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Abstract
The effects of meteorological factors on health outcomes have gained popularity due to climate change, resulting in a general rise
in temperature and abnormal climatic extremes. Instead of the conventional cross-sectional analysis that focuses on the associ-
ation between a predictor and the single dependent variable, the distributed lag non-linear model (DLNM) has been widely
adopted to examine the effect of multiple lag environmental factors health outcome.We propose several novel strategies to model
mortality with the effects of distributed lag temperature measures and the delayed effect of mortality. Several attempts are derived
by various statistical concepts, such as summation, autoregressive, principal component analysis, baseline adjustment, and
modeling the offset in the DLNM. Five strategies are evaluated by simulation studies based on permutation techniques. The
longitudinal climate and daily mortality data in Taipei, Taiwan, from 2012 to 2016 were implemented to generate the null
distribution. According to simulation results, only one strategy, named MVDLNM, could yield valid type I errors, while the other
four strategies demonstratedmuchmore inflated type I errors. With a real-life application, theMVDLNM that incorporates both the
current and lag mortalities revealed a more significant association than the conventional model that only fits the current mortality.
The results suggest that, in public health or environmental research, not only the exposure may post a delayed effect but also the
outcome of interest could provide the lag association signals. The joint modeling of the lag exposure and the delayed outcome
enhances the power to discover such a complex association structure. The new approach MVDLNM models lag outcomes within
10 days and lag exposures up to 1 month and provide valid results.

Keywords Distributed lag non-linear model .Multivariate analysis . Temperature . Mortality . Delayed effects

Introduction

Extensive studies have indicated the association between tem-
perature and human health, which arouses public health con-
cerns as the climate has changed drastically on a worldwide
scale due to global warming in recent years (Basu 2009;
Gasparrini et al. 2010). After accounting for climate changes
and other factors, how hot and cold weather, or their delayed
effects, trigger human death were widely discussed in differ-
ent areas, including the USA (Curriero et al. 2002; Mills et al.
2015), Europe (Baccini et al. 2008), and Northeast Asia
(Chung et al. 2015). In addition to temperature, it has also
been documented that exposure to air pollutants, which in-
cludes particulate matter (PM), ozone (O3), nitrogen dioxide
(NO2), and sulfur dioxide (SO2) according to the 2005 WHO
Air Quality Guidelines, leads to adverse effects on human
health, especially the respiratory and cardiovascular diseases.
Several types of research have examined the relationship be-
tween PM10, PM2.5, and daily mortality. Some showed that
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exposure to polluted air in a period would harm health condi-
tions such as the development of lung or heart diseases, where
the sources of pollution come from air, second-hand smoke,
ozone, or particle matters (Dai et al. 2004; Janssen et al. 2013).

In 2010, Gasparrini et al. (2010) carried out the dis-
tributed lag non-linear model (DLNM) to evaluate pre-
dictors’ lag effect. The DLNM fits the non-linear asso-
ciation between the outcome variable and predictors. A
cross-basis function simultaneously depicts the
exposure–response relationship and the predictor space
and lag–response relationship along with the lag space.
In 2018, a new approach assessed both the same-day
and 1-day lag mortality in DLNM (Chen et al. 2018).
Therefore, associations in both lag outcomes and expo-
sures need more attention to describe such a complex
structure.

This research collected both weather and air pollution
data as predictors and daily mortality as the health out-
come in Taipei City from 2012 to 2016. Since the
DLNM is widely adopted in public health and environ-
mental research (Vicedo-Cabrera et al. 2016), we aim to
extend the DLNM with Poisson link function and natu-
ral cubic splines (Bhaskaran et al. 2013) to model the
cumulative mortality outcomes using lag predictors. The
new methods’ validity and performance would be eval-
uated by the simulation study based on permutation
techniques. Finally, a real data application shows a sig-
nificant improvement attributable to the new method.

Materials and methods

Anonymous daily mortality counts are the outcome of
interest. Hence, no patients were involved in this re-
search. All-cause mortality in Taipei City was obtained
from the Cause of the Death Database published by the
Ministry of Health and Welfare.

The Institutional Review Board (IRB) of National
Yang-Ming University approved the use of anonymous
mortality data (IRB number YM107045E). Daily mean
temperature measures were obtained from Taipei
Weather Station, available through the Central Weather
Bureau (CWB n.d.) Observation Data Inquiry System
website (CWB n.d.). Data on air pollution were obtain-
ed from Taipei Air Quality Monitoring System, avail-
able through Environmental Protection Administration
Executive Yuan website (EPAEY n.d.), where we col-
lected daily mean ozone concentration and daily mean
PM2.5 concentration (Table 1). Although some air pol-
lutions were missing, we could omit these observations
since the missing rate is dismal, with an ignorable im-
pact on the analyses.

The DLNM model is defined as the following:

log μtð Þ ¼ α þ s xt; l; βð Þ þ βO3
O3t þ βPM2:5PM2:5t þ ∑

p

i¼1
f zt i; θ
� �

The independent variable (xt) is daily mean temperature
and other pollutant variables (O3t and PM2.5t) are treated as
potential confounders. The outcome variable (μt) was all-
cause mortality. The DLNM model was fitted through a
cross-basis function s(xt, l, β) simultaneously describing the
effect of the daily mean temperature xt and its lag structure
with maximum lag l on the expected mortality. Daily mean
ozone concentrationO3t and daily mean concentration PM2.5t
are fixed effects. A natural cubic spline f(zt

i ; θ) with 8 degrees
of freedom for each year is used to adjust for the seasonal
effect. We selected 10, 20, and 30 days for the maximum
exposure lag l. The cross-basis consists of a quadratic B-
spline for temperature with the knots placed at 10th, 75th,
and 90th percentiles and a natural cubic spline for the lag with
5 degrees of freedom, indicating three internal knots are equal-
ly spaced in the log scale.

In order to extend the DLNM to accommodate the
lag mortalities, we propose five different multivariate
(MV) approaches to transform the lag outcomes (n × l)
into a one-dimensional dependent variable (n × 1) to be
integrated by the DLNM.

For illustration purposes, assume that the Y matrix
consists of 4 days of mortality with two lag days.
Hence, the dimension of Y is (4 × 3). The second col-
umn of Y is the 1-day lag mortality. The third column
of Y represents the 2-day lag mortality.

L e t Y ¼
60 51 62
73 60 51
61
55

73
61

60
73

2

64

3

75, w i t h eigenvector ¼

a d g
b e h
c f e

2

4

3

5; eigenvalue ¼
λ1 0 0
0 λ2 0
0 0 λ3

2

4

3

5 in the principal

component analysis (PCA).
Method 1:

Table 1 Daily all-cause deaths and three primary parameters, mean
temperature, ozone concentration, and PM2.5 concentration, in Taipei
from 2012 to 2016

Daily data Descriptive statistics

A.1. N Mean SD Min Max

Mortality 1818 61.397 9.584 32 101

Mean temperature 1818 23.57 5.526 5.583 32.996

Mean O3 1816 28.030 9.628 6.317 81.967

Mean PM2.5 1801 20.459 10.413 3.714 87.143
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MVsum: The most straightforward idea is to obtain the total
mortalities from today to previous lag days. The new Ymatrix
(4 × 1) contains the summation of mortalities from the current
day to the maximal lag day:

MVsum ¼
60þ 51þ 62
73þ 60þ 51
61þ 73þ 60
55þ 61þ 73

2

664

3

775

4*1

¼
173
184
194
189

2

664

3

775

4*1

Method 2:
MVAR: A commonly used longitudinal structure is

autoregressive (AR). The lag mortality could be integrated
into the current mortality by this weighted summation. The
earlier a day lags, the less impact of mortality would contrib-
ute. We assumed a geometric progression with different ratios
(0.8, 0.9, and 0.98):

i. The n-day lag mortality is multiplied by coefficients 0.8n

MVAR1 ¼
60 51 62
73 60 51
61
55

73
61

60
73

2

64

3

75

4*3

*
0:80

0:81

0:82

2

4

3

5

3*1

¼
140:48
153:64
157:8
150:52

2

664

3

775

4*1

ii. The n-day lag mortality is multiplied by coefficients 0.9n

MVAR2 ¼
60 51 62
73 60 51
61
55

73
61

60
73

2

64

3

75

4*3

*
0:90

0:91

0:92

2

4

3

5

3*1

¼
156:12
168:31
175:3
169:03

2

664

3

775

4*1

iii. The n-day lagmortality ismultiplied by coefficients 0.98n

MVAR3 ¼
60 51 62
73 60 51
61
55

73
61

60
73

2

64

3

75

4*3

*
0:980

0:981

0:982

2

4

3

5

3*1

¼
169:5249
180:7804
190:164
184:8892

2

664

3

775

4*1

Method 3:
MVPCA: The principal component analysis (PCA) (Jolliffe

and Cadima 2016) is an unsupervised methodology to reduce

numerous variables’ dimensionality. The first component rep-
resents the maximum variability explained. Therefore, we use
only the first component in the first attempt. The second em-
ploys all eigenvectors such that all variabilities are
maintained.

i. Only multiply the first eigenvector (to obtain the first prin-
cipal component):

MVPCA1 ¼
60 51 62
73 60 51
61
55

73
61

60
73

2

64

3

75

4*3

*
a
b
c

2

4

3

5

3*1

→

60aþ 51bþ 62c
73aþ 60bþ 51c
61aþ 73bþ 60c
55aþ 61bþ 73c

2

664

3

775

4*1

ii. Multiply all eigenvector (to obtain all principal compo-
nents) and the corresponding percentage:

MVPCA2 ¼
60 51 62
73 60 51
61
55

73
61

60
73

2

6
4

3

7
5

4*3

*
a d g
b e h
c f e

2

4

3

5

3*3

*

λ1

λ1 þ λ2 þ λ3ð Þ
λ2

λ1 þ λ2 þ λ3ð Þ
λ3

λ1 þ λ2 þ λ3ð Þ

2

6666664

3

7777775

2*1

Method 4:
MVadjust: Separate the current mortality from the lag mor-

talities. Create a reduced matrix that sums over L lag mortal-
ities but not the current mortality,

sum xsLð Þ ¼
51þ 62
60þ 51
73þ 60
61þ 73

2

664

3

775

4�1

¼
113
111
133
134

2

664

3

775

4�1

,

and adjust sum(xsL) as a covariate in the DLNM.

60
73
61
55

2

664

3

775

4�1

is the outcome &sum xsLð Þ

¼
113
111
133
134

2

664

3

775

4�1

is adjusted in the DLNM

Method 5:
MVDLNM: Similar to method 4, but instead of treating the

sum of previously lag mortalities as a covariate, sum xsLð Þ ¼

113
111
133
134

2

664

3

775

4�1

is considered as the offset of the current mortality

in the DLNM.
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60
73
61
55

2

664

3

775

4�1

is the outcome &sum xsLð Þ

¼
113
111
133
134

2

664

3

775

4�1

is the offset in the DLNM

To validate the above approaches’ performance, we con-
ducted a simulation study under the null hypothesis 1000
times. The null distribution was generated by permutations
of mortality such that the outcome mortality and temperature
measures were not correlated. The validity of each model was
assessed. If the proportion of rejecting the null hypothesis
does not exceed the significance level of 5%, the proposed
strategy is a valid test.

All the statistical analyses and simulations were conducted
by the software R (R Core Team (2014). R: A language and
environment for statistical computing. R Foundation for
Statistical Computing), equipped with the package "dlnm"
by Gasparrini et al. (2010).

Results

According to the permuted samples, the observed type I error
forMVsum is presented in Table 2. Methods 1 and 2 are based
on the summation of previous outcomes but with different
weights. Therefore, the results of MVAR1, MVAR2, and MVAR3
are similar and not shown.

Due to a negative value in principal components, MVPCA1
and MVPCA2 failed to satisfy the Poisson distribution model’s
assumption and did not generate any DLNM package results.
Hence, type I errors were not obtained. Note that type I error
rates for MVsum, MVAR1, MVAR2, and MVAR3 were much
larger than the nominal level of 0.05. Inflation is in-
creasing for the number of lag outcomes. Therefore,
these methods are not valid, although the idea is simple
and could be easily implemented.

Table 3 shows that the type I error rate of MVadjust was
between 0.058 and 0.067 when the lag exposure was up to
10 days. The type I error became 0.083–0.183 when the lag
exposures were up to 20 days. Finally, type I errors are 0.076–
0.308 for 30 lag temperature measures. Although the type I
error rate was consistently larger than 0.05, MVadjust yielded
much smaller type I errors than summation-based methods.

Finally, Table 4 shows that the type I error rate ofMVDLNM

was smaller than 0.05 when the lag exposure was 10 days. The
type I error would range from 0 to 0.078 if the lag exposure
were 20 days. When the lag exposure was 30 days, the type I
error ranges from 0 to 0.102. Therefore, the results indicated

that MVDLNM is the only valid test. For the 10, 20, and 30 lag
exposures, the cumulative outcome mortality could be imple-
mented up to 10, 10, and 13 days, respectively.

The research aims to provide a novel method with an en-
sured valid type I error and sufficient statistical power.
Therefore, in addition to type I error simulations, we exam-
ined computer simulations to compare the performance be-
tween the DLNM and the MVDLNM. We conducted 1000
repetitions for each scenario. The R function for power simu-
lation is freely available. Researchers could use various
datasets with different environmental factors and struc-
tures in other countries worldwide to confirm that both
the lag outcomes and exposures could demonstrate a
significant association.

In power simulations, we kept the temperature and air pol-
lution structures in Taipei from 2012 to 2016. According to

Table 2 Type I errors of
MVsum (10) (20) (30)

~Lag1 0.557 0.712 0.74

~Lag2 0.797 0.937 0.951

~Lag3 0.856 0.98 0.989

~Lag4 0.879 0.997 0.996

~Lag5 0.872 0.996 0.998

~Lag6 0.869 0.996 0.999

~Lag7 0.864 0.997 1

~Lag8 0.872 0.999 1

~Lag9 0.871 0.998 1

~Lag10 0.874 0.997 1

~Lag11 0.996 1

~Lag12 0.996 1

~Lag13 0.995 1

~Lag14 0.994 1

~Lag15 0.993 1

~Lag16 0.994 1

~Lag17 0.995 1

~Lag18 0.993 1

~Lag19 0.995 1

~Lag20 0.995 1

~Lag21 1

~Lag22 1

~Lag23 1

~Lag24 1

~Lag25 1

~Lag26 1

~Lag27 1

~Lag28 1

~Lag29 1

~Lag30 1

MVAR1,MVAR2, andMVAR3 are similar and
not shown
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the Poisson distribution, we simulated the outcome variable
with the mean parameter λ equals the daily mean temperature.
In this way, the temperature determines the number of mor-
tality, and the association is significant. Scenarios included
different lengths of the study period from 120 days to 1 year
since the statistical power is 100% for both methods with a
sample size of more than 1 year. Therefore, besides statistical
power, we recorded the percentage when the p value of the
MVDLNM is smaller than the p value of the DLNM.
Simulation results revealed that the MVDLNM outperforms
the conventional DLNM in the scenarios we examined
(Table 5). The percentage when the MVDLNM reveals a more
significant result is higher than 50%, and the power of the
MVDLNM is consistently higher than the power of the DLNM.

Our previous work using six major cities in Taiwan (Guo
et al. 2014) reported a significant temperature impact on mor-
tality. In this research, only Taipei City is available for recent

years. However, the MVDLNM could provide significant over-
all p values (Table 6). Regarding the temperature measure up
to 10 lag days, significant p values were observed for four or
more lag mortalities incorporated in the model. For tempera-
ture in 20 and 30 lag days, if five or more lag mortalities are
used in the MVDLNM, the result would suggest significant
associations. Hence, the cumulative outcomes could contrib-
ute to the association with lag exposures. In Figs. 1, 2, 3, 4,
and 5, the overall relative risk (RR) for 30 lag days is
displayed. The RR on the current day is approximately 2.3,
but the RR increases with respect to the lag effects. For the lag
of 10 days, the RR is as high as 5. The figures on the rest lag
days were not shown. There are too many figures, and the
pattern was observed according to the five figures.

Since the MVDLNM extends the DLNM with an offset, the
MVDLNM models the mortality rates comparing to the DLNM

Table 3 Type I errors of
MVadjust lag(10) lag(20) lag(30)

~Lag1 0.058 0.083 0.076

~Lag2 0.06 0.097 0.105

~Lag3 0.065 0.11 0.129

~Lag4 0.066 0.12 0.148

~Lag5 0.062 0.129 0.163

~Lag6 0.062 0.133 0.18

~Lag7 0.067 0.141 0.192

~Lag8 0.065 0.142 0.213

~Lag9 0.064 0.136 0.225

~Lag10 0.065 0.135 0.231

~Lag11 0.144 0.232

~Lag12 0.148 0.239

~Lag13 0.153 0.241

~Lag14 0.165 0.244

~Lag15 0.162 0.245

~Lag16 0.165 0.256

~Lag17 0.162 0.253

~Lag18 0.163 0.256

~Lag19 0.174 0.264

~Lag20 0.183 0.268

~Lag21 0.284

~Lag22 0.295

~Lag23 0.297

~Lag24 0.308

~Lag25 0.302

~Lag26 0.299

~Lag27 0.294

~Lag28 0.301

~Lag29 0.299

~Lag30 0.295

Table 4 Type I errors of
MVDLNM Mortality lag(10) lag(20) lag(30)

~Lag1 0 0 0

~Lag2 0.001 0 0

~Lag3 0.008 0 0

~Lag4 0.026 0.001 0

~Lag5 0.03 0.004 0

~Lag6 0.034 0.009 0.002

~Lag7 0.035 0.019 0.002

~Lag8 0.036 0.028 0.005

~Lag9 0.043 0.031 0.009

~Lag10 0.049 0.04 0.014

~Lag11 0.052* 0.02

~Lag12 0.055* 0.029

~Lag13 0.052* 0.038

~Lag14 0.056* 0.056*

~Lag15 0.058* 0.065*

~Lag16 0.064* 0.072*

~Lag17 0.068* 0.079*

~Lag18 0.073* 0.087*

~Lag19 0.074* 0.089*

~Lag20 0.078* 0.087*

~Lag21 0.085*

~Lag22 0.086*

~Lag23 0.091*

~Lag24 0.092*

~Lag25 0.091*

~Lag26 0.098*

~Lag27 0.099*

~Lag28 0.099*

~Lag29 0.098*

~Lag30 0.102*

*These p values indicate the inflated type I
errors
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that models mortality counts. The cross-basis and all covariate
structures of the MVDLNM are identical to that of the DLNM.
This phenomenon is also an advantage of the new approach.

Discussion

Conventional DLNMs can be interpreted as one day’s expo-
sure influences outcome over several subsequent days,
discussed in various publications by Gasparrini. However,
the DLNM only considers the outcome on the current day.
In this research, several strategies were proposed to explore
further the possibilities of extending the DLNM to incorporate
the previous days’ outcomes. Looking at the specific models
proposed, one would think that what this research means is
that mortality on one day depends on mortality on several
previous days (not just exposures). Most statisticians would
consider these as autoregression models. Therefore, this re-
search also provides epidemiological motivation, noting the
potential reasons for such autocorrelation, which may be in-
troduced by unmeasured slow-changing covariates, such as
infectious diseases (Imai et al. 2015). Simple autoregression
(Brumback et al. 2000) has been considered in the environ-
mental time series literature, but not much discussion of the
various types of models proposed here (though there is
some—e.g., Imai et al. 2015).

In a different point of view, all of the models proposed in
this research could be considered as DLNMs for the depen-
dence of mortality on earlier mortality: (1) MVsum is equiva-
lent to stratum-constrained DLNM; (2) MVPCA is the same as
DLNMwith lag weights determined by PCA; (3) MVadjust is a
different stratum-constrained DLM; (4) MVDLNM could be
considered as MVadjust but with coefficient constrained to 1.

Through simulation studies, we examined several novel
approaches to characterize the effect of the delayed mortality
and lag temperature measures. Results suggested that most

Table 5 Power simulations with
1000 repetitions Study period Lag exposure Power MVDLNM Power DLNM MVDLNM Wins

1 year 10 0.999 0.999 0.7640

240 days 10 0.996 0.993 0.88

160 days 10 0.928 0.893 0.835

120 days 10 0.691 0.618 0.781

1 year 20 1 0.999 0.787

240 days 20 0.995 0.992 0.917

160 days 20 0.898 0.861 0.883

120 days 20 0.651 0.531 0.906

1 year 30 1 0.999 0.764

240 days 30 0.996 0.986 0.878

160 days 30 0.87 0.833 0.822

120 days 30 0.636 0.516 0.897

The column “MVDLNM Wins” represents the percentage when the p value of the MVDLNM is smaller than the p
value of the DLNM

Table 6 Real data application of MVDLNM: overall p value

lag(10) lag(20) lag(30)

~Lag1 0.807516 0.996482 0.999951
~Lag2 0.100355 0.489865 0.945508
~Lag3 0.009709 0.045561 0.338491
~Lag4 0.001388# 0.009588 0.060874
~Lag5 0.000231# 0.001842# 0.012078#

~Lag6 0.000107# 0.000605# 0.004511#

~Lag7 0.000120# 0.000350# 0.001656#

~Lag8 0.000108# 0.000198# 0.000551#

~Lag9 0.000076# 0.000088# 0.000184#

~Lag10 0.000031# 0.000019# 0.000045#

~Lag11 0.000009* 0.000017#

~Lag12 0.000009* 0.000010#

~Lag13 0.000014* 0.000011#

~Lag14 0.000020* 0.000015*
~Lag15 0.000019* 0.000015*
~Lag16 0.000009* 0.000010*
~Lag17 0.000003* 0.000005*
~Lag18 0.000002* 0.000003*
~Lag19 0.000001* 0.000001*
~Lag20 0.000001* 0.000001*
~Lag21 0.000001*
~Lag22 0.000001*
~Lag23 0.000002*
~Lag24 0.000003*
~Lag25 0.000004*
~Lag26 0.000006*
~Lag27 0.000007*
~Lag28 0.000009*
~Lag29 0.000014*
~Lag30 0.000021*

#Denotes significant p values

*Denotes invalid type I error rates indicated by the permutation study in
Table 4
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methods are invalid, although these statistical concepts are
intuitive and could be implemented effortlessly. The negative
findings could provide researchers a great idea to avoid such
types of analyses. Fortunately, there is one valid model, the
MVDLNM, where the log-transformed summation of the de-
layed mortalities is treated as an offset in the DLNM model.
The MVDLNM model is logð μtÞ ¼ α þ s xt; lð ;βÞ þ βO3

O3t

þβPM2:5PM2:5t þ ∑p
i¼1 f zt i; θð Þ þ offset log sum xsLð Þð Þð Þ.

Because the new method MVDLNM could not be easily
implemented in the DLNM package, we provide the R

functions for researchers to utilize the MVDLNM effortlessly.
The example data in Taipei City is also enclosed. Please see
the supplementary materials for details. The R code generates
the plots for relative risks. Besides, we prepared another R
function for power simulations such that researchers could
assess if their environmental data have the advantage of incor-
porating the lag outcomes in addition to the lag exposures. We
have made the corresponding changes accordingly.

The illustration of real data analysis of Taipei City from
2012 to 2016 confirmed that the delayed mortality records

Fig. 1 Overall RR on the current
day

Fig. 2 Overall RR on the 5th lag
day
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could significantly increase the association signal along with
lag temperature measures, which matches the conclusions as
we previously reported (Guo et al. 2014). Nevertheless, this
new strategy is a handy tool and could be adopted by various
research fields when the cumulative outcome provides a more
significant signal than the current one.

In public health research, the exposure may post a delayed
effect, but the outcome of interest could signal the lag effect.
This methodological study provides a simple yet valid test that
jointly models the lag exposure and the delayed mortality

records to enhance the ability to discover such a complex
association structure.

In summary, this research proposed a novel strategy
to account for cumulative mortality in the distributed
lag temperature records. According to computer simula-
tions, the new model MVDLNM demonstrated a much
more significant association than the conventional meth-
od with the current mortality.

The simulation results revealed that the type I error of
MVDLNM does not exceed the nominal level of 5% within

Fig. 3 Overall RR on the 10th lag
day

Fig. 4 Overall RR on the 20th lag
day
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ten lag mortalities. Since 10 days is an intuitive interval, we
recommend incorporating up to 10 days of lag outcomes in the
new approach. In conclusion, the new approach MVDLNM

models lag outcomes within 10 days and lag exposures up to
1 month and provide valid results.

Strengths and limitations

This research proposed several novel statistical models
accounting for daily mortality in previous days.
Although the concept is intuitive and one could quickly
implement the methods, the four methods were not valid
tests. However, the negative findings could prevent re-
searchers from such types of erroneous models.
Comparing to the conventional analysis model that only
assesses the current mortality, the new approach
MVDLNM yielded a much more significant association.
The RR’s maximum value in Fig. 1 increases to the RR
in Fig. 5 and showed explicit evidence that the lag
exposure and outcome of interests contribute to the sta-
tistical significance.

The data used in this study are limited to Taipei, the capital
of Taiwan, while the relationship between temperature and
mortality may consist of various profiles in other regions.
For example, the accessibility and quality of medical care
may be different in smaller towns. In addition, we considered
the all-cause mortality since we could not further classify
death causes into more categories, such as sudden cardiac
death or myocardial infarction, which are more likely to be
related to temperature and air pollution. As for the

temperature, only daily mean temperature was considered in
this study.We did not explore the highest, lowest temperature,
and intraday temperature variation in the contribution to hu-
man death. Finally, some researchers proposed a threshold to
differentiate the impact of hot and cold temperatures on mor-
tality. In contrast, we use the continuous temperature mea-
sures to employ spline functions and polynomials.
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