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Abstract
Eleven piperazine-containing 1,3-diphenylprop-2-en-1-one derivatives (PC1-PC11) were evaluated for their inhibitory activities
against monoamine oxidases (MAOs), cholinesterases (ChEs), and β-site amyloid precursor protein cleaving enzyme 1 (BACE-
1) with a view toward developing new treatments for neurological disorders. Compounds PC10 and PC11 remarkably inhibited
MAO-B with IC50 values of 0.65 and 0.71 μM, respectively. Ten of the eleven compounds weakly inhibited AChE and BChE
with > 50% of residual activities at 10 μM, although PC4 inhibited AChE by 56.6% (IC50 = 8.77 μM). Compound PC3
effectively inhibited BACE-1 (IC50 = 6.72 μM), and PC10 and PC11 moderately inhibited BACE-1 (IC50 =14.9 and 15.3
μM, respectively). Reversibility and kinetic studies showed that PC10 and PC11 were reversible and competitive inhibitors of
MAO-B with Ki values of 0.63 ± 0.13 and 0.53 ± 0.068 μM, respectively. ADME predictions for lead compounds revealed that
PC10 and PC11 have central nervous system (CNS) drug-likeness. Molecular docking simulations showed that fluorine atom
and trifluoromethyl group on PC10 and PC11, respectively, interacted with the substrate cavity of the MAO-B active site. Our
results suggested that PC10 and PC11 can be considered potential candidates for the treatment of neurological disorders such as
Alzheimer’s disease and Parkinson’s disease.
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Introduction

Of the heterogeneous and complex neurodegenerative disor-
ders (NDDs) that largely affect the elderly, Alzheimer’s dis-
ease (AD) and Parkinson’s disease (PD) are the most preva-
lent and their pathogenesis have been attributed to a variety of
genomic, epigenomic, and environmental factors (Van Bulck

et al. 2019). Mounting evidence indicates that drugs targeting
a single pathway cannot adequately address the multifactorial
pathophysiologies of NDDs (Geldenhuys et al. 2011).
Oxidative stress, mitochondrial dysfunction, and imbalances
in the levels of enzymes that control the metabolism of bio-
genic amines may promote NDD progression (Barnham et al.
2004; Lin and Beal 2006). On the other hand, several
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molecular scaffolds have been designed to simultaneously tar-
get entities such as choline esterase (ChE), monoamine oxi-
dases (MAOs), and β-site amyloid precursor protein cleaving
enzyme 1 (β-secretase, BACE-1), to retard NDD progression
(Zhang et al. 2019).

Piperazine is a heteromonocyclic, six-membered ring con-
taining two secondary nitrogen atoms, and diazacycloalkane
with a non-planar, flexible nature that can interact
hydrophobically and by hydrogen bonding with target en-
zymes. Furthermore, piperazine is a privileged structure with
acknowledged “drug-likeness” and balanced pharmacody-
namic and pharmacokinetic properties (Rathi et al. 2016).
Currently, more than 40 piperazine-containing drugs have
been FDA-approved as antianginals, antidepressants,
antiserotonergics, urologicals, anthelmintics, antineoplastic
agents, nootropics, and tranquillizers (Brito et al. 2019).
Furthermore, the substitution of one or both nitrogen atoms
in the piperazine ring system with various structural motifs
can result in significant MAO-A, MAO-B, and acetylcholin-
esterase (AChE) inhibitions (Pettersson et al. 2012; Kaya et al.
2017; Kumar et al. 2018; Özdemir et al. 2020; Sağlık et al.
2020; Jevtić et al. 2020; Modh et al. 2013; Sahin et al. 2018).

On the other hand, 1,3-diphenylprop-2-en-1-one is a
chalcone that contains two phenyl rings separated by rotatable
three-carbon units. This linker is an α, β-unsaturated ketone
with trans-orientated olefinic linkage (Zhuang et al. 2017).
More than 90% of the chalcones synthesized exhibit selective
MAO-B inhibition (Chimenti et al. 2009; Guglielmi et al.
2020), and analogs of chalcones with furan, thiophene, indole,
imidazole, or morpholine heterocyclic entities on theA ring of
α, β-unsaturated ketones have been reported to act as com-
petitive, selective, and reversible MAO-B inhibitors
(Robinson et al. 2013; Mathew et al. 2016; Sasidharan et al.
2016, 2018; Mathew et al. 2019a). However, the effect of
introducing the piperazine pharmacophore into the chalcone
framework has not been explored in the context of MAO-B
inhibition. Previously, new chalcones containing the pipera-
zine or 2,5-dichlorothiophene moiety were synthesized and
evaluated for antimicrobial activities (Tomar et al. 2007).
Herein, we describe the synthesis of a series of piperazine-
derived chalcones and inspected for their abilities to inhibit
MAOs, ChEs, and BACE-1 in an effort to identify novel treat-
ments for NDDs.

Materials and methods

Synthesis

Derivatives were synthesized using base-catalyzed Claisen-
Schmidt condensation reaction between various aromatic al-
dehydes and 4′-piperazinoacetophenone (Tomar et al. 2007).
Briefly, the synthesis was initiated by adding 0.01 M 4′-

piperazinoacetophenone to an ethanol (20 ml)/40% of KOH
(8 ml) mix and then adding 0.01 M of an aromatic benzalde-
hyde and stirring for 10–12 h (Scheme 1). Resulting solutions
were poured into ice-cold water, and the precipitates were
washed with water. The formation of the products was
checked by thin layer chromatography with a solvent system
of ethyl acetate: hexane (1:9). Recrystallization was done with
ethanol.

Enzyme assays

Kynuramine (0.06 mM) and benzylamine (0.3 mM) were used
as substrates to assay the activities of recombinant human
MAO-A and MAO-B, respectively [Mathew et al. 2018].
AChE and butyrylcholinesterase (BChE) activities were
assayed using Electrophorus electricus Type VI-S and
Equine serum Type, respectively, in the presence of 0.5 mM
ace t y l t h i o cho l i n e i od i d e (ATCI ) o r 0 . 05 mM
butyrylthiocholine iodide (BTCI), respectively, by adding
0.5 mM 5, 5′-dithiobis (2-nitrobenzoic acid) (DTNB) [Ellman
et al. 1961; Baek et al. 2018a; Lee et al. 2019]. Enzymes and
inhibitors were preincubated for 15 min before measuring in-
hibitory activities. BACE-1 activity was determined using a β-
secretase (BACE-1) activity detection kit, which included the
7-methoxycoumarin-4-acetyl-[Asn670,Leu671]-amyloid β/A4
protein fragment 667-676-(2,4-dinitrophenyl)Lys-Arg-Arg am-
ide trifluoroacetate as a substrate. The reaction was performed
for 2 h at 37°C and the signals were measured using a fluores-
cence spectrometer (FS-2, Scinco, Seoul, Korea) with an exci-
tation wavelength of 320 nm and an emission wavelength of
405 nm. Chemicals, enzymes, and BACE-1 activity detection
kits were purchased from Sigma-Aldrich (St. Louis, MO,
USA).

Enzyme inhibitory and kinetic studies

The inhibitory activities of the 11 compounds were initially
measured at a concentration of 10 μM against MAO-A,
MAO-B, AChE, BChE, or BACE-1. IC50 values for MAO-
A and MAO-B by the compounds were determined first, and
then, those for AChE, BChE, and BACE-1 by compounds
with residual activities of < 50% were investigated. Kinetic
studies were carried out on PC10 and PC11, which most
potently inhibited MAO-B, at five substrate concentrations
and three inhibitor concentrations, as previously described
[Çeçen et al. 2020].

Inhibitor reversibility analysis

The reversibility of MAO-B inhibitions by PC10 and PC11
was assessed by dialysis after preincubating them at 0.15 μM
with MAO-B for 30 min, as described previously [Baek et al.
2018b]. For comparison purposes, MAO-B was preincubated
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with lazabemide (a reference reversible MAO-B inhibitor) or
pargyline (a reference irreversible MAO-B inhibitor) at 0.20
and 0.30 μM, respectively. Reversibility patterns were
assessed by comparing the activities of dialyzed (AD) and
undialyzed (AU) samples.

ADME prediction

ADME parameters including pharmacokinetic data and
physical-chemical properties such as lipophilicity and water
solubility of PC10 and PC11 were predicted in silico using
free software available at http://www.swissadme.ch/ (Daina
et al. 2017).

Molecular docking

The 3D-coordinates of MAO-A, MAO-B, and AChE crystals
were collected from the Protein Data Bank by selecting 2Z5X,
2V5Z, and 4EY7 entries, respectively (Son 2008; Binda et al.
2007; Cheung et al. 2012). Protein Preparation Wizard tools
were employed to optimize and minimize crystal structures
(Schrödinger 2020c; Madhavi Sastry et al. 2013). To explore
the chirality, ionization states, ring conformations, and tauto-
mers of each input structure, PC4, PC10, and PC11 were
treated by using the Ligprep tool (Schrödinger 2020b).
Docking simulations were carried out using GLIDE
(Friesner et al. 2004; Schrödinger 2020a), and the centers of
mass of cognate ligands were used to generate the enclosing
boxes. The standard precision docking protocol was used
with default Force Field OPLS_2005 and detailed analysis
of ligand binding affinities was performed by calculating
binding free energies (ΔG) between protein and ligands
using the Molecular Mechanics/Generalized Born Surface
Area (MM-GBSA) method (Banks et al. 2005; Genheden and

Ryde 2015). TheΔG values were calculated using:ΔGbind =
ΔEMM +ΔGsolv +ΔGSA, whereΔEMM = minimized energy
of the ligand-protein complex,ΔGsolv = solvation energy, and
ΔGSA = surface area energy.

Results

Inhibitory activities against MAOs, ChEs, and BACE-1

All eleven compounds exhibited high inhibitory activities
against MAO-B with residual activities of <50% at the con-
centration of 10 μM (Table 1). PC10 exhibited the greatest
inhibitory activity against MAO-B (IC50 value = 0.65 μM),
followed by PC11, which had an IC50 value of 0.71 μM. PC1
inhibited MAO-B least (IC50 = 7.62 μM), and the other 8
compounds had IC50 values ranging from 1.09 to 3.65 μM.
A comparison of the IC50 value of PC1 with those of PC10
and PC11 indicated that the presence of a –F or –CF3 group
instead of –H increased MAO-B inhibitory activity.
Other substituents such as –OCH3 of PC3, –Cl of
PC8, and –OH of PC2 moderately enhanced MAO-B
inhibition. However, all compounds much less effective-
ly inhibited MAO-A at 10 μM and achieved residual
activities of > 65% (Table 1). PC3 had the lowest
IC50 value of 27.9 μM. Regarding selectivity index
(SI), PC10 and PC11 had the highest values of 48.3
and 49.2, respectively, for MAO-B over MAO-A.

All compounds weakly to moderately inhibited AChE and
BChE by < 50% at 10 μM, except PC4, which inhibited
AChE by 56.6% (IC50 = 8.77 μM) (Table 1). PC10 and
PC11 had IC50 values of 28.0 and 26.3 μM, respectively,
for AChE, and showed moderate inhibitory activities against
BChE with IC50 values of 36.4 and 36.2 μM, respectively.

Scheme 1 The synthetic route used
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Interestingly, some of the compounds effectively inhibited
BACE-1 (Table 1). PC3 effectively inhibited BACE-1, and
PC10 and PC11 showed moderate BACE-1 inhibitory activ-
ities with IC50 values of 14.9 and 15.3 μM, respectively; these
two compounds contained fluoro and trifluoromethyl
pharmacophores, respectively, on a piperazine-substituted
chalcone framework.

MAO-B inhibition and its kinetics

MAO-B inhibitions by PC10 and PC11 were subjected to
kinetic analysis. Lineweaver-Burk and secondary plots
showed that PC10 and PC11 competitively inhibited MAO-
B (Fig. 1a and c), with Ki values of 0.63 ± 0.13 and 0.53 ±
0.068 μM, respectively (Fig. 1b and d). These experimental

observations showed that PC10 and PC11 are competitive
and selective inhibitors of MAO-B.

Reversibility studies of MAO-B inhibition

MAO-B inhibitions by PC10 and PC11 were also sub-
jected to reversibility studies. The results obtained
showed that inhibition of MAO-B by PC10 was recov-
ered after dialysis from 32.1 (AU value) to 81.2% (AD

value), and that inhibition by PC11 recovered from
32.6 (AU) to 68.9% (AD). These values were close to
those of the reversible reference lazabemide (from 28.3
to 86.9%). On the other hand, inhibition of MAO-B by
the irreversible reference pargyline was not recovered
by dialysis (from 31.8 to 32.7%) (Fig. 2). The above
data revealed that MAO-B inhibitions by PC10 and
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Fig. 1 Lineweaver-Burk plots for MAO-B inhibition by PC10 (a) or PC11 (c), and respective secondary plots (b and d) of slopes vs. inhibitor
concentrations
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PC11 were recovered to reversible reference values and
showed that PC10 and PC11 reversibly inhibit MAO-
B.

ADME prediction

In silico ADME prediction revealed that PC10 and PC11
fully complied with the limits of Lipinski’s rule and supported
their oral use and drug-likenesses (Table 2). In addition, the
boiled-egg and bioavailability radar plots generated by the
SwissADME tool also provided two clear ADME character-
istics (Fig. 3). Boiled-egg pictures represent passive absorp-
tion in the gastrointestinal (GI) tract (shown as the white area)
and the ability to cross the blood-brain barrier (BBB; yellow
area). These plots showed that PC10 and PC11 were located
in the yellow area, suggesting ability to cross the BBB, and
indicated that both would be passively absorbed in the GI
system (Fig. 3a and b). Bioavailability radar also placed the

drug-likeness representation of PC11 within the pink area,
which is an indicator of optimal physicochemical properties,
such as size, polarity, solubility, lipophilicity, saturation, and
suitability for oral administration. In this respect, PC10
showed a slight deviation in physicochemical property of sat-
uration (Fig. 3c and d).

Molecular docking studies

Molecular docking simulations and binding free energies cal-
culationswere carried out to investigatemolecular interactions
between PC4, PC10, or PC11 and the binding sites of MAOs
and AChE. PC10 and PC11 had docking scores of −5.73 and
−4.81 kcal/mol, respectively, toward MAO-A, and of −7.29
and −7.11 kcal/mol, respectively, toward MAO-B (Table 3).
In addition, the MM-GBSA values of PC10 and PC11 were
−28.77 and −52.60 kcal/mol, respectively, toward MAO-A,
and −64.19 and 66.06 kcal/mol, respectively, toward MAO-B
(Table 3). Regarding AChE inhibition, although docking sim-
ulation returned comparable scores for the three compounds,
PC4 had the lowest binding free energy (i.e., −55.81, −39.82,
and −52.18 kcal/mol for PC4, PC10, and PC11, respectively)
(Table 3).

The para-methyl and para-fluorine rings ofPC4 andPC10
faced FAD and interacted through π–π contacts with Y407 of
MAO-A (Fig. 4a). Conversely, although slightly larger, the
−CF3 substituent of PC11 did not allow its styrene moiety to
face FAD, which resulted in the phenyl ring of chalcone es-
tablishing π–π interactions with F208 of MAO-A. All three
compounds assumed similar binding poses within the MAO-
B binding pocket (Fig. 4b), which was ascribed to the exis-
tence of two π–π interactions between chalcone aromatic
rings and Y398 or Y326 of MAO-B selective residues. The
styrene portion of PC4 established a π–π interaction with
Y341 of AChE and the carbonyl group of its chalcone moiety
formed a hydrogen bond with F295 of AChE (Fig. 4c). On the
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Table 2 ADME predictions for PC10 and PC11

Properties PC10 PC11

No. H-bond acceptor 3 5

No. H-bond donor 1 1

LogPO/W(iLOGP) 2.97 3.30

No. rotatable bonds 4 5

TPSA 32.34 32.34

LogKP (skin permeation) −7.39 −6.96
Lipinski’s rule violation No No

Bioavailability score 0.55 0.55

GI absorption Yes Yes

BBB permeation High Yes

PAINS alerts Zero Zero

P-pg substrate No No
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other hand, the chalcone moieties of PC10 and PC11 formed
π–π interactions with W286 and hydrogen bonds with the
main chain of F295.

Discussion

Chalcones are considered versatile scaffolds for many of
the CNS-related agents, such as anti-depressants,

anxiolytics, β-amyloid plaque imaging agents, adenosine
receptor antagonists, and MAO-B and AChE inhibitors
(Mathew et al. 2019b). The three rotatable bonds avail-
able in the Michael acceptor between the two phenyl sys-
tems of chalcones provide different mode interactions in
the inhibitor binding cavities of the enzymes, which are
highly dependent on the natures and bulkinesses of
groups bearing on the A and B chalcone rings (Matos
et al. 2015).

Recent studies have reported that the presence of electron-
donating groups, such as methyl, methoxy, ethyl,
dimethylamino, and ethyl acetohydroxamate, at the para po-
sition of the phenyl B ring of chalcones confers greater MAO-
B inhibition than MAO-A inhibition. Lipophilic halogen
atoms (fluorine, chlorine, and bromine) at the same position
also resulted in outstanding MAO-B inhibition (Morales-
Camilo et al. 2015; Reeta et al. 2019; Shalaby et al. 2019).
In addition, the presence of an aliphatic or methyl-containing
amino group or a nitrogen-derived pharmacophore in
chalcones is required for AChE inhibition (Liu et al. 2016;
Xiao et al. 2017; Bai et al. 2019). In this respect, the present

Fig. 3 Representations of the boiled-egg graphs (a and b) and bioavailability radar plots (c and d) for PC10 and PC11 produced using the SwissADME
web-tool

Table 3 Docking scores andMM-GBSA values for interaction between
PC4, PC10, or PC11 and MAO-A, MAO-B, or AChE

Compounds Docking Score (kcal/mol) MM-GBSA (kcal/mol)

MAO-A MAO-B AChE MAO-A MAO-B AChE

PC4 −5.85 −7.29 −6.10 −12.43 −66.34 −55.81
PC10 −5.73 −7.29 −6.25 −28.77 −64.19 −39.82
PC11 −4.81 −7.11 −5.97 −52.60 −66.06 −52.18
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design strategy explores the effects of the presence of both
pharmacophores in the chalcone framework (Fig. 5) by intro-
ducing a piperazine nucleus at the para position of the phenyl
A ring and various electron-donating or electron-withdrawing
substituents on the B ring of the chalcone scaffold. Recently,
Sasidharan et al., reported that morpholine-bearing chalcones
exhibited dual-acting inhibitory activities, i.e., selective
MAO-B inhibition with moderate AChE inhibition
(Sasidharan et al. 2021).

In the present study, the unsubstituted piperazine-based
chalcone (PC1) exhibited moderate MAO-B inhibition with
an IC50 value of 7.62 μM but high residual activities for
MAO-A, AChE, BChE, and BACE-1 (96.6%, 72.9%,
96.0%, and 90.6%, respectively) at 10 μM. The introductions
of small groups on the B ring of the phenyl system slightly
impacted activity ratio toward multi-targets, which

emphasizes the importance of substituents on the B ring.
Some interesting structure-activity relationships (SARs) were
derived, as depicted in Fig. 6.

The SAR studies revealed that all piperazine-substituted
chalcones inhibitedMAO-B substantially or moderately better
than MAO-A. The presence of electron-withdrawing groups
like trifluoromethyl or fluorine provided good MAO-B inhi-
bition and the presence of a methyl group (electron-donating)
on the para position of the phenyl B ring provided optimal
activity as exemplified by PC4, which had IC50 values for
MAO-B and AChE of 2.72 and 8.77 μM, respectively, and
inhibited BACE-1 by 44.5% at 10 μM.Whereas the introduc-
tion of electron-donating groups like methyl (PC4), hydroxyl
(PC2), or methoxy (PC3) groups resulted in moderate AChE
inhibition (residual activities of 43.4%, 56.8%, and 58.8%,
respectively, at 10 μM). Moreover, these electron-donating

Fig. 4 Molecular dockings with the binding pockets of MAO-A (a),
MAO-B (b), or AChE (c) by PC4 (a, yellow sticks), PC10 (b, green
sticks), or PC11 (c, cyan sticks), respectively. Green lines and red arrows
indicate π–π contacts and hydrogen bonds, respectively. Water mole-
cules are depicted as cyan spheres. Docking score values for PC4,

PC10, orPC11withMAO-Awere −5.845,−5.730, and −4.811 kcal/mol,
respectively; with MAO-B were −7.293, −7.285, and −7.113 kcal/mol,
respectively; and with AChE were −6.099, −5.584, and −6.681 kcal/mol,
respectively
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Fig. 5 Design strategy used to produce piperazine-based multi-target directed ligands (MTDLs)

Fig. 6 SAR analyses of the 11 piperazine-based chalcones produced
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groups showed moderately selective inhibition of MAO-B.
Regarding the effects of halogen substitution at phenyl ring
on MAO-B inhibition, fluorine (PC10) had a greater effect
than chlorine (PC8) or bromine (PC9). The high electronega-
tivity of fluorine substituted phenyl in various molecular
frameworks has been recently reported to increase hydropho-
bic interactions with Tyr398 and Tyr435 markedly in the ac-
tive site of MAO-B (Mathew et al. 2020).

MAO-B, AChE, and BACE-1 are important enzyme tar-
gets and can produce neurotoxic free radical by-products,
degrade acetylcholine, and generate amyloid β (Aβ), and
thus, the development of highly selective ligands that target
these enzymes is of considerable interest to those involved
in the development of drugs for AD (Moussa-Pacha et al.
2019; Benny and Thomas 2019). Recently, many re-
searchers have used ligand or structure-based drug strate-
gies to design dual-acting MAO-B/AChE inhibitors
(Mathew 2020). However, this is the first study to focus
on the inhibitory profiles of piperazine containing
chalcone-based compounds on MAO-A, MAO-B, AChE,
BChE, and BACE-1. Our findings show that the lead mol-
ecules PC4, PC10, and PC11 selectively inhibit MAO-B at
the submicromolar level and moderately inhibit AChE and
BACE-1.

ReversibleMAO-B inhibitors have shorter action durations
than irreversible inhibitors because they dissociate from tar-
gets (Tipton 2018). Many new reversible MAO-B inhibitors
have been developed using various structural scaffolds, such
as chromones, coumarins, chalcones, phenyloxazolidinones,
and pyrazolines (Carradori and Silvestri 2015; Mathew et al.
2017; Mathew 2020). Our reversibility studies on PC10 or
PC11 inhibition ofMAO-B indicate that the reversible natures
of their interactions cause minimal target disruption and pro-
vide improved ADME profiles.

Computational results of interactions between PC4, PC10,
or PC11 and MAO-A, MAO-B, or AChE targets provided
satisfactory explanations of experimental data and agreed well
with experimental IC50 values. Furthermore, they showed that
π–π interaction with Y326 of MAO-B (a selective residue),
which is changed to I335 in MAO-A (Mangiatordi et al.
2017), is a prerequisite for interaction in its binding pocket,
as previously reported (Oh et al. 2020).

Conclusion

We report the results of an investigation of the neuro-related,
multi-enzyme targeting profiles of piperazine-bearingα,β-un-
saturated ketones. The abilities ofMAOs and ChEs inhibitions
by the compounds were found to depend on the natures of
substituents at the para position of the B phenyl ring of the
chalcone framework. All eleven compounds inhibited MAO-
Bmore thanMAO-A, and compounds PC4, PC10, and PC11

potentially inhibited MAO-B with IC50 values of 2.72, 0.65,
and 0.71 μM, respectively, and moderately inhibited AChE
with IC50 values of 8.77, 28.0, and 26.3 μM, respectively.
Furthermore, these experimental results were also supported
by molecular docking studies. In addition, PC4, PC10, and
PC11moderately inhibited BACE-1 with IC50 values of 15.5,
14.9, and 15.3 μM, respectively, which further supports their
potential use for the development of novel drugs against var-
ious neurological disorders.
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