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Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) is a risk factor for human health.Workers are a vulnerable group due to their
high exposure and therefore require special attention to mitigation measurements; however, some groups of workers are especially
vulnerable, precarious workers. The objective of this research was to evaluate mixtures of hydroxylated PAHs (OH-PAHs) in
precarious workers in Mexico. The following activities were evaluated: (i) brickmakers (TER), stonemasons (ESC), indigenous
workers (TOC) and mercury miners (CAM). Ten OH-PAHS were analyzed: 1-hydroxynaphtalene and 2-hydroxynaphtalene; 2-,3-
and 9-hydroxyfluorene; 1-,2-,3- and 4-hydroxyphenanthrene; and 1-hydroxypyrene in urine by GC-MS, chemical fingerprints of
the sites were established by multivariate analysis. One hundred forty-nine precarious workers participated in the study. The
populations presented total OH-PAHs concentrations of 9.20 (6.65–97.57), 14.8 (9.32–18.85), 15.7 (6.92–195.0), and 101.2
(8.02–134.4) μg/L for CAM, ESC, TER, and TOC, respectively (median (IQR)). The results of the multivariate analysis indicate
that the indigenous population presented a different fingerprint compared to the three scenarios. The chemical fingerprints among
the brickmakers and mercury mining population were similar. The results of the concentrations were similar and in some metab-
olites higher than workers in occupations classified as carcinogenic by the IARC; therefore, the control of exposure in these
occupations acquires great importance and surveillance through biological monitoring of OH-PAHs should be applied to better
estimate exposure in these working populations.
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Introduction

Polycyclic aromatic hydrocarbons (PAHs) are a group of perma-
nent organic pollutants that include two or more benzene rings
fused together. They are a ubiquitous group of several hundred

chemically related compounds, environmentally permanent with
diverse structures and broad toxicity (Kim et al. 2013). These
compounds are mainly generated during incomplete combustion
of organic material; they occur by natural generation (e.g., forest
fires, volcanic eruptions); however, the predominant sources are
anthropogenic activities involving the burning of fossil fuels,
industrial processes, automobile emissions, and cooking with
biomass, among others (Kim et al. 2013).

PAHs containing up to four rings are called “light” and
those containing more than four rings are called “heavy”.
Heavy PAHs are more stable and toxic than light ones, spe-
cific PAHs concentration ratios are widely used for qualitative
source determination and are commonly used to determine
concentrations in air, soils, and sediments (Dat and Chang
2017). Besides, they distinguish between pollution from oil
products, oil combustion, and the combustion of biomass or
coal. The compounds involved in each relation have the same
molecular weight, so they are assumed to present similar
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physicochemical properties. The Agency for Toxic
Substances and Disease Registry (ATSDR) of the USA states
that the produced health effects by each one of the PAHs are
not the same; the following 16 PAHs are considered in a
cluster for complete monitoring: acenaphthene, acenaphthyl-
ene, anthracene, benzo[a]anthracene, benzo[a]pyrene,
benzo[e]pyrene, benzo[b]fluoranthene, benzo[g,h,i]perylene,
benzo[j]fluoranthene, benzo[k]fluoranthene, chrysene,
dibenzo[a,h]anthracene, fluoranthene, fluorine, indeno[1,2,3-
c,d]pyrene, phenanthrene, and pyrene (ASTDR 1995). These
16 PAHs are suspected of beingmore toxic than the others and
exhibit harmful effects that are representative of PAHs; there
is also a greater possibility of greater exposure to these com-
pounds because they are produced in higher concentrations.

On the other hand, the health effects of individual PAHs are
not the same. In fact, the International Agency for Research on
Cancer (IARC) classifies some PAHs as known, possibly or
probably carcinogenic to humans (group 1, 2A, or 2B). These
include benzo [a] pyrene (group 1), naphthalene, chrysene,
benz [a] anthracene, benzo [k] fluoranthene, and benzo [b]
fluoranthene (group 2B) (IARC 2010).

The exposure pathways to PAHs can be by inhalation,
ingestion, and dermal exposure, through multiple routes and
sources (Alomirah et al. 2011, Bhargava et al. 2004, Liu et al.
2007). Within the main exposure, scenarios are the occupa-
tional environments, where it has been reported greater expo-
sure to high concentrations of PAHs; in addition, epidemio-
logical evidence has shown that in exposed workers, especial-
ly in coke ovens and aluminum foundries, have shown high
incidences of lung cancer and very suggestive excesses of
bladder cancer (Kogevinas 2020, Petit et al. 2019, Shankar
et al. 2019, Vimercati et al. 2020). IARC has reported two
mixtures containing PAHs (coal tar soot, coal tar pitch) and
occupational exposures in four PAH-related industries (coal
tar distillation, coal gasification, coke production, aluminum
production) as group 1 carcinogens (Armstrong et al. 2004,
IARC 2010, Rota et al. 2014).

The biomonitoring is a powerful tool for population stud-
ies, the determination of hydroxylated metabolites in urine is
performed to measure exposure to PAHs in humans, and these
compounds have relatively short half-life elimination times
that range from 5 to 35 h and are considered useful for esti-
mating recent exposures to PAHs (Grova et al. 2017, Guo
et al. 2013, Woudneh et al. 2016).

There are several biomonitoring studies of PAHs exposure
that include coke oven workers, aluminum smelter workers,
foundry workers, and road workers (Campo et al. 2020,
Iamiceli et al. 2020, Persoons et al. 2020, Zhang et al.
2020). It is evident that workers are a vulnerable group, re-
quiring special attention to mitigation measurements; howev-
er, some groups of workers are especially vulnerable; those
so-called precarious works, characterized by abuse of their
labor rights (low salaries, without access to social security,

health services, lack of training, null protection, among many
other factors) (Julià et al. 2017, Kachi et al. 2014, Medina-
Gómez and López-Arellano 2019) and which also present
health risks due to high exposure to pollutants. The above,
in scenarios with high degrees of marginalization, where they
generally perform their work activities within the household,
exposing the worker and in consequence their families
(Flores-Ramirez et al. 2018, Pérez-Herrera et al. 2019).
Therefore, the objective of this research was to evaluate the
mixtures of hydroxylated PAHs in precarious workers of four
activities with high toxicity in Mexico.

Materials and methods

Population and study design

The present study was conducted in four work scenarios under
precarious conditions: (i) Artisanal mercury mine workers
(CAM) are located in the community of Camargo,
Peñamiller, in the state of Querétaro, Mexico (21° 06′ 45″
N, 99° 43′ 55″W). It has a total population of 852 inhabitants;
in this area, mercury has been extracted since pre-colonial
times; the extraction process is still rudimentary. After the
cinnabar (mercury sulfide) material is obtained from the
mines, it is crushed, sieved, and incinerated in a clay oven
with wood; the mercury is collected once the vapors generated
in the oven are cooled (Fig. 1a). (ii) Stonemasons (ESC) are
located in the community of Escalerillas; this area is the main
quarrying region in the state of San Luis Potosi, Mexico (22°
06′ 40″ N, 101° 04′ 36″ W); with a total population of 6226
inhabitants, the locality presents a high degree of marginali-
zation. The main economic activity of the region is the work
of artisan quarry and its exposure to PAHs is by the use of
fuels for its cutters and high vehicle traffic (Fig. 1b). (iii)
Brickmakers (TER) are located in the brick zone “Las
terceras” in San Luis Potosi, Mexico (22° 12′ 04″ N, 100°
51′ 26″ W); the municipality has a population of 824,229
inhabitants; in this scenario, there are more than 120 brick
kilns, which use wood tires, waste, used oil, and plastics as
fuel. (Flores-Ramirez et al. 2018) (Fig. 1c). And (iv) indige-
nous workers (TOC) are the community of the Tocoy area that
is located in the municipality of San Antonio in the state of
San Luis Potosi, Mexico. This community of the Huasteca
Potosina is characterized by a high degree of marginalization,
is a recognized area of the Tenek ethnic group and has a
population of approximately 1061 people. (Díaz de León-
Martínez et al. 2019). The main economic activities in the area
are agriculture (maize, sugarcane, beans), domestic work, and
the main source of exposure to PAHs is through the use of
biomass for cooking, the burning of garbage, and the practice
of slash-and-burn to prepare the land for harvesting (Fig. 1d).
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The protocol was approved by the Research Ethics
Committee of the Faculty of Medicine of the Autonomous
University of San Luis Potosí and the Bioethics Commission
of the State of San Luis Potosi (CEI-2018-002). A cross-
sectional sampling was conducted in November and
December 2019 and January 2020. An open invitation was
extended to the population considering the following inclu-
sion criteria: (i) older than 30 years, (ii) residence of over three
years at the site of study, (iii) signature of informed consent,
and (iv) to be active workers in the study communities.
Women who reported menarche at the time of the sample
collection were excluded from the study. Anthropometric data
were collected from the study population (height and weight,
BMI); also, a questionnaire was applied in which socioeco-
nomic status, risk activities, exposure to pollutants, and gen-
eral health status were assessed.

Sample collection

The study participants were required to collect the first morn-
ing’s urine under 8-h fasting conditions and at the end of the
working week, the sample was collected in sterile 50 mL
polypropylene cups and then transported at 4 °C, after which
aliquots were made for the determination of the following

proteins and metabolites: (a) for the determination of
monohydroxy-polycyclic aromatic hydrocarbons (OH-PAH)
and (b) for general urine analysis. All samples were frozen at
− 80 °C until further analysis.

Determination of OH-PAHs in urine

OH-PAHs determination in urine was performed with some
modifications of the methodology established by the Center
for Disease Control and Prevention (CDC) for the determina-
tion of Monohydroxy-Polycyclic Aromatic Hydrocarbons by
gas chromatography-mass spectrometry-electronic impact
ionization (GC-MS-EI) (CDC 2013). Ten hydroxylated me-
tabolites were analyzed, 1-hydroxynaphtalene (1-OH-NAP)
and 2-hydroxynaphtalene (2-OH-NAP); 2-,3- and 9-
hydroxyfluorene (2-OH-FLU, 3-OH-FLU, 9-OH-FLU);
1-,2-,3- and 4-hydroxyphenanthrene (1-OH-PHE, 2-OH-
PHE, 3-OH-PHE, 4-OH-PHE); and 1-hydroxypyrene (1-
OH-PYR). The analytical standards were obtained from
LCG standards (Dr. Ehrenstrofer reference materials). In brief,
enzymatic hydrolysis of 2 mL of previously filtered urine was
first performed, 20 μL of the enzyme β-glucuronidase/
arylsulfatase (Merck Millipore, Massachusetts, USA) and 2
mL of acetate buffer (1 M, pH 5.5) were added, and the

Fig. 1 Different occupational exposure scenarios in the study. aMiners (CAM), b brickmakers (TER), c stonemasons (ESC), and d indigenous people (TOC)
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samples were afterwards incubated for 17 h at 37 °C under
constant agitation. Following incubation, liquid-liquid extrac-
tion was performed with a solution of pentane and toluene
(80:20 v:v), which was then evaporated under a stream of
nitrogen at 45 °C to a volume of 10 μL; then, 10 μL of
N,O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA)
derivatizing agent (Merck Millipore, Massachusetts, USA)
and 2.5 μL of internal standard 13C6 1-OH-PYR (Cambridge
Isotope Laboratories) at 25 ng/mL were added, and the solu-
tion was calibrated to 100 μL with toluene. Subsequently, the
solution was subjected to a derivatization process at 60 °C for
30 min. The samples and calibration curves were analyzed by
gas chromatography (GC) (Agilent 6890) coupled to a mass
spectrometry detector (MS) (Agilent 5975) in electron impact
ionization mode (EI). The injection port was operated in
splitless mode, its temperature was of 270 °C; helium was
used as carrier gas at a pressure of 36 psi with a constant flow
of 0.9 mL/min. The chromatographic separation was carried
through an HP 5MS (30 m × 0.25 mm × 0.25 μm) column
(Agilent). The conditions of the oven settings were as follows:
95 °C (1 min), 195 °C (15 °C/min), 206 °C (2 °C/min) with a
hold until minute 13.2, then an increase to 320 °C (40 °C/min)
and held to minute 24 with a total run time of 24min. The tune
parameters were emission, 35 μA, and energy, 69.9. SCAN
mode (50–500 m/z) was employed to identify the compound,
identification, and quantification ions were selected for SIM
mode. The identified fragment ions were for 1-OH-NAP and
2-OH-NAP 201 and 216 m/z; for 2-OH-FLU and 9-OH-FLU
253 and 254 m/z; for 3-OH-FLU 253, 254 and 255 m/z; for 1-
OH-PHE, 2-OH-PHE, 3-OH-PHE, and 4-OH-PHE 251 and
266 m/z; and for 1-OH-PYR 290 and 291 m/z and the internal
standard 13C6 1-OH-PYR 281 and 296 m/z. Results were ob-
tained and processed using Chemstation Software (Agilent®).

Analytical method validation

The method validation was performed according to the
AOAC/FAO/IAEA/IUPAC Guidelines for the Validation of
Analytical Methods for the Determination of Organic
Compounds at Trace Levels (Alder et al. 2000) The parame-
ters were linearity (correlation coefficient r2), sensitivity, the
limit of detection and limit of quantification, precision mea-
sured by repeatability (n = 3), and reproducibility (n = 7) at
low (10 ng/mL) and high (50 ng/mL) concentrations. The
accuracy (percentage of recovery) of the analytical method
was evaluated by the certified standard for 1-OH-PYR in urine
CLINCHEK® Level I.

Statistical analysis

For the description of the quantitative variables, a test of nor-
mality of the data was performed using Shapiro-Wilk analysis.

To establish the differences between the groups, Kruskal-
Wallis’ tests with Dunn’s post hoc were applied.

To evaluate the OH-PAHs fingerprint of the study groups,
principal component analysis (PCA) and canonical analysis of
principal coordinates (CAP) were carried out. The PCA was
obtained through the multivariate data cloud that was the best
to discriminate between predefined groups (CAM, ESC, TER,
and TOC). The CAP procedure included cross-validation to
leave out a procedure to predict group belonging and thus
obtain overall classification success rates. The analysis was
performed using XLSTAT version 12.0 (StatSoft®, Tulsa,
Oklahoma, USA) and the Primer 7+ Permanova add-on soft-
ware package (v7.0.12 and v1.0.6; PRIMER-E Lt., Ivybridge,
UK) multivariate analysis.

Results

General characteristics of the study population

One hundred and forty-nine precarious workers participated in
the study, 31 miners from CAM, 36 stonemasons from ESC,
42 brickmakers from TER, and 40 indigenous workers from
TOC, of whom 80% of the population were men and 20%
women. The socioeconomic level of the participants is con-
sidered to be highly marginalized and the working conditions
in all 4 scenarios of the study are considered precarious. The
average age was 50.05 ± 13.83 years, the average body mass
index was 27.18 ± 3.8 kg/m2 with 48.3% being overweight,
29.5% being obese, and 28.2% in normal weight (Table 1).
With the information collected through the questionnaires, it
is reported that 100% of the study population performs 3 or
more risk activities at work associated with exposure to the
evaluated environmental pollutants. As a result, 35.5, 77.7,
14.3, and 7.3% of CAM, ESC, TER, and TOC, respectively,
were reported as active smokers, in parallel, an average of 9 h
of work per day is reported.

The analytical method for the determination of OH-
PAHs in urine (GC-MS)

The following retention times (RT) were obtained for each of
the compounds (RT ± 0.2 min), for 1-OH-NAP RT = 7.6 min,
2-OH-NAP RT = 7.9 min, 9-OH-FLU RT = 12.3 min, 3-OH-
FLU RT = 12.5 min, 2-OH-FLU RT = 12.9 min, 4-OH-PHE
RT = 14.8 min, 3-OH-PHE RT = 16.5, 1-OH-PHE RT = 16.7,
2-OH-PHE RT = 17.6 min, and 1-OH-PYR and 13C6 1-OH-
PYR RT = 23.2 min.

The results of the validation of each compound are shown
in Table 1 of the supplementary material. The analytical meth-
od achieved linearity of r2 = 0.99 for the 10 compounds for
calibration curves of 0.25–100 μg/L. The limits of detection
and quantification of the compounds on the range of 0.01–0.5
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μg/L. The precision range of the method for the analytes mea-
sured as repeatability was obtained for low concentrations (10
μg/L) from 5.3 to 17.4% and high concentrations (50 μg/L)
from 0.7 to 21.4% and as reproducibility from 4.2 to 23.6%
and 5.2 to 21.4%, respectively. The recovery rate evaluated by
the certified standard for 1-OH-PYR was 101.8%.

Assessment of OH-PAHs in urine

The results of exposure to OH-PAHs in urine are presented in
Table 2; 100% of the study population presented urinary con-
centrations of at least nine of the assessed biomarkers. The
biomarkers were shown in different concentrations and fre-
quencies in the four-study populations, for CAM in the fol-
lowing order of frequency (most frequent to least frequent) 1-
OH-PYR>2-OH-NAP>1-OH-NAP>2-OH-FLU>1-OH-
PHE>3-OH-FLU>3-OH-PHE>4-OH-PHE>9-OH-FLU>2-
OH-PHE; for ESC, 1-OH-PYR>2-OH-NAP>1-OH-NAP>4-
OH-PHE>2-OH-PHE>3-OH-FLU>2-OH-FLU>9-OH-
FLU>1-OH-PHE>3-OH-PHE; for TER, 1-OH-PYR>1-OH-
NAP>2-OH-NAP>9-OH-FLU>2-OH-FLU>4-OH-PHE>1-
OH-PHE>3-OH-FLU>3-OH-PHE>2-OH-PHE; and for
TOC, 1-OH-PYR>4-OH-PHE>2-OH-NAP>1-OH-NAP>9-
OH-FLU>3-OH-FLU>2-OH-FLU>3-OH-PHE>1-OH-
PHE>2-OH-PHE. The populations presented a total sum of
OH-PAHs concentrations of 9.20 (6.65–97.57), 14.8 (9.32–
18.85), 15.7 (6.92–195.0), and 101.2 (8.02–134.4) μg/L for
CAM, ESC, TER, and TOC, respectively (presented as medi-
an (IQR)). As can be seen, 1-OH-PYR was the most frequent
biomarker in all four populations, and the indigenous popula-
tion presented the higher concentrations of total OH-PAHs.

Also, in Table 2 is shown the significant differences be-
tween each one of the OH-PAHs of the study populations.
Significant differences were found between the concentrations
of 1-OH-NAP, 2-OH-NAP, and 4-OH-PHE of the TOC com-
munity compared to the other populations in the study.
Likewise, there were significant differences between the 1-
OH-PYR concentrations of ESC and the concentrations pre-
sented by the other study populations. Another significant
difference was presented between the 3-OH-FLU biomarker
of the indigenous population, compared to ESC and TER, in
the same way, 9-OH-FLU of TOC to TER. 2-OH-FLU, 3-
OH-PHE, 1-OH-PHE, 2-OH-PHE, and ∑-OH-PAHs did not
present significant differences in any of the populations of the
study.

Multivariate analysis

Principal component analysis and canonical analysis
of principal coordinates

The PCA showed a separation between the concentrations of
OH-PAHs in the ESC population compared to the TOC pop-
ulation, explaining 47.7% of the variability in two compo-
nents. However, the CAM and TER populations presented
similar concentrations of OH-PAHs and thus no separation
was observed. (Fig. 1).

To evaluate the discrimination between study groups, a
canonical principal coordinate analysis (PCA) was carried
out, which achieved a separation of the populations due to
exposure to different concentrations of PAHs through two
PCA axes. The CAP 1 axis presented a correlation r2 = 0.88

Table 1 Anthropometric characteristics and risk activities of study populations

Parameter Population

Miners (CAM) Stonemasons (ESC) Brickmakers (TER) Indigenous (TOC)

Number of subjects n = 149 31 36 42 40

Sex (%) Male 100 100 100 25

Female 0 0 0 75

Age (years) 45.1 ± 14.7 43.8 ± 10.9 55.4 ± 15.8 53.8 ± 9.5

Height (m) 1.65 ± 7.5 1.66 ± 5.8 1.64 ± 5.3 1.51 ± 6.4

Weight (Kg) 72.5 ± 13.8 74.0 ± 8.9 78.7 ± 13.9 58.8 ± 6.1

BMI 26.7 ± 4.3 26.9 ± 2.8 29.3 ± 4.5 25.5 ± 2.2

Obese (%) 22.6 13.9 35.7 5

Normal (%) 35.5 25 14.3 40

Overweight (%) 41.9 61.1 50 55

Risk Activities (%) Smoke exposure 100 100 100 100

Tobacco smoking 35.5 77.7 14.3 7.3

Average smoke exposure hours (per day) 6 8.1 13.1 8.6

All data are presented as mean ± standard deviation and percentages
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with the OH-PAHs associated with the separation between
TOC vs. ESC, TER, and CAM, while the CAP 2 axis present-
ed a correlation r2 = 0.65 with the OH-PAHs associated with
the separation between ESC vs. TOC, TER, and CAM with a
correct classification 73.3% (p = 0.0001) (Fig. 2).

A Spearman correlation was conducted between the values
of the CAP 1 and CAP 2 axis and the concentrations of the OH
PAHs, and it was found that all the hydroxylated compounds
correlate with CAP 1, indicating that the TOC population has

significant differences in all the concentrations of the com-
pounds compared to the other populations (Fig. 3). There is
an increase in TOC of 2-OH-NAP, 1-OH-NAP, 2-OH-PHE,
1-OH-PYR, 1-OH-PHE, 2-OH-FLU, 3-OH-FLU, and 3-OH-
PHE and a decrease of 4-OH-PHE and 9-OH-FLU.Moreover,
seven OH-PAHs compounds correlate significantly with the
CAP 2 axis associated with the separation between the ESC
population and TOC, TER, and CAM. Results also show that
3-OH-PHE, 1-OH-PHE, 2-OH-FLU, and 9-OH-FLU increase

Table 2 Concentrations of OH-PAHs in urine of study populations

OH-PAHs Population

Miners (n = 31) > %LOD Stonemasons (n = 36) > %LOD Brickmakers (n = 42) > %LOD Indigenous (n = 40) > %LOD

1-OH-PYR 1.80 (1.16–2.29)a 96.7 6.54(3.90–8.70)a,b,c 97.2 1.56 (1.20–2.97)b 92.8 1.77 (1.17–2.65)c 100

4-OH-PHE 1.13 (0.86–1.41)a 35.5 1.12 (0.96–1.54)b 44.4 1.76 (1.36–2.07)c 30.9 2.73 (2.51–2.88)a,b,c 90

2-OH-NAP 2.54 (1.98–3.48)a 96.7 2.93 (2.40–3.60)b 97.2 2.82 (2.26–3.5)b 90.4 0.67 (0.61–1.06)a,b,c 80

1-OH-NAP 1.88 (1.47–2.45)a 90.3 1.93 (1.45–2.47)b 97.2 1.96 (1.24–3.56)c 92.8 1.05 (0.85–1.58)a,b,c 75

9-OH-FLU 146.8
(87.46–342.3)

29.0 171.2 (131.1–237.2) 13.8 187.3 (109.1–220.0)a 45.2 110.9
(93.07–136.3)a

70

3-OH-FLU 0.77 (0.36–1.3) 45.2 1.82 (0.94–3.04)a 41.6 1.74 (1.03–2.18)b 28.5 0.23 (0.19–0.40)a,b 32.5

2-OH-FLU 0.80 (0.66–1.12) 61.3 1.02 (0.91–1.72) 25 0.75 (0.60–1.50) 42.8 0.88 (0.67–1.49) 15

3-OH-PHE 0.86 (0.64–1.07) 45.2 1.13 2.7 1.01 (0.66–1.46) 23.8 0.96 (0.62–2.36) 12.5

1-OH-PHE 0.53 (0.45–0.75) 54.8 0.75 (0.50–0.86) 11.1 0.74 (0.44–0.99) 30.9 0.756 2.5

2-OH-PHE 0.82 (0.52–1.39) 25.8 1.24 (1.06–1.54) 44.4 0.95 (0.77–1.76) 14.3 < LOD 0

∑-OH-PAHs 9.20 (6.65–97.57) 100 14.8 (9.32–18.85) 100 15.7 (6.92–195.0) 95.8 101.2 (8.02–134.4) 100

All OH PAH concentrations are presented as median (IQR) inμg/L and frequencies in percentage (%). Miners (CAM), stonemasons (ESC), brickmakers
(TER), and indigenous (TOC). The same letter indicates a statistically significant difference, Krsukall Wallis and pos hoc Dunn test. LOD, limit of
detection, 1-OH-NAP 1-hydroxynaphtalene, 2-OH-NAP 2-hydroxynaphtalene, 2-OH-FLU, 3-OH-FLU, 9-OH-FLU 2-,3- and 9-hydroxyfluorene, 1-
OH-PHE, 2-OH-PHE, 3-OH-PHE, 4-OH-PHE 1-,2-,3- and 4-hydroxyphenanthrene, and 1-OH-PYR 1-hydroxypyrene

Fig. 2 Principal component
analysis (PCA) of study popula-
tions. Miners (CAM),
brickmakers (TER), stonemasons
(ESC), and indigenous people
(TOC)
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in the ESC population and 1-OH-PHE, 2-OH-PHE and 4-OH-
PHE decrease (Table 3).

Discussion

Precarious work has been increasingly recognized as prejudi-
cial to health and well-being (Julia et al. 2017). According to
data from the International Labor Organization, each year

approximately 2.8 million workers around the world die due
to unsafe or unhealthy working conditions (Hämäläinen et al.
2017). Despite clear human rights obligations to protect their
health, workers around the world are in crisis, with an estimat-
ed one worker dying every 30 s from exposure to toxic
chemicals, pesticides, radiation, and other hazardous sub-
stances (Hämäläinen et al. 2017, McKay et al. 2012).
Nevertheless, since in some contexts and countries limited
information is given on incidents resulting from such expo-
sure, this number may be underestimated (Mendoza-González
et al. 2020).

In a precarious work, the labor risks represent a major dis-
advantage due to not providing adequate training to workers
on the various processes, this generates that the perception of
risk by workers is zero and therefore do not follow specific
protective measurements for the use of tools, control and ex-
posure to substances (Schulte et al. 2020). Additionally, in
these works, it is common the lack of provision of adequate
protective personal equipment to workers, and in a specific
manner to workers whose primary activities may generate
exposure to substances that endanger their health (Pérez-
Herrera et al. 2019, Quinlan et al. 2001).

Air quality in work environments is an occupational health
and safety issue (Mandrioli et al. 2018), but it is further aggra-
vated in works where in addition to high exposure to toxics,
there is vulnerability due to high marginalization.

For over 30 years it has been shown that high exposure to
PAHs is associated with several types of cancer (Boffetta et al.
1997), IARC has classified some occupational activities as
carcinogenic, due to the association with exposure to

Table 3 OH-PAHs that correlate with the axis CAP 1 and CAP 2

OH-PAHs CAP 1 CAP 2

Spearman r p value Spearman r p value

1-OH-NAP 0.5916 0.0000 −0.0600 0.4440

2-OH-NAP 0.7325 0.0000 −0.1151 0.1409

9-OH-FLU −0.4487 0.0000 0.1637 0.0357

3-OH-FLU 0.2669 0.0005 0.0321 0.6824

2-OH-FLU 0.3249 0.0000 0.3715 0.0000

4-OH-PHE −0.7320 0.0000 −0.1990 0.0104

3-OH-PHE 0.1919 0.0135 0.5133 0.0000

1-OH-PHE 0.3153 0.0000 0.4849 0.0000

2-OH-PHE 0.3857 0.0000 −0.1915 0.0138

1-OH-PYR 0.3365 0.0000 −0.6959 0.0000

1-OH-NAP 1-hydroxynaphtalene, 2-OH-NAP 2-hydroxynaphtalene, 2-
OH-FLU, 3-OH-FLU, 9-OH-FLU 2-,3- and 9-hydroxyfluorene, 1-OH-
PHE, 2-OH-PHE, 3-OH-PHE, 4-OH-PHE 1-,2-,3- and 4-
hydroxyphenanthrene, 1-OH-PYR 1-hydroxypyrene

Fig. 3 Canonical analysis of
principal coordinates (CAP) of
PAHs exposure in different pop-
ulations. Miners (CAM),
brickmakers (TER), stonemasons
(ESC), and indigenous people
(TOC)
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carcinogenic compounds of which PAHs stand out.
Regarding this, values allowed by international organizations
such as the Occupational Safety and Health Administration
(OSHA) and the Environmental Protection Agency for emis-
sions from different sources such as coke oven emissions and
coal tar pitch volatiles (CTPVs) have been established, where
they indicate concentrations in air of 0.15 mg/m3 and 0.1 mg/
m3. Coke oven emissions are a mixture of coal tar, coal tar
pitch, volatiles, creosote, polycyclic aromatic hydrocarbons
(PAHs), andmetals. Over 20 different PAHs are found in coke
oven emissions, including benzo(a)pyrene, benzanthracene,
chrysene, and phenanthrene. Approximately 80% of coal tar
is unspecified carbon chains (C18-22); coal tar volatiles in-
clude benzene, toluene, and xylenes (EPA 1984).

The workers in our study are considered precarious
workers. Our results indicate a high exposure to a mixture of
PAHs (100% of the study population) due to the presence of
the biomarkers of OH-PAHs in the urine. The presence of
different OH-PAHs depends directly on the presence of the
same PAHs in the smoke. In this regard, Table 1of supple-
mentary material presents an overview of a different occupa-
tional population where the presence of OH-PAHs in urine
has been documented.

Previous research by our working group has characterized
exposure to PAHs through the biomarker of exposure 1-OH-
PYR; studies in the indigenous population of the Huasteca
Potosina (Rodriguez-Aguilar et al. 2019), exposed to wood
smoke, have reported that 100% of the participants exceeded
the reference values 0.24 μmol/mol creatinine for occupation-
al populations (Jongeneelen 2001); brickmakers in the study
area have reached higher concentrations 0.18 μg g−1 creati-
nine (Alegría-Torres et al. 2013). Pyrene is not carcinogenic,
and its genotoxic effects are limited, but is present in most
work environments where there is a potential release of
PAHs. As a result, its metabolism product 1-OH-PYR, excret-
ed in the urine, is considered in different scientific works as
the best biological indicator of exposure to PAHs. However,
because the composition of PAHs mixtures in different envi-
ronments (e.g., wood smoke and biomass burning) is not al-
ways constant and is very complex, the risk may be over- or
underestimated. In this context, we investigated several indi-
vidual urinary biomarkers, which allows characterizing the
exposure profile.

Concerning the 10 evaluated metabolites, we focused on
the detection rate in those compounds higher than 60%. In
mercury mining workers, the compounds with the highest
detection in the population were 1-OH-NAP, 2-OH-NAP, 1-
OH-PYR, and 2-OH FLU; this reflects the current exposure to
PAHs in mining workers; previous occupational exposure
studies indicate reports of 1-OH-NAP, 2-OH-NAP, and 2-
OH FLU in steel smelter and galvanization in similar concen-
trations (Campo et al. 2016); however, the 1-OH-PYR in this
scenario are up to 4 times less than the one obtained in our

study. A possible explanation is the use of wood burning to
extract the mercury; the ore is incinerated in clay ovens and
workers are exposed for up to 8 h, where they are exposed to
PAHs and elemental mercury (Camacho et al. 2016). Similar
exposure to this PAHs fingerprint has been reported for
workers exposed to wood burning (Bruschweiler et al.
2012). In this scenario, it is important to monitor the concen-
tration of naphthalene, since this compound is classified as a
possible carcinogen, and the reported concentrations are be-
tween 9 and 62 times for 1-OH-NAP and 2-OH-NAP, respec-
tively, compared to the carcinogenic activity of coke oven
workers (Du et al. 2020). Regarding the 1-OH-PYR in the
mining population, it is found in 4 and 3.3 times higher con-
centrations than steel smelter and galvanization (Campo et al.
2016), respectively. and up to 26 times to asphalt workers (Xu
et al. 2018).

In the stonemasons, the biomarkers that were present most
often in the sampling were 1-OH-PYR, 1-OH-NAP, and 2-
OH-NAP. This exposure indicates that the main pathway is
inhalation; in this sense, naphthalene (two-ringed PAH) is a
very volatile compound and most of its environmental levels
enter the human body mainly in gaseous form, and therefore,
the concentrations of 1-OH-NAP and 2-OH-NAP probably
reflect the contribution from the air. Low molecular weight
PAHs exist almost exclusively in the gas phase, while high
molecular weight PAHs (5–6 rings, such as benzo[a]pyrene)
are predominantly bound to particles; 4-ring PAHs (which
include pyrene) are distributed between the gas and particle
phases (Oliveira et al. 2016). Exposure to these PAHs are
associated with gasoline combustion (Shao et al. 2019), what
is suggested in this scenario, it is considered that the main
source is the fuels used for their cutting equipment and also
the vehicular traffic in the area. An important aspect is when
comparing between the evaluated workers, in this area the
highest concentrations of 1-OH-PYR were obtained; this re-
sult explained that most of the workers present tobacco
smoking, 1-OH-PYR, a sensitive and specific biomarker has
been proven to evaluate exposure to PAHs from the use of
tobacco products (Wang et al. 2019).

The brickmakers showed similar concentrations and detec-
tion rates to the quarry population, except for 1-OH-PYR; the
compounds 1-OH-PYR, 1-OH-NAP, and 2-OH-NAP were
present in more than 90% of the population; it is important
to note that as the mercury miners, detection rates for fluorene
and phenanthrene metabolites are higher in these populations,
considering that these compounds are associated with coke
oven and diesel engines (in both areas diesel transport is used
for material loading) (Khalili et al. 1995). This population
reports similar concentrations to steel smelter, galvanization.
and coke oven workers (Campo et al. 2016, Du et al. 2020).

As for the indigenous population, greater concentrations of
1-OH-PYR, 9-OH-FLU, 4-OH-PHE, 2-OH-NAP, and 1-OH-
NAP were found. According to the results, naphthalene
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metabolites reached lower concentrations with significant dif-
ferences compared to the other three occupations; the note-
worthy value is 9-OH-FLU, which occurs in 70% of the pop-
ulation in average concentrations of 110.9 μg/L. Fluorene and
its derivatives have been reported in air in gas phase and in
particulate material; it has been demonstrated that under oxi-
dizing conditions more toxic compounds are produced (e.g.,
9-fluorenone) which can be oxidized to form dibenzo-p-
dioxin drastically increasing the toxicity (Ding et al. 2019).
Although biomonitoring data indicate a high exposure to
Fluorene, 9-OH-FLU is one of the products of the biochemical
reactions of 9-fluorenone (Kadlubar et al. 1992), which is
important since it indicates that in the indigenous population,
in addition to the PAHs, the exposure would also include the
environmental degradation products caused by the combus-
tion of the wood that are potentially more toxic than the pre-
cursors. On the other hand, in previous studies of our research
group, we have reported that in these populations, plastics, or
agricultural residues are generally used for the ignition initia-
tion of wood (Estevez-Garcia et al. 2020, Flores-Ramirez et al.
2016), which could increase the toxicity of the formed chem-
ical species; we consider that this aspect should be considered
in further research.

Reference values for biomonitoring of PAHs in workers
have been proposed by the American Conference of
Governmental Industry Hygienists through the Biological
Exposure Index and are limited to 1-OH-PYR, which should
be 1 μg/L (ACGIH 2014). Based on this criterion, 100% of
the workers in the 4 precarious activities were above the per-
mitted level, with stonemasons being up to 6.5 times higher.
However, given the toxicity of the mixture of compounds, the
resulting chemical fingerprints must be evaluated.

The results of the multivariate analysis indicate differences
between the several concentrations found in precarious
workers; the indigenous population presents a different chem-
ical fingerprint to the three scenarios, with 1-OH-NAP, 2-OH-
NAP, 2-OH-PHE, 1-OH-PYR, 1-OH-PHE, 2-OH-FLU, 3-
OH-FLU, and 3-OH-PHE increasing and 4-OH-PHE and 9-
OH-FLU decreasing. Furthermore, the stonemason communi-
ty presents different fingerprints, being that the 3-OH-PHE, 1-
OH-PHE, 2-OH-FLU, and 9-OH-FLU increase in the popu-
lation, and the 1-OH-PHE, 2-OH-PHE, and 4-OH-PHE de-
crease. The chemical fingerprints of PAHs exposure are sim-
ilar among the brickmakers and mercury mining populations.

One important limitation of this study is that the environ-
mental exposure of workers was not evaluated, so the different
exposure profiles in this type of precarious work determined
by biomonitoring cannot be confirmed independently. In ad-
dition, hydroxylated metabolites of heavy PAHsmust be eval-
uated, which would provide more information on the exposure
associated with the particulate material. Moreover, the punc-
tual sample only indicates the exposure of one day; this added
to the lack of data of environmental exposure prevents us from

discussing in greater depth the chemical fingerprints of PAHs
in these precarious work scenarios.

However, with our results, high exposure is demonstrated
and the evidence on the evaluation of a wide panel of hydrox-
ylated PAHs biomarkers is provided. Until the review of the
current literature, this is one of the only investigations on
occupational exposure to PAHs in precarious work in
Mexico, it is important to highlight that, in our country, there
are more than 30 million workers in precarious situations that
include exposure to this kind of pollutants (INEGI 2020).

PAHs represent an important public health issue; assessing
the risk of exposure of the working population is fundamental.
The associated risks of PAHs mixtures from workplaces face
the lack of knowledge of occupational exposure mixtures, the
lack of accurate chemical characterization of occupational
PAHs mixtures, and how to assess the carcinogenic and
non-carcinogenic risk associated with mixtures. The identifi-
cation of suitable biomarkers for the assessment of mixture
toxicity is of great importance; nevertheless, due to the inter-
actions, it is complicated to establish with certainty.
Interesting approaches have been developed to assess the risk
of diseases associated with pollutant exposure that includes an
approach from the omic sciences; this could be applied in high
exposure scenarios to establish the causal relationship
(Martins et al. 2019, Rodriguez-Aguilar et al. 2020).

Despite the efforts and establishment of maximum permis-
sible limits by international organizations to reduce exposure
levels and thus the associated risks, PAHs continue to be a
health threat to people who are exposed to these pollutants in
work environments and even more so in precarious workers
who do not have the minimum protective measurements.

Assessing the levels of hydroxylated PAHs and comparing
them with workers in occupations recognized as carcinogenic
(Table 2 supplementary material), we consider that these sce-
narios are very high-risk and should be addressed in an occu-
pational health approach as proposed by the IARC; this would
increase the importance and encourage surveillance systems
by appropriate authorities.

Conclusion

In this study, high exposure to PAHs was found in people
from four activities considered as precarious work. Of the 10
PAHs hydroxylated metabolites, 1-OH-PYR, 9-OH-FLU, 4-
OH-PHE, 2-OH-NAP, and 1-OH-NAP were in higher con-
centrations, and differences between the mixtures reported in
the indigenous population and stonemasons.

The exposure control in these kinds of work is of para-
mount importance due to the high exposure reported; surveil-
lance through biological monitoring can be particularly useful,
where in addition to 1-OH-PYR, other hydroxylated metabo-
lites are included to better estimate the exposure in these
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working populations. On the other hand, the results of the
concentrations in urine are similar and in some metabolites
higher than workers in occupations classified as carcinogenic
by the IARC. Our standpoint is that, in these populations, the
precautionary principle should be applied, even considering
the scientific uncertainties about the probability, causality,
magnitude, and nature of the damage (Silva & Lizardi-
Jiménez 2020). These occupations should be addressed as
cancer-causing activities, which would imply the design of
strategies to monitor and control these pollutants that our
country currently lacks, particularly in precarious
occupations.

The documented scenarios in this article are of a very high-
risk to the health of precarious workers; in addition to the
exposure to mixtures of PAHs, there are accumulated risks,
for example, chemical risks where it is common to find expo-
sure to other mixtures of pollutants such as metals, persistent
organic compounds, and aflatoxins (Díaz de León-Martínez
et al. 2019, Diaz de Leon-Martinez et al. 2020b, Flores-
Ramirez et al. 2016); physical risks, for example, excessive
material loads, mainly affecting the back and causing
musculoskeletal disorders; biological risks, now with
COVID-19 (Alahmad et al. 2020, Diaz de Leon-
Martinez et al. 2020a), in addition to the high incidence
of comorbidities such as diabetes, high blood pressure,
chronic kidney disease, and psychosocial stress, among
others (Cho 2020, Karasek et al. 2010, Pérez-Herrera
et al. 2019), this in a context without social security
and precarious socioeconomic conditions. It is imperative
to develop strategies to protect the health of the precar-
ious workers; these scenarios can no longer be ignored
by labor and public health authorities.
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