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Abstract
The paper aims to investigate the influencing factors that drive the temporal and spatial differences of CO2 emissions for the
transportation sector in China. For this purpose, this study adopts a Logistic Mean Division Index (LMDI) model to explore the
driving forces of the changes for the transport sector’s CO2 emissions from a temporal perspective during 2000–2017 and
identifies the key factors of differences in the transport sector’s CO2 emissions of China’s 15 cities in four key years (i.e.,
2000, 2005, 2010, and 2017) using a multi-regional spatial decomposition model (M-R). Based on the empirical results, it was
found that the main forces for affecting CO2 emissions of the transport sector are not the same as those from temporal and spatial
perspectives. Temporal decomposition results show that the income effect is the dominant factor inducing the increase of CO2

emissions in the transport sector, while the transportation intensity effect is the main factor for curbing the CO2 emissions. Spatial
decomposition results demonstrate that income effect, energy intensity effect, transportation intensity effect, and transportation
structure effect are important factors which result in enlarging the differences in city-level CO2 emissions. In addition, the less-
developed cities and lower energy efficiency cities have greater potential to reduce CO2 emissions of the transport sector.
Understanding the feature of CO2 emissions and the influencing factors of cities is critical for formulating city-level mitigation
strategies of the transport sector in China. Overall, it is expected that the level of economic development is the main factor leading
to the differences in CO2 emissions from a spatial-temporal perspective.
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Introduction

Climate change has been regarded as the most serious chal-
lenge and core issue faced by humans to achieve sustainable
development of the socioeconomic system (Zhu et al. 2019).
Climate change mitigation and adaptation need joint

endeavors from temporal and spatial perspectives (Tian et al.
2019). Since 2007, China, the world’s largest developing
country, has been the largest CO2 emitter in the world (Jing
et al. 2018), and in 2015, its CO2 emissions from energy
consumption reached 9265.1 million tons (Mt). China has
abided by reducing carbon intensity (i.e., carbon emissions
per unit of gross domestic product) reduction of 60–65% be-
low the 2005 level by 2030 at the 2015 Paris Climate Change
Conference (UNFCCC 2015). Besides, in order to achieve
this object, the State Council of China set up “a blue-sky
defense plan” for improving air quality at the city level, which
has been considered the Beijing-Tianjin-Hebei region and sur-
rounding areas (two + twenty-six cities1), Yangtze River Delta
and Fen nutrient-laden plain as the key areas for ensuring
success.

1 Two + twenty-six cities: namely Beijing, Tianjin, Shijiazhuang, Tangshan,
Langfang, Baoding, Cangzhou, Hengshui, Xing tai, Handan, Taiyuan,
Yangquan, Changzhi, Jincheng, Jinan, Zibo, Jining, Dezhou, Liaocheng,
Binzhou, Heze, Zhengzhou, Kaifeng, Anyang, Hebi, Xinxiang, Jiaozuo, and
Puyang
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The transport sector is one of the major elements of glob-
alization andmakes an important contribution to the economy,
plays an indispensable role in daily life and work in the whole
world (Lin and Xie 2014; Yin et al. 2015). However, large-
scale transportation services will consume a great deal of en-
ergy, accounting for approximately one-third of the total en-
ergy consumption of the world and inevitably produce 23% of
CO2 emissions (IEA 2017). At present, the transport sector
has been identified as one of the major contributors to CO2

emissions and degradation of the environment. Besides, it has
been regarded as the second-largest energy-consuming sector
after the industrial sector (Hao et al. 2014; Yin et al. 2015). In
2015, the global transport sector emitted 2715 Mt of CO2, of
which China’s transport sector is estimated to account for
about one-third. CO2 emissions of China’s transport sector
reached 781.29 Mt in 2017 which accounted for 7.81% of
China’s total CO2 emissions (Zhang et al. 2019). Some
scholars predicted that China’s transport sector’s energy con-
sumption and CO2 emissions will be increased by approxi-
mately 50% by 2030 and by 80% by 2050 (Guo et al. 2014;
Xu and Lin 2016; Lv et al. 2019). Consequently, it is critical
for the policymakers to reduce the total emissions from the
transport sector.

Cities are regarded as the main consumers of energy and
emitters in the whole world (Shan et al. 2017). According to
the International Energy Agency (IEA) (2009), the CO2 emis-
sions generated from energy consumption in cities will rise
1.8% per year from 2006 to 2030, with the proportion of
global CO2 emissions increasing from 71 to 76%. As a result
of economic development and improvement of income level
and quality of life, the urban population has increased fleetly
during recent years. The urban population rose to 750 million
by 2014, an approximately 2.5 time increased from 1990. At
present, more than half of the population lives in cities (Mi
et al. 2016; NBSC 2015). China’s urbanization rate has in-
creased from 17.92% in 1978 to 47.85% in 2015 (Huang et al.
2019). Chinese cities have made a contribution to about 85%
of the total CO2 emissions, which has been 5% higher than the
USA and 16% higher than Europe, respectively (Dhakal
2009; Shan et al. 2017). Besides, the urbanization process will
continue at express speed in the next decade (Shan et al. 2017;
Li et al. 2019). Therefore, Chinese cities are regarded as the
vital role player in considering the CO2 emission responsibil-
ities (Shan et al. 2019a). However, most of the previous liter-
ature has focused on transport sector CO2 emissions at the
national level and more provinces even regions of the coun-
tries; there is little literature on the city level.

In this study, we investigated the CO2 emissions of China’s
transport sector at the city level during 2000–2017 from both
temporal change and spatial discrepancy’s perspectives. At
the first step, we simply described the changing trend of
CO2 emissions and the characteristics of temporal and spatial
of China’s transport sector; at the second step, we deeply

explored the influencing factors of CO2 emissions at the city
level in China’s transport sector based on Logistic Mean
Division Index (LMDI) decomposition analysis method from
the temporal perspective, and simultaneously compare the dif-
ferences in CO2 emissions of different transport sectors and
the impacting factors between the urban agglomeration and
national average using M-R spatial decomposition analysis
method from the spatial angles; and at the last step, we pro-
vided some useful references or policy suggestions for
China’s transport sector from the city-level to reduce CO2

emissions. Compared with existing studies, this study makes
the following contributions: (1) This study applied the im-
proved M-R spatial decomposition analysis model to explore
the influencing factors of spatial differences of China’s trans-
port sector; in addition, the decomposition indicator of trans-
portation intensity is introduced into M-R spatial decomposi-
tion analysis model for the first time. Thus, this study extend-
ed a useful reference method for the problem of spatial differ-
ence and developed the decomposition indicators for the trans-
port sector. (2) We analyzed the differences and changes of
CO2 emissions from the city level and provided a new entry
point for the transport sector to control CO2 emissions or
formulate more accurate emission reduction measures.

Literature review

The transport sector is a vital pillar of economic and society
development. Although many studies have been conducted to
explore the CO2 emissions from the transport sector in the
global (Timilsina and Shrestha 2009; Saboori et al. 2014;
Yin et al. 2015), national (Wang et al. 2007; Wang et al.
2011; Zhou et al. 2013; Hao et al. 2014; Tiwari et al. 2020;
Liu and Feng 2020), provincial (Xu and Lin 2018; Feng and
Wang 2018; Zhang et al. 2019), and region levels (Guo et al.
2014), the transport sector’s CO2 emissions of Chinese cities
have not been well documented when compared with the
mentioned above literature. What’s more, existing studies
have been paid more attention to spatial-temporal analysis of
the differences in regional CO2 emissions in recent years
(Huang and Meng 2013; Ang et al. 2016). However, many
literatures on spatial analysis mainly focus on the production
sector (Yang et al. 2019), household sector (Li et al. 2017),
building sector (Chen and Chen 2019), and power sector
(Wang et al. 2019), and less literature are involved in the
transport sector.

The decomposition method is very popular and widely ap-
plied in the field of energy and emissions (Su and Ang 2016;
Li et al. 2017; Li et al. 2017), which mainly contain two types:
the one is called to structure decomposition analysis (SDA)
and the other is called to index decomposition analysis (IDA).
The former calculation process is relatively tedious, advocated
by Chang and Lin (1998) to explore the key factors of
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industrial CO2 emission changes in Taiwan, and decomposi-
tion index changes based on the input-output tables of specific
years depending on the input-output model aimed for quanti-
tative economic assessment. The latter method was first
employed by Hulten (1973) to analyze energy consumption
which is applied to explore the forces of changes in CO2

emissions and to provide relevant suggestions for carbon mit-
igation. In addition, the second is better than the first method
in the accessibility of data; thus, the IDA approach is more
widely employed than the SDA (Liu et al. 2007; Zhu et al.
2017).

LMDI, proposed by Ang and Choi (1997), is the most
mature model used in IDA among them, which is widely used
in many fields based on its greater advantages; in addition, it
has more applicability and more interpretation of results than
other decomposition models (Xu et al. 2014; Zhu et al. 2017).
Wang et al. (2011) investigated the potential factors influenc-
ing the changes of the transport sector’s CO2 emissions based
on the LMDI model and found that the effect of per capita
economic activity is primarily responsible for driving
transport sector CO2 emission growth, while the
transportation intensity effect is the main factor of CO2

emission reduction. Timilsina and Shrestha (2009) explored
the driving factors of growth in CO2 emissions in the transport
sector. They found that economic growth, population growth,
and energy intensity were the main reasons of CO2 emissions;
thus, they suggested that the local government should adopt
fiscal measures to encourage the use of new energy fuels. In a
later study, Guo et al. (2014) revealed the CO2 emission fea-
tures for the transport sector in 30 Chines provinces and then
quantified the related driving forces by using the time-series
LMDI method. They found that CO2 emissions were mainly
contributed by both economic activity effect and population
effect, while energy structure had a marginal effect. And the
latter literature has investigated the determinants of CO2 emis-
sions caused by the transport sector from 12 European coun-
tries and Pakistan, and they found that the difference in CO2

emissions is largely the same (Raza and Lin 2020; Georgatzi
et al. 2020).

A multi-regional (M-R) spatial decomposition model, pro-
posed by Ang 2015can be used to describe the reasons that
cause the differences in CO2 emissions among countries or
among various regions within the same country. This model
can reduce decomposition cases, avoiding subjectivity in ba-
sic region option, maintaining proper circularity, and
supporting valuable information considering the potential of
energy-saving and emission-reduction (Li et al. 2017).
Therefore, this paper employs the M-R spatial decomposition
model to explore the differences in CO2 emissions of the
transport sector.

The rest of this study is organized as follows. The
“Literature review” section described the literature review
and the “Methodology, study area, and data” section proposes

the methodology, including LMDI temporal decomposition
model and multi-regional M-R spatial decomposition model;
meanwhile, data collection sources were also involved. The
results of LMDI decomposition and M-R decomposition for
the urban agglomerations in 2000–2017 are illustrated and the
underlying causes and policy implications are discussed in the
“Results and discussion” section. The “Conclusions” section
concludes the article.

Methodology, study area, and data

Study areas

In this study, we selected 15 cities from four east-central prov-
inces and two municipalities (Fig. 1) (including Beijing,
Tianjin, Hebei, Henan, Shandong, and Shanxi). These 15 cit-
ies are affiliated with the Beijing-Tianjin-Hebei region and
surrounding areas, which are considered one of the key areas
in a blue-sky defense plan. As urban units, their growth rates
do not differ much, and the data are not very different, but as
the major cities in the blue-sky program, these cities approx-
imately account for 26.32% of the nation’s total GDP and
29.23% of its total carbon emissions; in other words, only
when we control the transport sector’s CO2 emissions of these
cities can we win the battle for the blue-sky plan.

The reasons as follows: (1) the absolute CO2 emissions of
these cities in the transport sector have not been got much
attention for alleviating CO2 emissions. Furthermore,
Chinese cities have encountered constraints in data availabil-
ity (Guan et al. 2017; Tian et al. 2019) and quality (Tian et al.
2019). (2) A few pieces of literature explore the CO2 emis-
sions transport sector at the city level from temporal and spa-
tial perspectives. (3) The 15 cities as part of the blue-sky
defense plan have research value; besides, the total share of
the population for these aggregated 15 cities compared to the
population of national has increased from 13.29% in 2000 to
15.29% in 2017, the percentage of GDP increased from 6.47%
in 2000 to 9.71% in 2017, and the percentage of CO2 emis-
sions of the transport sector has increased from 6.32% in 2000
to 8.10% in 2017. The basic information about these cities is
presented in Table 1.

Decomposition model

Estimation of CO2 emissions

This study mainly analyzes four modes of transportation in
each city: highway, railway, waterway, and civil aviation; the
specific calculation method is described following Zhao et al.
(2016). Based on Eq. (16), the amount of energy consumption
is measured by 104 tons of standard coal equivalent (104 tce).
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Ct ¼ ∑
4

i¼1
Ct

i ¼ ∑
4

i¼1
∑
9

j¼1
At
ij � Rt

ij � F j ð1Þ
where C t denotes the total CO2 emissions of the year t in the
transportation sector; Rij denotes energy consumption per unit ser-
vice of the ith transportation mode based on jth energy in year t;
andFj denotes the emissions coefficient of the jth energy resource.

Fig. 1 The 15 east-central Chinese cities within Beijing-Tianjin-Hebei region and surrounding areas of urban agglomerations (namely Beijing, Tianjin,
Handan, Xingtai, Liaocheng, Heze, Zhengzhou, Puyang, Kaifeng, Hebi, Xinxiang, Jiaozuo, Jincheng, Changzhi, and Anyang)

Table 1 The socio-economic
characteristics of 15 east-central
Chinese cities in 2017

Cities GDP (108

Yuan)
Area
(km2)

Population (104

persons)
GDP per capita
(Yuan/capita)

Population density
(persons/km2)

Anyang 2393.22 7352 624 46,450 839.23

Hebi 861.90 2182 170 53,063 774.52

Jiaozuo 2371.50 4071 371 66,328 913.78

Kaifeng 2002.23 6444 559 43,936 859.71

Puyang 1654.48 4188 432 45,644 1024.36

Zhengzhou 10,143.37 7446 842 101,349 1087.83

Xinxiang 2526.26 8666 647 43,700 735.06

Handan 3454.58 12,065 1051 36,289 870.29

Xingtai 2150.76 12,433 790 29,210 627.36

Liaocheng 3152.52 8984 640 51,935 692.34

Heze 3078.79 12,256 1019 35,184 818.37

Changzhi 1645.15 13,896 338 47,540 242.52

Jincheng 1351.86 9425 221 57,819 232.36

Beijing 30,319.90 16,411 1359 140,211 819.57

Tianjin 18,809.94 11,917 1050 120,711 861.79

25996 Environ Sci Pollut Res (2021) 28:25993–26006



Kaya identity

Kaya identity, a systematic and integrated method, is
regarded as a popular tool to uncover demographic, eco-
nomic, energetic, and environmental associations (Wang
and Li 2019). In this study, the extended Kaya identity is
adopted to analyze the driving forces of CO2 emissions of
the transport sector. City-level CO2 emissions in China
can be decomposed into six kinds of driving factors, as
shown in Eq. (1).

Ci ¼ ∑
4

j¼1
∑
9

k¼1
Cijk

¼ ∑
4

j¼1
∑
9

k¼1

Cijk

Eijk
:
Eijk

Aij
:
Aij

Ai
:
Ai

Gi
:
Gi

Pi
:Pi

¼ ∑
4

j¼1
∑
9

k¼1
ESijk :EIij:ASi:AIi:AGi:TPi

ð2Þ

where i denotes each city in China; j denotes the sector
involved in this study (j = 1,2,3,4 for road, railway, wa-
terway, and civil aviation); and k denotes the energy type
consumed by each sector (k = 1, 2…,9 such as raw coal,
coke, crude oil, gasoline, kerosene, diesel oil, fuel oil,
natural gas, and electricity).

The variables considering the temporal and spatial decom-
position models are defined in Tables 2 and 3.

Temporal-LMDI framework

The aggregate changes of CO2 emissions for each city of
China between the base year 0 and the target year T are
decomposed into the driving factors of energy structure,
energy intensity, transportation structure, transportation
intensity, income, and population scale using the additive
technique proposed by Ang (2005). As shown in Eq. (2),

ΔCT−0
i;tot ¼ CT

i −C
0
i

¼ ΔCT−0
i;ES þΔCT−0

i;EI þΔCT−0
i;AS þΔCT−0

i;AI þΔCT−0
i;AG þΔCT−0

i;TP
ð3Þ

The effects of differences driving factors of city CO2 emis-
sions of the transport sector are calculated by the following
equations:

ΔCT−0
i;ES ¼ ∑

4

j¼1
∑
9

k¼1
L CT

ijk ;C
0
ijk

� �
:ln

FT
ijk

F0
ijk

 !
ð4Þ

ΔCT−0
i;EI ¼ ∑

4

j¼1
∑
9

k¼1
L CT

ijk ;C
0
ijk

� �
:ln

EITij
EI0ij

 !
ð5Þ

ΔCT−0
i;AS ¼ ∑

4

j¼1
∑
9

k¼1
L CT

ijk ;C
0
ijk

� �
:ln

ASTi
AS0i

� �
ð6Þ

ΔCT−0
i;AI ¼ ∑

4

j¼1
∑
9

k¼1
L CT

ijk ;C
0
ijk

� �
:ln

AITi
AI0i

� �
ð7Þ

ΔCT−0
i;AG ¼ ∑

4

j¼1
∑
9

k¼1
L CT

ijk ;C
0
ijk

� �
:ln

AGT
i

AG0
i

� �
ð8Þ

ΔCT−0
i;TP ¼ ∑

4

j¼1
∑
9

k¼1
L CT

ijk ;C
0
ijk

� �
:ln

TPT
i

TP0
i

� �
ð9Þ

where L CT
ijk ;C

0
ijk

� �
¼ CT

ijk−C
0
ijk

lnCT
ijk−lnC

0
ijk

is the logarithmic mean
weight.

Spatial-M-R framework

Spatial decomposition analysis has been paid attention to
multi-county comparisons of energy consumption or CO2

emissions using IDA. Such a way often sees large variations
in the data for the factors in the IDA identity. It is different
from the conventional temporal decomposition analysis using
time-series data or the data of two different years of a country.

Table 2 Symbol of variables involved in this study

Variable Definition Unit Variable Definition Unit

Ci The total amount of CO2 emissions of
sector i

104 tons ESijk Fijk=Cijk/Eijk, carbon emission coefficient for kth
fossil energy of sector j in city i

t CO2/tce

Cijk CO2 emissions of kth fossil energy
consumption by sector j in city i

104 tons EIij EIij=Eij/Aij, the energy intensity of sector j in city i Kg
ce/104 t--
kilometer

Eijk kth fossil energy consumption of sector j
in city i

104 tce ASi ASi=Aij/Ai, the output share of sector j in city i %

Aij Transportation service of sector j in city i 104t-kilometer AIi AIi=Ai/Gi, transportation intensity of city i Ton-kilometer/104

yuan

Ai Transportation service in city i 104t-kilometer AGi AGi=Gi / Ai, GDP per capita in city i 104 yuan

Gi The gross domestic product in city i 104 yuan C The total amount of CO2 emissions 104 ton

Pi The total population in city i 104 persons
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The spatial decomposition model shows advantages in
comparing the differences in many fields, i.e., energy con-
sumption, energy efficiency, or CO2 emissions among regions
within a country (Li et al. 2017). In this study, we chose each
target city to compare with a benchmark reference entirety
(national average) considering the arithmetic average of the
national group. The differences of CO2 emissions of the trans-
port sector between cities i and national average Ru, denoted

as ΔC Ri−Ruð Þ
t;tot , expressed as Eq. (9):

ΔC Ri−Ruð Þ
tot ¼ CRi−CRu

¼ ΔC Ri−Ruð Þ
t;ES þΔC Ri−Ruð Þ

t;EI þΔC Ri−Ruð Þ
t;AS þΔC Ri−Ruð Þ

t;AI

þΔC Ri−Ruð Þ
t;AG þΔC Ri−Ruð Þ

t;TP

ð10Þ

Based on the following equations, we can calculate the
above effects on differences of CO2 emissions among cities
in the transport sector.

ΔC Ri−Ruð Þ
ES ¼ ∑

4

j¼1
∑
9

k¼1
L CRi

ijk ;C
Ru
ujk

� �
:ln

FRi
ijk

FRu
ujk

 !
ð11Þ

ΔC Ri−Ruð Þ
EI ¼ ∑

4

j¼1
∑
9

k¼1
L CRi

ijk ;C
Ru
ujk

� �
:ln

EIRi
ij

EIRu
uj

 !
ð12Þ

ΔC Ri−Ruð Þ
AS ¼ ∑

4

j¼1
∑
9

k¼1
L CRi

ijk ;C
Ru
ujk

� �
:ln

ASRi
i

ASRu
u

� �
ð13Þ

ΔC Ri−Ruð Þ
AI ¼ ∑

4

j¼1
∑
9

k¼1
L CRi

ijk ;C
Ru
ujk

� �
:ln

AIRi
i

AIRu
u

� �
ð14Þ

ΔC Ri−Ruð Þ
AG ¼ ∑

4

j¼1
∑
9

k¼1
L CRi

ijk ;C
Ru
ujk

� �
:ln

AGRi
i

AGRu
u

� �
ð15Þ

ΔC Ri−Ruð Þ
TP ¼ ∑

4

j¼1
∑
9

k¼1
L CRi

ijk ;C
Ru
ujk

� �
:ln

TPRi
i

TPRu
u

� �
ð16Þ

where L CRi
ijk ;C

Ru
ujk

� �
¼ CRi

ijk−C
Ru
ujk

lnCRi
ijk−lnC

Ru
ujk

is the logarithmic mean
weight.

Data source

In this study, we analyzed the CO2 emissions of China’s trans-
port sector during 2000–2017 (due to the rapid development
of the transport sector, the data before 2000 can be used for
providing less reference in the current transportation research
and development, and the data of energy consumption and
CO2 emissions in the current accounts after 2017 are not avail-
able. So, we chose 2000–2017 as the study period) and divid-
ed it into four periods, i.e., 2000–2005, 2005–2010, and
2010–2017, which is catering to China’s economic develop-
ment 5-year plans.

Energy consumption and CO2 emissions in China’s transport
sector

The CO2 emission coefficients of different kinds of energy
types came from the Intergovernmental Panel on Climate
Change IPCC (2006), as shown in Table 4. The data of energy
consumption and CO2 emissions for each city in China are
collected from China Emission Accounts and Datasets
(CEADs) (Shan et al. 2019).

Variables in socio-development

The data on annual GDP and population (the mean value of
the beginning and end of the year) of each city during 2000–
2017 have come from the statistical yearbook of the corre-
sponding city.

The transportation services (passenger and freight) by
transportation modes and energy consumption per transporta-
tion service are both collected from the statistical yearbook of

Table 3 Definition of various
variables in Eq. (9) Variables Definition

ΔCES Energy structure effect, representing the change of CO2 emissions due to the change of energy
structure

ΔCEI Energy intensity effect, representing the change of CO2 emissions due to the change of energy
efficiency of the transport sector

ΔCAS Transportation structure effect, representing the change of CO2 emissions due to the change of
output share of the transport sector

ΔCAI Transportation intensity effect, representing the change of CO2 emissions due to the change of
transportation efficiency

ΔCAG Income effect, representing the change of CO2 emissions due to the improvement of people’s
income level

ΔCTP Population scale effect, representing the change of CO2 emissions due to the population growth

Note: The difference between M-R model and LMDI model that mainly exists in LMDI was applied in exploring
the changes of CO2 emissions for the degree of time and the M-R model was applied in analyzing the difference
among cities. However, there is a similar theoretical basis in them
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the corresponding city. The transportation services are calcu-
lated with ton-kilometer in this study. For the convenience of
statistics, the passenger person-kilometers must be converted
to freight ton-kilometer through division by a conversion co-
efficient. The conversion coefficients for each transport mode
refer to Wang et al. (2011), presented in Table 5.

Results and discussion

Analysis of CO2 emissions

Spanning 2000 to 2017, capital, municipality, and industrial
cities had remained the vital contributors for most cumulative
emissions (Fig. 2). But at the same time, CO2 emissions of 15
cities vary widely between the temporal changes. For instance,
Zhengzhou (the capital of Henan), Beijing and Tianjin (the
municipalities of China), Handan (an industrial city), and
Jiaozuo (an industrial city) had produced the most cumulative
emissions. However, Zhengzhou and Handan had experi-
enced some fluctuations in total emissions. Beijing and
Tianjin had been the largest contributors to CO2 emissions
in all cities and the whole study period. Therefore, based on
these results, there is a need to analyze the differences in CO2

emissions at the city level.
Moreover, some cities (i.e., Kaifeng, Anyang, Heze, and

Xinxiang) experienced an emission peak in 2011 or 2013
according to the up-to-date results of this study. Therefore,
exploring the historical trajectory and spatial differences of

CO2 emissions in these typical cities could be crucial because
this process could help cities grasp the trend and differences of
CO2 emissions, so as to tackle climate change to reduce emis-
sions (Tian et al. 2019).

A comparison of city-level CO2 emissions in 2000 and
2017 (Fig. 3) shows the detailed CO2 emissions from the
transport sector in China’s 15 cities in 2000 and 2017, includ-
ing CO2 emissions produced from sectors and energy types.
From the whole point of view, the main source of CO2 emis-
sions is generated from the road sector, followed by the rail-
way; it is worth noting that the waterway sector emits more
CO2 emissions than the road in Tianjin, and by contrast, there
is no waterway in Beijing.

When it comes to the energy sources, we can know that the
CO2 emissions from transport sector were induced from diesel
and gasoline in most of cities and the share of diesel oil has
showed a trend of growth from 2000 to 2017; i.e., the share of
Handan, the city of Hebei province, is increased from
11.73 × 104 tons to 131.15 × 104 tons (approximately
68.23% of total emissions). However, the disparity of CO2

emission patterns exists from the city level. For instance,
Beijing and Tianjin are important Chinese megacities, but
with different CO2 emission patterns from the transport sector.
In Beijing, the CO2 emission patterns from the transport sector
were mostly contributed by kerosene (89.03 × 104 tons), while
in Tianjin, the consumption of both diesel and fuel oil contrib-
uted to most of the CO2 emissions from the transport sector
(126.3 × 104 tons and 101.7 × 104 tons, respectively).

Temporal decomposition analysis

For describing the hidden reasons for the changes of CO2

emission in the transport sector based on 15 cities in China,
LMDI decomposition analysis was applied in the period of
2000–2017. Figure 4 promulgates total changes in CO2 emis-
sions for the transport sector of 15 cities.

According to above, the contributions of various factors to
CO2 emission are different during the study period; income
effect (ΔCAG) was the dominant driving force that leads to the
increase in city-level CO2 emissions while the transportation
intensity effect (ΔCAI) was responsible for most cities to re-
duce the CO2 emissions, which were similar with previous
literature, i.e., Wang et al. (2011); Achour and Belloumi
(2016); Li et al. (2016); and Zhang et al. (2019). In addition,
the population-scale effect (ΔCTP) also had a minor positive
effect on CO2 emissions of the transport sector for the whole
study period.

ΔCAG played a significant role in increasing the CO2 emis-
sions in most cities during each time interval; for example,
ΔCAG reached 869.23 × 104 tons in Beijing during 2000–
2017, next to Tianjin (668.14 × 104 tons) and Zhengzhou
(281.14 × 104 tons), while the minimum contribution value
reached 40.31 × 104 tons in Anyang, next Jincheng

Table 4 CO2 emission coefficients and fractions of carbon oxidized of
different energy types

Fuel F= CO2 emission O=fractions of
Factors, kg CO2/kg Carbon oxidized, %

Coal 2.53 90

Coke 3.14 93

Crude oil 2.76 98

Fuel oil 2.98 98

Gasoline 2.20 98

Kerosene 2.56 98

Diesel oil 2.73 98

Natural gas 2.09 99

Electricity 0.90 –

Table 5 The conversion coefficient between passenger and freight ton
(unit passenger/freight ton)

Transportation Railway Highway Waterway Civil aviation

Coefficient 1 5 3.03 13.88
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(47.12 × 104 tons), which is mainly because since the cities of
Beijing and Tianjin are the municipalities and Zhengzhou is
the capital for Henan province of China, the government paid
more attention to promulgate policies for promoting economic
activity development, which inevitably produces a lot of CO2

emissions (Zhang et al. 2019), while the cities of Anyang and
Jincheng are less developed regions.

ΔCAI was the key influencing factor that curbs the CO2

emissions in most cities during 2000–2017. With the rapid
economic development in Henan province, the private cars
also developed rapidly, in which its contribution value shows
the tendency of fluctuating; ΔCAI turned to be positive in
specific cities of a special time interval, such as the time inter-
vals of 2005–2010 and 2010–2017 in the cities of Anyang,
Hebi, and Jiaozuo, respectively. The negative contribution
value reached the largest − 102.03 × 104 tons in Beijing; how-
ever, it was getting smaller during 2010–2017 (− 35.21 × 104

tons), which mainly related to the developed high value-added
industries (i.e., financial industries, service industries, research
and development industries) in Beijing, where transportation
output is higher than other regions (transportation services
generated per unit of GDP).

ΔCEI played an important role in increasing the CO2 emis-
sions in some cities of Anyang, Puyang, and Changzhi during

2000–2015, which mainly attributed to the less-developed
economy in the province of Henan and Shanxi, and energy
use efficiency is lower than in developed provinces. In con-
trast, ΔCEI had a positive influence on the time period of
2000–2005 of Beijing and Tianjin. This is in relation to
Beijing and Tianjin having a more developed economy and
high motorization rate than other regions, leading to traffic
jams and high energy intensity.

Compared with other driving forces, the energy struc-
ture effect (ΔCES) on CO2 emission changes from the
transport sector is quite limited. Although, in some certain
time intervals, ΔCES did augment CO2 emissions increas-
ing in some cities, such as in Tianjin, Beijing, and
Jincheng during 2010–2017, the contribution value is also
minor, which may be due to the proportion of waterway
which is getting larger (41.12%) in Tianjin, causing the
demand of fuel oil (carbon-intensive energy) to increase.
In contrast, the freight turnover of Beijing and Jincheng
cities is increasing rapidly, and most of the freight turn-
over is mainly undertaken by large trucks and megatons;
it consumes carbon-intensive energy (i.e., diesel) (Li et al.
2016; Zhang et al. 2019). According to Table 4, we can
know that the fuel oil and diesel have higher carbon emis-
sion coefficient than other energy resources.

Fig. 2 CO2 emissions of 15 east-
central Chinese cities over time

Fig. 3 Share of CO2 emissions
from different energy
combustions in 2000 and 2017
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ΔCAS was positive in most cities during 2000–2017, ex-
cept for some special time period, such as 2010–2017. The
contribution ofΔCAS reached the largest value in Tianjin
(43 × 104 tons), next to Handan (3.12 × 104 tons) and
Zhengzhou (2.08 × 104 tons). The key reason was that the
share of waterway in Tianjin is decreased from 39.36% in
2010 to 35.25% and with the rapid development and diversi-
fication of income groups, some comfortable and convenient
transportation modes, such as road and civil aviation, provide
more and more transportation services. In addition, the per-
centage of railways decreased substantially in Handan and
Zhengzhou from 39.82% and 33.29% in 2010 to 34.62%
and 30.27% in 2017, respectively. While the changes in
ΔCAS are helpful in reducing the total CO2 emissions of the
transport sector during the same period in Beijing, they are
mainly attributed to the optimization of transport structure,
which leads to the proportion of high-speed railway and urban
track construction increased (Zhang et al. 2019).

The effect of population scale (ΔCTP) had always been a
positive factor in promoting CO2 emissions, but it played a
relatively minor role. With Beijing reaching a maximum of
55 × 104 tons, next Tianjin 44.52 × 104 tons and Zhengzhou
32.47 × 104 tons, this mainly attributed to Beijing, Tianjin,
and Zhengzhou being more developed economy and have
more job opportunities, which attracts a lot of external people
and leads to an increase in transportation demand. In contrast,
the contribution value of Anyang is the least, related to the
backward economy and fewer motor vehicles (Li et al. 2017).

Spatial decomposition analysis

In our study, the M-R spatial decomposition method was ap-
plied to investigate the factors causing the differences among
15 cities of China during 2000–2017. The average CO2 emis-
sions at the national level are defined by arithmetic average
CO2 emissions of total provinces of China, next to comparing
the CO2 emissions of each city with the national level.
Adopting the M-R spatial decomposition model to quantify
the differences of the CO2 emissions and decomposing it into
six influencing factors, the effect of each driving factor is

calculated based on Eqs. (10)–(15). The positive and negative
values of different factors have different meanings; for exam-
ple, ΔCAI is negative in some developed cities, such as
Beijing and Tianjin, but it is positive in less-developed regions
(Anyang, Puyang), indicating that Beijing had a higher trans-
portation efficiency than the national average, while Anyang
lower than the national average. ΔCAG was positive in some
developed cities (Beijing, Zhengzhou), which showed that the
CO2 emissions due to economic output in developed cities are
higher than the national average.

Obviously, ΔCAI, ΔCEI, ΔCAS, and ΔCAG were the most
significant driving forces of differences in CO2 emissions in
the transport sector between special city and the national av-
erage (Fig.5), while the other driving factors (ΔCTPandΔCES)
played a minor role in causing the differences in CO2 emis-
sions of 15 cities and the national average (Fig. 6).

Beijing, Tianjin, and Zhengzhou had the largest ΔCAG.
The income effects of these three cities were highly greater
than the national average level, and thus consumed larger
energy resources and emitted amount of CO2 than the average.
For example, ΔCAG in Beijing reached 498.23 × 104 tons in
2017, which was equivalent to higher 498.23 × 104 tons than
the national average. Yet, the income effect in cities like
Anyang and Puyangwas considerably smaller than the nation-
al average level, which resulted in the larger differences in
economic scale among the cities.

Changzhi and Jincheng that belong to the Shanxi province,
a highly resourced-based region, had a great higherΔCEI than
the national average. Li et al. (2017) uncovered that Shanxi
was a significant base of coal production and consumption
and a less-developed technological level, which resulted in
low energy efficiency and high energy consumption and
CO2 emissions in the two cities. For example, ΔCEI in
Changzhi was 43.21 × 104 tons, indicating that the high ener-
gy intensity in Changzhi leads to higher CO2 emissions of
43.21 × 104 tons than the national level. In other words,
Changzhi would decrease by 43.21 × 104 tons if raising the
energy using efficiency to the national average level. On the
contrary, ΔCEI in economically developed cities including
Beijing, Tianjin, and Zhengzhou was far blew the national

Fig. 4 Share of CO2 emissions
from different energy
combustions in 2000 and 2017.
Note: For the convenience of
marketing, the name of the city is
abbreviated, for example Anyang
(AY)
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average level. It mainly attributed to the more developed tech-
nology level and higher energy efficiency.

ΔCAI indicates the effect of the differences in transporta-
tion efficiency among cities, and it would decrease if the trans-
port technology level is improved or the transportation goods
with high value-added are developed. Highly developed
cities(such as Beijing and Zhengzhou) that have more high
value-added industries had a lower transportation intensity
compared with the national average. In contrast, in highly
undeveloped cities in which the agriculture sector is relatively
large, the value-added is lower. For example, ΔCAI in Hebi
was 31.01 × 104 tons in 2017, which revealed that high trans-
portation intensity in Hebi increased CO2 emissions by
31.01 × 104 tons than the national level.

ΔCAS indicates the effect of the differences in transporta-
tion structure among cities, and it would decrease if the trans-
portation structure were improved. Each transportation mode
also varies significantly in energy structure and energy effi-
ciency; the order is civil aviation > road > waterway > railway
(Zhang et al. 2019). Beijing, Handan, and Zhengzhou had the

largest and positive ΔCAS, which means that higher energy-
intensive transportation modes, such as civil aviation and
road, accounted for a relatively large proportion in these cities
(Zhang et al. 2019), of which Beijing does not have the mode
of waterway, the percentage of road occupied the more than
half of the total, while the contribution value of ΔCASwas
negative in some cities with a good waterway. For example,
ΔCASin Heze was − 30.14 × 104 tons in 2017, which uncov-
ered that perfect transportation structure (a large proportion of
waterway) in Heze reduced CO2 emissions by 30.14 × 104

tons than the national level.
However, the energy structure effect (ΔCES) played a very

minor role in the differences in CO2 emissions between the
cities and the national average (Fig. 5). Zhengzhou had the
largest negative ΔCES (− 18.28 × 104 tons), indicating that
ΔCES is lower than the national average level. It is mainly
related to the fact that Zhengzhou is an important transporta-
tion hub, and the proportion of high-speed trains and railway,
mainly consuming the clean energy of electricity, accounts for
relatively large.

Fig. 5 Temporal decomposition of the changes in CO2 emissions for each city at different time intervals
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ΔCTP is another less-influential factor in causing the dif-
ferences in CO2 emissions between the cities and the national
average. The ΔCTP of some less-developed cities is lower
than the national average, of which Anyang, Jiaozuo, and
Xingtai had the largest negative contribution value of −
1.07 × 104 tons, − 1.23 × 104 tons, and − 1.89 × 104 tons in
2010, respectively. This is related to the fact that these cities
have less-developed economies and fewer job opportunities
than the developed regions, resulting in a large number of
people transporting from there to developed cities. Then,
transportation demand in these cities decreases directly from
population decrease (Zhang et al. 2019).

Discussion

The main conclusion that emerged from our study is that the
impact of income effect and transportation intensity on city-
level CO2 emissions is quite large from the perspectives of
temporal and spatial dimensions based on the LMDI andM-R
models. We make a further discussion on one issue: What
leads to similar emission trends at different emission scales?
In a word, increasing energy consumption could attribute to
production activities that it combusted to support the produc-
tion of daily products and material (Achour and Belloumi
2016). In addition, economic development needs to the oper-
ation of equipment, which would result in energy consumma-
tion and inevitably lead to CO2 emissions. Thus, the emission
scale is different; however, with the development of society,

these cities are needed to shape their own economic scale,
leading to similar emission trends at different emission scales.

Policy implications

Our research results indicate that significant temporal and spa-
tial disparities exist in CO2 emissions of the transport sector
from the city level. The road sector has been leading the CO2

emission increase in the transport sector over the last decade,
being responsible for about half of China’s total CO2 emission
in the transport sector. Consequently, the road sector should
be the key target in reducing CO2 emissions from the transport
sector. It means that more comprehensive and stringent poli-
cies and standards should be firstly adopted in the road sector.
First, the government should vigorously develop public trans-
portation and urban trackless transportation, reducing the de-
mand for a private car. Second, the government should im-
prove power charging and natural gas equipment and facilities
for encouraging citizens to buy electric cars and natural gas
vehicles. Furthermore, economic instruments can be
employed, such as increasing fuel taxes and charging emis-
sions from vehicles (Guo et al. 2014).

There are differences in urban development; CO2 emis-
sions from the transport sector in developed regions are larger
than those in the less-developed regions, indicating the differ-
entiated emission reductions for the city level of transport
sector. Different cities should prepare their CO2 emission mit-
igation methods in the transport sector by considering the

Fig. 6 Spatial decomposition of city-level CO2 emissions of the transport sector in key years
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local realities, such as economically backward cities should
learn from the developed regions to strengthen energy conser-
vation and emission reduction through advancing energy-
efficient technologies. The local government should provide
financial support in scientific research and scientific research
talents in less-developed cities (Guo et al. 2014; Zhang et al.
2019).

According to the LMDI and M-R decomposition results,
the effects of transportation intensity and energy intensity par-
ticularly offset CO2 emission from the transport sector in de-
veloped cities, but contributed to CO2 emission increase from
their transport sector in less-developed regions. Such results
revealed that technology inequities and economic develop-
ment models exist in the cities of China. So the backward
cities should adopt the advanced energy-efficient technologies
and vehicles to reduce energy intensity and improve economic
development structure through giving priority to developing
high value-added industries, such as the service industries and
financial industries, to increase the value of transportation per
unit of GDP.

Conclusions

In this study, we investigate the CO2 emissions of the trans-
port sector in China from the city level based on the temporal
decomposition analysis model and spatial decomposition
analysis model. Both the changes of CO2 emissions from
China’s 15 cities and the differences of CO2 emissions be-
tween15 cities and the national average during 2000–2017
were investigated. The main conclusions drawn from this
study are as follows:

1. Significant city-level disparities on CO2 emission features
and driving factors exist in China’s transport sector from
the temporal and spatial perspectives.

2. From the temporal perspective, income effect (ΔCAG)
was the dominant driving force that leads to the increase
in city-level CO2 emissions while transportation intensity
effect (ΔCAI) was responsible for most cities in reducing
CO2 emissions, and the population scale effect (ΔCTP)
also had a minor positive effect on CO2 emissions of the
transport sector for the whole study period. For example,
Beijing reached the largest value of 869.23 × 104 tons,
while the minimum contribution value reached
41.03 × 104 tons in Anyang in 2017; ΔCAI shows a fluc-
tuation turn during the study period, from positive on the
time intervals of 2000–2005 to negative in 2005–2010
and 2010–2017 in the cities of Anyang, Hebi, and
Jiaozuo, respectively. The negative contribution value
reached the largest – 99 × 104 tons in Beijing; however,
it was getting smaller during the 2010–2017 (−
38.31 × 104 tons).

3. From the spatial perspective, ΔCAI, ΔCEI, ΔCAS, and
ΔCAG were the most significant driving forces of the dif-
ferences in CO2 emissions of the transport sector between
special city and national average, of which the decompo-
sition results can help us to understand what causes the
differences in CO2 emissions of the transport sector
among China’s 15 cities and then provide target mitiga-
tion methods for the city-level transport sector in the
future.
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