007 −0.019 0.018

(−0.09) (0.26) (−0.74) (1.58)

Sargan test 272.81*** 129.12*** 310.42*** 203.11***

AR(1) 0.002 0.000 0.000 0.001

AR(2) 0.064 0.648 0.061 0.034

_cons −7.269*** −8.048*** −11.02*** −1.011
(−4.22) (−5.53) (−6.60) (−1.47)

N 580 580 580 580

1) ***, **, and * indicate that the coefficients are significant at the 1%, 5%, and 10% levels of significance,
respectively. Numbers in brackets are t values

2) Sargan test checks the overidentification of instruments. Chi statistics are reported for the Sargan test, while the
p-value is reported for AR(1) and AR(2)
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in its impact direction. Therefore, it is necessary to regress
economic complexity on embodied carbon emissions by
country group.

Table 6 contains the subsample GMM estimation results
for EEE and EEI. For high-income countries, the estimated
coefficients of ECI are positive and significant in columns (1)
and (2), but not significant in columns (3) and (4). This indi-
cates that the FEEE and DEEE of industrialized countries
would be further aggregated when high-income countries be-
come more complex in production (higher ECI). Meanwhile,
the promoting effect of economic complexity on FEEE is
larger than that on DEEE. Therefore, high-income countries
have a higher capability to embed more foreign carbon emis-
sions in their exports, thus reaching a surplus in total EEE.
This finding for high-income countries also supports the nar-
rative that a more complex system could improve high-
income countries’ environmental quality (Can and Gozgor
2017; Doğan et al. 2020).

In Table 6, columns (5)–(8) present the regression results
for low- and middle-income countries. It can be seen that the
estimated coefficients of ECI in columns (5) and (7) are pos-
itive but not significant. Therefore, present evidence of low-

and middle-income countries fails to support a significant
connection between economic complexity and FEEE and
FEEI. However, the variable ECI has a significantly positive
coefficient at the 5% level in columns (6) and a significantly
negative coefficient at the 5% level in columns (8), respective-
ly. These estimation results indicate that a one-unit increase in
economic complexity could lead to a significant increase in
DEEE by 14.1% and a decline in DEEI by 4.43% in the low-
and middle-income countries group. The development of a
more complex and knowledge-based economic system in
low- and middle-income countries could alleviate the problem
of CO2 transfer through their imports, but aggregate CO2 leak-
age problem through their exports, which is consistent with
the findings of Wang et al. (2019).

In brief, the empirical results show asymmetric impacts of
economic complexity on embodied CO2 emissions between
high-income countries and low- and middle-income countries.
The development of economic complexity in high-income
countries could further deteriorate environmental quality by
intensifying CO2 transfer through trade. However, low- and
middle-income countries could reduce DEEI by improving
their economic system towards a more complex structure.

Table 4 Regression results with
interaction terms for EEE (1) (2) (3) (4) (5) (6)

lnFEEE lnFEEE lnFEEE lnDEEE lnDEEE lnDEEE

eci 0.718** 0.746** 0.283*** 0.198 0.258 0.102**

(2.13) (2.50) (3.33) (1.11) (1.54) (2.26)

lnexport 0.680*** 0.351*** 0.557*** 0.243*** 0.159** 0.190***

(6.46) (3.55) (5.78) (3.04) (2.40) (2.91)

eci*lnexport −0.0497* −0.0152
(−1.68) (−0.92)

lnExportShare 0.536*** 0.284*** 0.446*** 0.00629 −0.00635 −0.00320
(4.93) (3.39) (4.95) (0.20) (−0.23) (−0.14)

eci*lnExportShare −0.165** −0.0548
(−2.33) (−1.37)

lnintensity 0.254*** 0.145*** 0.0620 0.240*** 0.180*** 0.144**

(3.82) (2.72) (0.88) (4.02) (3.06) (2.28)

eci*lnintensity 0.195*** 0.0763**

(2.79) (2.46)

Control variables Yes Yes Yes Yes Yes Yes

Sargan test 348.31*** 284.02*** 298.88*** 156.70*** 169.17*** 153.07***

AR(1) 0.014 0.000 0.001 0.000 0.000 0.000

AR(2) 0.054 0.021 0.052 0.781 0.832 0.838

_cons −8.021*** −4.132*** −6.682*** −1.978*** −1.221** −1.541***
(−6.18) (−3.59) (−5.75) (−2.77) (−2.27) (−2.77)

N 580 580 580 580 580 580

1) ***, **, and * indicate that the coefficients are significant at the 1%, 5%, and 10% levels of significance,
respectively. Numbers in brackets are t values

2) Sargan test checks the overidentification of instruments. Chi statistics are reported for the Sargan test, while the
p-value is reported for AR(1) and AR(2)
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This finding is also consistent with the discussion of Yilanci
and Pata (2020).

Robustness checks

We provide a robustness analysis in this section to confirm the
reliability of our primary empirical findings. The first method
is to exclude outliers in our regression samples. When there
are outliers in the data, the regression results are greatly affect-
ed by them because the estimationmethod treats them equally,
and a more correct regression equation can not be given. The
residual calculated based on this regression equation is natu-
rally unreliable. As can be seen from Fig. 2, China and the
USA exhibit extremely high carbon embodiment than other
countries during the examined period. Panel A in Table 7
shows consistent estimation results as in Table 3—the estimat-
ed coefficients of eci are all significantly positive for lnFEEE,
lnDEEE, and lnFEEI, but not for lnDEEI. The primary differ-
ence here is that the coefficients become higher after exclud-
ing the sample data of China and the USA. The second meth-
od is to estimate Eqs. (1) and (2) with another technique like

dynamic fixed effect (DFE) technique with a pooled mean
group (PMG). Panel B in Table 7 lists the long-run PMG
estimators under DFE model, which yields consistent results
for lnFEEE, lnFEEI, and lnFEEI, while the PMG estimator of
lnDEEE becomes insignificant.

Conclusions

This paper examines the impact of economic complexity on
embodied carbon emissions based on panel data covering 58
countries from 2005 to 2015. There are limited studies that
explore the relationship between economic complexity and
embodied carbon emissions. Our paper contributes to the
existing literature by adding this variable to our econometric
model. We utilized the latest GMM technique to estimate the
determinants of embodied carbon emissions and found that
the impact of economic complexity on trade-embodied carbon
emissions is heterogeneous. Specifically, economic complex-
ity has significant positive impacts on FEEE, DEEE, and
FEEI in the pooled sample. A one-unit rise in economic com-
plexity can increase FEEE, DEEE, and FEEI by 18.8%,

Table 5 Regression results with
interaction terms for EEI (1) (2) (3) (4) (5) (6)

lnFEEI lnFEEI lnFEEI lnDEEI lnDEEI lnDEEI

eci 0.0569 0.695 0.0349 −0.452 0.540 0.0535

(0.20) (0.85) (0.63) (−1.63) (1.24) (1.40)

lnimports 0.421*** 0.320*** 0.393*** 0.0687*** 0.0762*** 0.0587***

(6.45) (6.12) (5.14) (2.68) (2.65) (3.23)

eci*lnimport −0.00898 0.0403*

(−0.35) (1.69)

lnImportShare 0.182 0.280 0.195 −0.0519 0.0246 −0.0456
(1.04) (1.53) (1.10) (−0.89) (0.29) (−1.12)

eci*lnImportShare −0.171 −0.124
(−0.90) (−1.22)

lnintensity 0.106*** 0.0943*** 0.0730 0.0915** 0.0686** 0.0204

(3.13) (3.60) (1.51) (2.46) (2.14) (0.89)

eci*lnintensity 0.0558 0.0425

(1.27) (1.46)

Control variables Yes Yes Yes Yes Yes Yes

Sargan test 745.52*** 260.87*** 297.38*** 326.24*** 228.82*** 225.05***

AR(1) 0.000 0.000 0.000 0.001 0.001 0.001

AR(2) 0.062 0.005 0.010 0.023 0.020 0.033

_cons −3.967*** −3.589*** −3.814*** −0.420 −0.856 −0.409
(−3.62) (−4.01) (−3.38) (−1.19) (−1.60) (−1.54)

N 580 580 580 580 580 580

1) ***, **, and * indicate that the coefficients are significant at the 1%, 5%, and 10% levels of significance,
respectively. Numbers in brackets are t values

2) Sargan test checks the overidentification of instruments. Chi statistics are reported for the Sargan test, while the
p-value is reported for AR(1) and AR(2)
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16.5%, and 16.4%. We found no evidence of significant im-
pacts of economic complexity on DEEI in our pooled sample.

Besides, the scale effect, structural effect, and technological
effect are also significant drivers of embodied carbon

Table 6 Subsample regression results

(1) (2) (3) (4) (5) (6) (7) (8)
lnFEEE lnDEEE lnFEEI lnDEEI lnFEEE lnDEEE lnFEEI lnDEEI
High-income countries Low- and middle-income countries

eci 0.251** 0.0967** 0.0669 0.0224 0.0611 0.141** 0.0114 −0.0443**
(2.35) (2.11) (1.55) (1.24) (0.71) (2.28) (0.16) (−2.02)

lnexport 0.199** 0.0477 1.266*** 0.249*

(2.17) (1.01) (5.83) (1.93)

lnExportShare 0.330** −0.0696 0.372*** −0.0872*
(2.45) (−1.27) (3.42) (−1.65)

lnimports 0.143 −0.0327 0.490** 0.136**

(1.46) (−0.98) (2.32) (2.56)

lnImportShare 0.387** −0.0289 0.466** 0.0258

(2.27) (−0.83) (2.37) (0.51)

lnintensity 0.0820 0.241*** 0.174*** 0.0501* −0.259*** 0.174** 0.0552 −0.0326
(0.94) (4.03) (3.59) (1.67) (−3.10) (2.17) (0.80) (−1.10)

Control variables Yes Yes Yes Yes Yes Yes Yes Yes

Sargan test 374.28*** 165.33*** 404.18*** 155.08*** 162.43*** 93.52*** 242.65*** 111.33***

AR(1) 0.002 0.000 0.000 0.019 0.008 0.006 0.001 0.018

AR(2) 0.160 0.812 0.001 0.017 0.272 0.883 0.955 0.269

_cons −6.812*** −3.439*** −8.693*** −0.655 2.723 −1.064 −8.740*** 0.729

(−3.11) (−2.69) (−4.66) (−1.13) (1.63) (−0.86) (−5.93) (1.20)

N 360 360 360 360 220 220 220 220

1) ***, **, and * indicate that the coefficients are significant at the 1%, 5%, and 10% levels of significance, respectively. Numbers in brackets are t values

2) Sargan test checks the overidentification of instruments. Chi statistics are reported for the Sargan test, while the p-value is reported for AR(1) and
AR(2)

Table 7 Regression results after excluding outliers

Panel A: GMM estimators excluding outliers Panel B: DFE estimators with full sample

(1) (2) (3) (4) (1) (2) (3) (4)
lnFEEE lnDEEE lnFEEI lnDEEI lnFEEE lnDEEE lnFEEI lnFEEI

eci 0.201** 0.177*** 0.190*** 0.0309 0.214** 0.125 0.192** 0.072
(2.41) (2.90) (3.29) (1.44) (2.82) (1.54) (3.24) (1.91)

lnexport 0.367*** 0.0979 0.509** 0.116
(2.62) (1.49) (3.17) (0.67)

lnExportShare 0.459*** −0.0753 0.319** 0.229
(4.18) (−1.47) (2.80) (1.88)

lnimports 0.261** 0.0170 0.498*** 0.194*
(2.11) (0.36) (3.56) (2.21)

lnImportShare 0.466** −0.0417 0.765*** −0.029
(2.53) (−0.92) (5.22) (−0.31)

lnintensity 0.195** 0.543*** 0.192*** 0.0451** 0.467*** 0.796*** 0.210* 0.073
(2.38) (6.20) (3.62) (1.99) (4.43) (7.06) (2.35) (1.30)

Control variables Yes Yes Yes Yes Yes Yes Yes Yes
_cons −7.987*** −8.137*** −12.07*** −0.975** 0.688 −6.001* −6.519** −0.637

(−4.03) (−5.15) (−6.55) (−2.12) (0.21) (−1.99) (−3.16) (−0.41)
N 560 560 560 560 580 580 580 580

1) ***, **, and * indicate that the coefficients are significant at the 1%, 5%, and 10% levels of significance, respectively. Numbers in brackets are t values

2) Panel A excluded the sample data of China and the USA under the estimation technique of GMM. Panel B employed the dynamic fixed effect model
for estimation with all sample countries included
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emissions. As for the impact mechanism, the improvement of
economic complexity can decrease the marginal effects of
export scale and export structure on FEEE (but not DEEE)
significantly, while the marginal positive impacts of technol-
ogy on FEEE and DEEE can be further enhanced by econom-
ic complexity growth and the technological progress resulted
from economic complexity improvement brings low carbon
intensity. Besides, there is no strong evidence to prove the
significant indirect impacts of economic complexity on
FEEI, while economic complexity has significantly positive
indirect impacts on DEEI only through import scale. In the
subsample regressions, we found asymmetric impacts of eco-
nomic complexity between high-income countries and low-
and middle-income countries. The FEEE and FEEI of high-
income countries are all positively affected by economic com-
plexity, which are significant in statistics. There is no suffi-
cient evidence to support a significant relationship between
economic complexity and EEI in high-income countries.
However, developing a more complex production system in
low- and middle-income countries would decrease their DEEI
significantly by 4.43% and increase their DEEE significant by
14.1%. For low- and middle-income countries, we found no
evidence of the significant impact of economic complexity on
foreign carbon embodiment.

This paper’s empirical findings also provide some policy
implications as follows: first, when defining the scope of

responsibilities of carbon emissions, a more integrated plat-
form needs to be provided in the national society to take global
CO2 transfer through trade into consideration as the amount of
embodied carbon emissions in exports and imports have been
increasing in some countries in recent years. Second, the im-
provement of the economic system may bring heterogeneous
outcomes to the country’s trade-embodied carbon emissions,
depending on its overall economic, political and social condi-
tions. For high-income countries, their policymakers should
support the development of more environmental-friendly
technologies and provide necessary aid to other developing
countries to improve their environmental quality. For low-
and middle-income countries, to alleviate CO2 leakage, it is
essential to improve the economic complexity and produce
more knowledge-based products. Finally, policymakers could
also reduce trade-embodied carbon emission by reducing car-
bon emission intensity, designing favorable tariff policies, and
transforming the structure of traded goods.

This study contributed new evidence in the relationship
between economic complexity and trade-embodied carbon
emissions. Future studies can make innovative research by
incorporating other interesting variables like financial stabili-
ty, institutional quality, labor cost, and environmental policy
in the econometric models.

Appendix

Table 8 List of sample countries/
regions High-income countries Low and middle-income countries

AUS: Australia NZL: New Zealand ARG: Argentina

AUT: Austria NOR: Norway BRA: Brazil
BEL: Belgium POL: Poland BGR: Bulgaria
CAN: Canada PRT: Portugal KHM: Cambodia
CHL: Chile SAU Saudi Arabia CHN: China
HRV: Croatia SVK: Slovakia COL: Colombia
HKG: Hong Kong SAR SVN: Slovenia CRI: Costa Rica
CZE: Czech Republic KOR: South Korea IND: India
DNK: Denmark ESP: Spain IDN: Indonesia
EST: Estonia SWE: Sweden KAZ: Kazakhstan
FIN: Finland SGP: Singapore MYS: Malaysia
FRA: France CHE: Switzerland MEX: Mexico
DEU: Germany GBR: United Kingdom MAR: Morocco
GRC: Greece USA: United States PER: Peru
HUN: Hungary PHL: Philippines
IRL: Ireland ROU: Romania
ISR: Israel RUS: Russia
ITA: Italy TUR: Turkey
JPN: Japan ZAF: South Africa
LVA: Latvia THA: Thailand
LTU: Lithuania TUN: Tunisia
NLD: Netherlands VNM: Vietnam
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