Skip to main content
Log in

Bioactivities and in silico study of Pergularia tomentosa L. phytochemicals as potent antimicrobial agents targeting type IIA topoisomerase, TyrRS, and Sap1 virulence proteins

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Pergularia tomentosa L. (P. tomentosa) has been largely used in Tunisian folk medicine as remedies against skin diseases, asthma, and bronchitis. The main objectives of this study were to identify phytochemical compounds that have antioxidant and antimicrobial properties from the stem, leaves, and fruit crude methanolic extracts of P. tomentosa, and to search for tyrosyl-tRNA synthetase (TyrRS), topoisomerase type IIA, and Candidapepsin-1 (SAP1) enzyme inhibitors through molecular docking study. Phytochemical quantification revealed that fruit and leaves extracts displayed the highest total flavonoids (582 mg QE/g Ex; 219 mg QE/g Ex) and tannins content (375 mg TAE/g Ex; 216 mg TAE/g Ex), also exhibiting significant scavenging activity to decrease free radicals for ABTS, DPPH, β-carotene, and FRAP assay with IC50 values (> 1 mg/mL). Additionally, promising antimicrobial activities towards different organs have been observed against several bacteria and Candida strains. From the liquid chromatography-mass spectrometry (LC-MS) analysis, five polyphenolic compounds, namely digitoxigenin, digitonin glycoside and calactina in the leaves, kaempferol in the fruit, and calotropagenin in the stems, were identified. They were also analyzed for their drug likeliness, based on computational methods. Molecular docking study affirmed that the binding affinity of calactin and actodigin to the active site of TyrRS, topoisomerase type IIA, and SAP1 target virulence proteins was the highest among the examined dominant compounds. Therefore, this study indicated that P. tomentosa methanolic extracts displayed great potential to become a potent antimicrobial agent and might be a promising source for therapeutic and nutritional functions. These phytocompounds could be further promoted as a candidate for drug discovery and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article. Additional information will be available upon request.

References

  • Acheuk F, Doumandji-Mitiche B (2013) Insecticidal activity of alkaloids extract of Pergularia tomentosa (Asclepiadaceae) against fifth instar larvae of Locusta migratoria cinerascens (Fabricius 1781) (Orthoptera: Acrididae). Int J Sci Adv Technol 3:8–13

    Google Scholar 

  • Adnan M, Patel M, Deshpande S, Alreshidi M, Siddiqui AJ, Reddy MN, Emira N, De Feo V (2020) Effect of Adiantum philippense extract on biofilm formation, adhesion with its antibacterial activities against foodborne pathogens, and characterization of bioactive metabolites: an in vitro-in silico approach. Front Microbiol 11:823. https://doi.org/10.3389/fmicb.2020.00823

    Article  Google Scholar 

  • Al Nasr I (2020) In vitro anti-leishmanial assessment of some medicinal plants collected from Al Qassim, Saudi Arabia. Acta Parasitol 65:696–703. https://doi.org/10.2478/s11686-020-00205-2

    Article  CAS  Google Scholar 

  • Al-Asmari A, Manthiri RA, Abdo N, Al-Duaiji FA, Khanc HA (2017) Saudi medicinal plants for the treatment of scorpion sting envenomation. Saudi J Biol Sci 24(6):1204–1211. https://doi.org/10.1016/j.sjbs.2016.10.010

    Article  Google Scholar 

  • Alghanem SM, El-Amier YA (2017) Phytochemical and biological evaluation of Pergularia tomentosa L. (Solanaceae) naturally growing in arid ecosystem. Int J Plant Sci Ecol 3:7–15

    CAS  Google Scholar 

  • Al-Hajj MMA, Al-Shamahy HA, Alkhatib BY, Moharram BA (2018) In vitro anti-leishmanial activity against cutaneous Leishmania parasites and preliminary phytochemical analysis of four Yemeni medicinal plants. Universal J Pharm Res 3:48–54. https://doi.org/10.22270/ujpr.v3i4.183

    Article  CAS  Google Scholar 

  • Al-Mekhlafi NA, Masoud A (2017) Phytochemical and pharmacological activities of Pergularia tomentosa. - a review. IAJPS 4:4558–4565. https://doi.org/10.5281/zenodo.1069010

    Article  CAS  Google Scholar 

  • Al-Mutairi KA, Mobin M, Khan MN (2019) A comparison of bioactive constituents and in vitro antioxidant potential of asthma weed (Euphorbia hirta), with those of other antiasthmatic plants growing in Tabuk region, Saudi Arabia. Appl Ecol Environ Res 17:13989–14000. https://doi.org/10.15666/aeer/1706_1398914000

  • Al-Saikhan MS, Howard LR, Miller JC (1995) Antioxidant activity and total phenolics in different genotypes of potato (Solanum tuberosum L.). J Food Sci 60:341–343. https://doi.org/10.1111/j.1365-2621.1995.tb05668.x

    Article  CAS  Google Scholar 

  • Asiry KA, Hassan SSM, Ibrahim NA, Al-Khuraiji IA, Kehial MA, Al-Anazi NA, Al-nasser AS, Al-Shehri AZ (2017) Larvicidal efficacy of ethanolic leaf extracts of four selected local plants from hail region, northern Saudi Arabia, against the dengue fever vector, Aedes aegypti (L.) under laboratory conditions. Int J Mosq Res 4:81–87

    Google Scholar 

  • Babaamer ZY, AbuZarga MH, Al-Abdalla NG, Sakhri L (2014) Isolation of cardenolide glycosides from Pergularia tomentosa. L and their antioxidant activities. Ann Sci Technol 6:122–128

  • Bakari S, Ncir M, Felhi S, Hajlaoui H, Saoudi M, Gharsallah N, Kadri A (2015) Chemical composition and in vitro evaluation of total phenolic, flavonoid, and antioxidant properties of essential oil and solvent extract from the aerial parts of Teucrium polium grown in Tunisia. Food Sci Biotechnol 24:1943–1949. https://doi.org/10.1007/s10068-015-0256-z

    Article  CAS  Google Scholar 

  • Barros L, Ferreira M, Queiros B, Ferreira ICFR, Baptista P (2007) Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chem 103:413–419. https://doi.org/10.1016/j.foodchem.2006.07.038

    Article  CAS  Google Scholar 

  • Bax BD, Chan PF, Eggleston DS, Fosberry A, Gentry DR, Gorrec F, Giordano I, Hann MM, Hennessy A, Hibbs M, Huang J, Jones E, Jones J, Brown KK, Lewis CJ, May EW, Saunders MR, Singh O, Spitzfaden CE, Shen C, Shillings A, Theobald AJ, Wohlkonig A, Pearson ND, Gwynn MN (2010) Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature 466:935–940. https://doi.org/10.1038/nature09197

    Article  Google Scholar 

  • Benariba N, Djaziri R, Bellakhdar W, Belkacem N, Kadiata M, Malaisse W (2013) Phytochemical screening and free radical scavenging activity of Citrullus colocynthis seeds extract. Asian Pac J Trop Biomed 3:35–40. https://doi.org/10.1016/S2221-1691(13)60020-9

    Article  CAS  Google Scholar 

  • Benzekri R, Bouslama L, Papetti A, Snoussi M, Benslimene I, Hamami M, Limam F (2016) Isolation and identification of an antibacterial compound from Diplotaxis harra (Forssk.) Boiss. Ind Crop Prod 80:228–234. https://doi.org/10.1016/j.indcrop.2015.11.059

    Article  CAS  Google Scholar 

  • Bernardini S, Tiezzi A, Laghezza Masci V, Ovidi E (2018) Natural products for human health: an historical overview of the drug discovery approaches. Nat Prod Res 32(16):1926–1950. https://doi.org/10.1080/14786419.2017.1356838

    Article  CAS  Google Scholar 

  • Bi H, Gao T, Li Z, Ji L, Yang W, Jeff Iteku B, Liu E, Zhou Y (2013) Structural elucidation and antioxidant activity of a water-soluble polysaccharide from the fruit bodies of Bulgaria inquinans (Fries). Food Chem 138:1470–1475. https://doi.org/10.1016/j.foodchem.2012.11.039

    Article  CAS  Google Scholar 

  • Borelli C, Ruge E, Lee JH, Schaller M, Vogelsang A, Monod M, Korting HC, Huber R, Maskos K (2008) X-ray structures of Sap1 and Sap5: structural comparison of the secreted aspartic proteinases from Candida albicans. Proteins 72:1308–1319. https://doi.org/10.1002/prot.22021

    Article  CAS  Google Scholar 

  • Boulenouar N, Marouf A, Cheriti A (2009) Effect of some poisonous plants extracts on Fusarium oxysporum f. sp. albedinis. J Biol Sci 9:594–600. https://doi.org/10.3923/jbs.2009.594.600

    Article  Google Scholar 

  • Broadhurst RB, Jones WT (1978) Analysis of condensed tannins using acidified vanillin. J Sci Food Agric 29:788–794. https://doi.org/10.1002/jsfa.2740290908

    Article  CAS  Google Scholar 

  • Chakraborty K, Paulraj R (2010) Sesquiterpenoids with free-radical-scavenging properties from marine macroalga Ulva fasciata Delile. Food Chem 122:31–41. https://doi.org/10.1016/j.foodchem.2010.02.012

    Article  CAS  Google Scholar 

  • Chaouche TM, Haddouchi F, Ksouri R, Atik-Bekkara F (2014) Evaluation of antioxidant activity of hydromethanolic extracts of some medicinal species from South Algeria. J Chin Med Assoc 77:302–307. https://doi.org/10.1016/j.jcma.2014.01.009

    Article  Google Scholar 

  • Cook NC, Samman S (1996) Flavonoids-chemistry, metabolism, cardioprotective effects, and dietary sources. J Nutr Biochem 7:66–76. https://doi.org/10.1016/S0955-2863(95)00168-9

    Article  CAS  Google Scholar 

  • Dangoggo SM, Faruq UZ, Hassan LG (2002) Preliminary phytochemical analysis and antibacterial activity of Pergularia tomentosa. Sokoto J Vet Sci 4:8–11

    Google Scholar 

  • David B, Wolfender JL, Dias DA (2015) The pharmaceutical industry and natural products: historical status and new trends. Phytochem Rev 14:299–315. https://doi.org/10.1007/s11101-014-9367-z

    Article  CAS  Google Scholar 

  • Djordjevic A, Canadanovic-Brunet JM, Vojinovic-Miloradov M, Bogdanovic G (2004) Antioxidant properties and hypothetic radical mechanism of fullerenol C60(OH)24. Oxid Commun 27:806–812

    CAS  Google Scholar 

  • Dluya T, Daniel D, Samuel BA (2017) Studies on in vitro antioxidant activities of methanol extract of five African traditional plants. Int J Res Pharm Biosci 4:28–36

    Google Scholar 

  • Elhag HM, El-Olemy MM, Al-Saidi MS (2002) Pergularia tomentosa in vitro culture and the production of cardenolides and other secondary metabolites. In: Nagata T, Ebizuka Y (eds) Biotechnology in agriculture and forestry, vol. 51. Medicinal and aromatic plants XII, vol 2002. Springer-Verlag, Berlin, pp 177–198

  • Favel A, Steinmetz MD, Regli P, Olivier EV, Elias R, Balandsard G (1994) In vitro antifungal activity of triterpenoid saponins. Planta Med 60:50–53. https://doi.org/10.1055/s-2006-959407

    Article  CAS  Google Scholar 

  • Gamelin FX, Baquet G, Berthoin S, Thevenet D, Nourry C, Nottin S, Bosquet L (2009) Effect of high intensity intermittent training on heart rate variability in prepubescent children. Eur J Appl Physiol 105:731–738. https://doi.org/10.1007/s00421-008-0955-8

    Article  Google Scholar 

  • Ghabi A, Brahmi J, Alminderej F, Mesaaoudi S, Vidal S, Kadri A, Aouadi K (2020) Multifunctional isoxazolidine derivatives as α-amylase and α-glucosidase inhibitors. Bioorg Chem 98:103713. https://doi.org/10.1016/j.bioorg.2020.103713

    Article  CAS  Google Scholar 

  • Ghannay S, Bakari S, Ghabi A, Kadri A, Msaddek M, Aouadi K (2017) Stereoselective synthesis of enantiopure N-substituted pyrrolidin-2,5-dione derivatives by 1,3-dipolar cycloaddition and assessment of their in vitro antioxidant and antibacterial activities. Bioorg Med Chem Lett 27:2302–2307. https://doi.org/10.1016/j.bmcl.2017.04.044

    Article  CAS  Google Scholar 

  • Ghannay S, Bakari S, Msaddek M, Vidal S, Kadri A, Aouadi K (2020) Design, synthesis, molecular properties and in vitro antioxidant and antibacterial potential of novel enantiopure isoxazolidine derivatives. Arab J Chem 13:2121–2131. https://doi.org/10.1016/j.arabjc.2018.03.013

    Article  CAS  Google Scholar 

  • Gohar AA, El-Olemy MM, Abdel-Sattar E, El-Said M, Niwa M (2000) Cardenolides and Β- sitosterol glucoside from Pergularia tomentosa L. Nat Prod Sci 6:142–146

    CAS  Google Scholar 

  • Gomez A, Bozari S, Yanmis D, Gulluce M, Sahin F, Agar G (2015) Chemical composition and antibacterial activity of essential oils of two species of Lamiaceae against phytopathogenic bacteria. Pol J Microbiol 64:121–127

    Article  Google Scholar 

  • Green PWC, Veitch NC, Philip C, Monique SJ (2011) Cardenolides isolated from Gomphocarpus sinaicus and Pergularia tomentosa (Asclepiadaceae) deter the feeding of a generalist caterpillar, Spodoptera littoralis. Arthropod Plant Interact 5:219–225. https://doi.org/10.1007/s11829-011-9131-x

    Article  Google Scholar 

  • Gupta PD, Birdi TJ (2017) Development of botanicals to combat antibiotic resistance. J Ayurveda Integr Med 8(4):266–275. https://doi.org/10.1016/j.jaim.2017.05.004

    Article  Google Scholar 

  • Hamza N, Berkea B, Umarc A, Chezea C, Gind H, Moorea N (2019) A review of Algerian medicinal plants used in the treatment of diabetes. J Ethnopharmacol 238:111841. https://doi.org/10.1016/j.jep.2019.111841

    Article  Google Scholar 

  • Hassan SW, Umar RA, Ladan MJ, Nyemike P, Wasagu RSU, Lawal M, Ebbo AA (2007) Nutritive value, phytochemical and antifungal properties of Pergularia tomentosa L. (Asclepiadaceae). Int J Pharmacol 3:334–340. https://doi.org/10.3923/ijp.2007.334.340

    Article  CAS  Google Scholar 

  • Heneidak S, Grayer RJ, Kite GC, Simmonds MSJ (2006) Flavonoid glycosides from Egyptian species of the tribe Asclepiadeae (Apocynaceae, Subfamily Asclepiadoideae) Simmonds. Biochem Syst Ecol 34:575–584. https://doi.org/10.1016/j.bse.2006.03.001

    Article  CAS  Google Scholar 

  • Hernández NE, Tereschuk M, AndAbdala LR (2000) Antimicrobial activity of flavonoid in medicinal plants from Tafidel Valle (Tacuman, Argentina). J Ethanopharmacol 73:317–322. https://doi.org/10.1016/s0378-8741(00)00295-6

    Article  Google Scholar 

  • Herode SS, Hadolin M, Škerget M, Knez Z (2003) Solvent Extraction study of antioxidants from balm (Melissa officinalis L.) leaves. Food Chem 80(2):275–282. https://doi.org/10.1016/S0308-8146(02)00382-5

    Article  Google Scholar 

  • Hoekou PY, Tchacondo T, Gbogbo KA, Tchelougou D, Pissang P, Karou SD, Améyapohm YA, Batawila K, Annigoni P, Faso B (2015) Antibacterial activities of three latex plants of Asclepiadaceae family used in traditional medicine in South Togo. Int J Curr Microbiol App Sci 4:882–891

    CAS  Google Scholar 

  • Hosseini Kahnouj SH, Ayyari M, Azarnivand H, Piacente S, ZareChahouki MA (2017) Pergularia tomentosa, from traditional uses to ecology and phytochemistry. J Med Plants 16:108–118

    Google Scholar 

  • Hosseini M, Ayyari M, Meyfour A, Piacente A, Cerulli A, Crawford A, Pahlavan S (2020) Cardenolide-rich fraction of Pergularia tomentosa as a novel Antiangiogenic agent mainly targeting endothelial cell migration. DARU J Pharm Sci 28:533–543. https://doi.org/10.1007/s40199-020-00356-7

    Article  CAS  Google Scholar 

  • Houngbèmè AG, Ganfon HMY, Medegan S, Yèhouénou B, Bambola B, Gandonou C, Gbaguidi FA (2015) Antimicrobial activity of compounds from Acanthospermumhispidum DC and Caesalpiniabonduc (L.) ROXB: Beninese plants used by healers against HIV-associated microbial infections. J Appl Pharm Sci 5:073–081. https://doi.org/10.7324/JAPS.2015.50812

    Article  Google Scholar 

  • Hussein HI, Al-Rajhi D, El-Shahawy F, Hashem S (1999) Molluscicidal activity of Pergularia tomentosa (L.), methomyl and methiocarb, against land snails. Int J Pest Manag 45:211–213. https://doi.org/10.1080/096708799227815

    Article  CAS  Google Scholar 

  • Ignacimuthu S, Pavunraj M, Raja N (2009) Antibacterial activity of a novel quinone from the leaves of Pergularia deamia. Asian J Tradit Med 4:36–40

    CAS  Google Scholar 

  • Ikram EHK, Eng KH, Jalil AMM, Ismail A, Idris S, Azlan A, Nazri HSM, Diton NAM, Mokhtar RAM (2009) Antioxidant capacity and total phenolic content of Malaysian underutilized fruits. J Food Compos Anal 22:388–393. https://doi.org/10.1016/j.jfca.2009.04.001

    Article  CAS  Google Scholar 

  • Jain SC, Pancholi B, Jain R (2012) Studies on antimicrobial and antioxidant potentials of Pergularia daemia (Forsk.) Chiov. Asian J Chem 24:3513–3516

    CAS  Google Scholar 

  • Jdey A, Falleh H, Jannet SB, Hammi KM, Dauvergne X, Magné C, Ksouri R (2017) Anti-aging activities of extracts from Tunisian medicinal halophytes and their aromatic constituents. EXCLI J 16:755–769. https://doi.org/10.17179/excli2017-244

    Article  CAS  Google Scholar 

  • Juntachote T, Berghofer E (2005) Antioxidative properties and stability of ethanolic extracts of Holy basil and Galangal. Food Chem 92:193–202. https://doi.org/10.1016/j.foodchem.2004.04.044

    Article  CAS  Google Scholar 

  • Kadri A, Aouadi K (2020) In vitro antimicrobial and α-glucosidase inhibitory potential of enantiopure cycloalkylglycine derivatives: insights into their in silico pharmacokinetic, druglikeness, and medicinal chemistry properties. J Appl Pharm Sci 10:107–115. https://doi.org/10.7324/JAPS.2020.10614

    Article  CAS  Google Scholar 

  • Kähkönen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, Heinonen M (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47:3954–3962. https://doi.org/10.1021/jf990146l

    Article  CAS  Google Scholar 

  • Kanojiya S, Modhusudanan KP (2012) Rapid identification of calotropagenin glycosides using high-performance liquid chromatography electrospray ionisation tandem mass spectrometry. Phytochem Anal 23:117–125. https://doi.org/10.1002/pca.1332

    Article  CAS  Google Scholar 

  • Karthishwaran K, Mirunalini S (2012) Assessment of the antioxidant potential of Pergularia daemia (forsk.) extract in vitro and in vivo experiments on hamster buccal pouch carcinogenesis. Asian Pac J Trop Dis 2:S509–S516. https://doi.org/10.1016/S2222-1808(12)60212-6

    Article  CAS  Google Scholar 

  • Khasawneh MA, Elwy HM, Fawzi NM, Hamza AA, Chevidenkandy AR, Hassan AH (2011) Antioxidant activity, lipoxygenase inhibitory effect and polyphenolic compounds from Calotropis procera (Ait.) R. Br. Res J Phytochem 5:80–88. https://doi.org/10.3923/rjphyto.2011.80.88

    Article  CAS  Google Scholar 

  • Kumar M, Gupta V, Kumari P, Reddy C, Jha B (2011) Assessment of nutrient composition and antioxidant potential of Caulerpaceae seaweeds. J Food Compos Anal 24:270–278. https://doi.org/10.1016/j.jfca.2010.07.007

    Article  CAS  Google Scholar 

  • Lahmar I, Belghith H, Ben Abdallah F, Belghith K (2017) Nutritional composition and phytochemical, antioxidative, and antifungal activities of Pergularia tomentosa L. Biomed Res Int:1–9. https://doi.org/10.1155/2017/6903817

  • Lapointe J (2013) Mechanism and evolution of multidomain aminoacyl-tRNA synthetases revealed by their inhibition by analogues of a reaction intermediate, and by properties of truncated forms. J Biomed Sci Eng 6:943–946. https://doi.org/10.4236/jbise.2013.610115

    Article  CAS  Google Scholar 

  • Mahalel UA (2012) Antibacterial sensitivity for some chemically diverse steroidal glycosides in vitro. J Agric Soc Sci 8:24–28

    Google Scholar 

  • March RE, Miao XS (2004) A fragmentation study of kaempferol using electrospray quadrupole time-of-flight mass spectrometry at high mass resolution. Int J Mass Spectrom 231:157–167. https://doi.org/10.1016/j.ijms.2003.10.008

    Article  CAS  Google Scholar 

  • Marmonier A (1990) Introduction aux techniques d’étude des antibiotiques, In Bactériologie Médicale. Techniques Usuelles 227–236

  • Micheal J, Pelezec Chan ECS, Noel RK (1998) Microbiology, 4th edn. Tata Mc Graw Hill, pp 535–537

  • Miladi M, Abdellaoui K, Regaieg H, Omri G, Acheuk F, Ben Halima-Kamel M (2018) Effects of latex from Pergularia tomentosa and the aggregation pheromone, phenylacetonitrile, on Locusta migratoria larvae. Tunis J Plant Prot 13(si):87–98

    Google Scholar 

  • Miraliakbari H, Shahidi F (2008) Antioxidant activity of minor components of tree nut oils. Food Chem 111:421–427. https://doi.org/10.1016/j.foodchem.2008.04.008

    Article  CAS  Google Scholar 

  • Morebise O, Fafunso MA (1998) Antimicrobial and phytotoxic activities of saponins extracts from two Nigerian edible medicinal plants. Biochemistry 8:69–77

    CAS  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  Google Scholar 

  • Mseddi K, Alimi F, Noumi E, Deshpande S, Adnan M, Hamdi A, Elkahoui S, Alghamdi G, Kadri A, Patel M, Snoussi M (2020) Thymus musilii Velen. as a promising source of potent bioactive compounds with its pharmacological properties: in vitro and in silico analysis. Arab J Chem 13(8):6782–6801. https://doi.org/10.1016/j.arabjc.2020.06.032

    Article  CAS  Google Scholar 

  • Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335. https://doi.org/10.1021/np200906s

    Article  CAS  Google Scholar 

  • Nishaa S, Vishnupriya M, Sasikumar JM, Hephzibah PC, Gopalakrishnan VK (2012) Antioxidant activity of ethanolic extract of Maranta arundinacea L. tuberous rhizomes. Asian J Pharm Clin Res 5:85–88

    Google Scholar 

  • Ntie-Kang F, Yong JN (2014) The chemistry and biological activities of natural products from Northern African plant families: from Aloaceae to Cupressaceae. RSD Adv 4:61975–61991. https://doi.org/10.1039/C4RA11467A

    Article  CAS  Google Scholar 

  • O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: an open chemical toolbox. J Cheminform 3:33

    Article  Google Scholar 

  • Onoruvwe O, Olorunfemi PO (1998) Antibacterial screening and pharmacognostic evaluation of Dichrosta chyscinerea root. Afr J Biol Sci 7:91–99

    Google Scholar 

  • Othman IMM, Gad-Elkareem MAM, Aouadi K, Kadri A, Snoussi M (2020a) Design, synthesis ADMET and molecular docking of new imidazo[4,5-b]pyridine-5-thione derivatives as potential tyrosyl-tRNA synthetase inhibitors. Bioorg Chem 102:104105. https://doi.org/10.1016/j.bioorg.2020.104105

    Article  CAS  Google Scholar 

  • Othman IMM, Gad-Elkareem MAM, Snoussi M, Aouadi K, Kadri A (2020b) Novel fused pyridine derivatives containing pyrimidine moiety as prospective tyrosyl-tRNA synthetase inhibitors: Design, synthesis, pharmacokinetics and molecular docking studies. J Mol Struct 1219:128651. https://doi.org/10.1016/j.molstruc.2020.128651

    Article  CAS  Google Scholar 

  • Oyagade JO, Awotoye OO, Adewumi TJ, Thorpe HT (1999) Antibacterial activity of some Nigerian medicinal plants. i. screening for antibacterial activity. Biosci Res Commun 1:193–197

    Google Scholar 

  • Pandey A, Swarnkar V, Pandey T, Srivastava P, Kanojiya S, Mishra DK, Tripathi V (2016) Transcriptome and metabolite analysis reveal candidate genes of the cardiac glycoside biosinthetic pathway from Calotropis Procera. Sci Rep 6:344–364. https://doi.org/10.1038/srep34464

    Article  CAS  Google Scholar 

  • Parulekar RS, Sonawane KD (2018) Molecular modeling studies to explore the binding affinity of virtually screened inhibitor toward different aminoglycoside 905 kinases from diverse MDR strains. J Cell Biochem 19:2679–2695. https://doi.org/10.1002/jcb.26435

    Article  CAS  Google Scholar 

  • Parveen M, Ghalib RM, Khanam Z, Mehdi SH, Ali M (2010) A novel antimicrobial agent from the leaves of Peltophorum vogelianum (Benth.). Nat Prod Res 24:1268–1273. https://doi.org/10.1080/14786410903387688

    Article  CAS  Google Scholar 

  • Paulo A, Pimentel M, Viegas S, Pires I, Duarte A, Cabrita J, Gomes ET (1994) Cryptolepis sanguinolenta activity against diarrhoeal bacteria. J Ethnopharmacol 44:73–77. https://doi.org/10.1016/0378-8741(94)90071-X

    Article  CAS  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  Google Scholar 

  • Piacente S, Masullo M, De Neve N, Dewelle J, Hamed A, Kiss R, Mijatovic T (2009) Cardenolides from Pergularia tomentosa display cytotoxic activity resulting from their potent inhibition of Na+/K+-ATPase. J Nat Prod 72:1087–1091. https://doi.org/10.1021/np800810f

    Article  CAS  Google Scholar 

  • Prachayasittikul S, Sarabam P, Cherdtrakulkiat R, Ruchirawat S, Prachaysittikul V (2010) New bioactive triterpenoids and antimalarial activity of Diospyros rubra Lec. EXCLI J 9:1–10

    Google Scholar 

  • Qiu X, Janson CA, Smith WW, Green SM, McDevitt P, Johanson K, Carter P, Hibbs M, Lewis C, Chalker A, Fosberry A, Lalonde J, Berge J, Brown P, Houge-Frydrych CS, Jarvest RL (2001) Crystal structure of Staphylococcus aureus tyrosyl-tRNA synthetase in complex with a class of potent and specific inhibitors. Protein Sci 10:2008–2016. https://doi.org/10.1110/ps.18001

    Article  CAS  Google Scholar 

  • Rached W, Benamar H, Bennaceur M, Marouf A (2010) Screening of the antioxidant potential of some Algerian indigenous plants. J Biol Sci 10:316–324. https://doi.org/10.3923/jbs.2010.316.324

    Article  Google Scholar 

  • Raghavamma STV, Rama Rao N, Sambasiva Rao KRS, DevelaRao G (2013) Screening the leaf extract of Pergularia daemia (Forssk.) Chiov., for its antioxidant property and potential antimicrobial activities on medicinally important pathogens. Int J Phytopharm 4:217–222

    Google Scholar 

  • Ramya LN, Pulicherla KK (2015) Molecular insights into cold active polygalacturonase enzyme for its potential application in food processing. J Food Sci Technol 52:5484–5496

    Article  CAS  Google Scholar 

  • Rayyan WA, Alshammari SAG, AL-Sammary AMF, AL-Shammari MSS, Seder N, Qatoosh LFA, Bostami M, Mansoor K, Hamad MF, Al-Majali IS, Daiyyah WA (2018) The phytochemical analysis and antimicrobial activity of Pergularia tomentosa in North East Kingdom of Saudi Arabia KSA. Biomed Pharmacol J 11:1763–1771. https://doi.org/10.13005/bpj/1547

    Article  CAS  Google Scholar 

  • Reddy MN, Adnan M, Alreshidi MM, Saeed M, Patel M (2020) Evaluation of anticancer, antibacterial and antioxidant properties of a medicinally treasured fern tectaria coadunata with its phytoconstituents analysis by HR-LCMS. Anti Cancer Agents Med Chem 20(15):1845–1856

    Article  CAS  Google Scholar 

  • Ríos JL, Recio MC (2005) Medicinal plants and antimicrobial activity. J Ethnopharmacol 100:80–84. https://doi.org/10.1016/j.jep.2005.04.025

    Article  CAS  Google Scholar 

  • Romani A, Pinelli P, Cantini C, Cimato A, Heimler D (2006) Characterisation of Violetto di Toscana, a typical Italian variety of artichoke (Cynarascolymus L.). J Food Chem 95:221–225. https://doi.org/10.1016/j.foodchem.2005.01.013

    Article  CAS  Google Scholar 

  • Scalbert A (1991) Antimicrobial properties of tannins. Phytochemistry 30:3875–3883. https://doi.org/10.1016/0031-9422(91)83426-L

    Article  CAS  Google Scholar 

  • Shale TL, Stirk WA, Van Staden J (1999) Screening of medicinal plants used in lesotho for antibacterial and anti-inflammatory activity. J Ethnopharmacol 67:347–354. https://doi.org/10.1016/S0378-8741(99)00035-5

    Article  CAS  Google Scholar 

  • Shinkafi SA (2013) Antidermatophytic activities, phytochemical screening and chromatographic studies of Pergularia tomentosa L. and Mitracarpus scaber Zucc used in the treatment of dermatophytoses. Adv Med Plant Res 2:7–15

  • Shinkafi SA, Manga SB (2011) Isolation of dermatophytes and screening of selected medicinal plants used in the treatment of dermatophytoses. Int Res J Microbiol 2:040–048

    Google Scholar 

  • Snoussi M, Noumi E, Trabelsi N, Flamini G, Papetti A, De Feo V (2015) Mentha spicata essential oil: chemical composition: antioxidant and antibacterial activities against planktonic and biofilm cultures of Vibrio spp. strains. Molecules 20:14402–14424. https://doi.org/10.3390/molecules200814402

    Article  CAS  Google Scholar 

  • Snoussi M, Trabelsi N, Dehmeni A, Benzekri R, Bouslama L, Hajlaoui B, Al-Sieni A, Papetti A (2016) Phytochemical analysis antimicrobial and antioxidant activities of Allium roseum var. odoratissimum (Desf.) Coss extracts. Ind Crop Prod 89:533–542. https://doi.org/10.1016/j.indcrop.2016.05.048

    Article  CAS  Google Scholar 

  • Sonawane KD, Barage SH (2015) Structural analysis of membrane-bound hECE-1 dimer using molecular modeling techniques: insights into conformational changes and Abeta1-42 peptide binding. Amino Acids 47:543–559. https://doi.org/10.1007/s00726-014-1887-8

    Article  CAS  Google Scholar 

  • Subramanian S, Kumar DS, Arulselvan P, Senthilkumar GP (2006) In vitro antibacterial and antifungal activities of ethanolic extract of Aloe vera leaf gel. J Plant Sci 1:348–355. https://doi.org/10.3923/jps.2006.348.355

    Article  Google Scholar 

  • Tripathi P, Awasthi S, Kanojiya S, Tripathi V, Mishra DK (2013) Callus culture and in vitro biosynthesis of cardiac glycosides from Calotropis gigantea. In Vitro Cell Dev Biol Plant 49:455–460

    Article  CAS  Google Scholar 

  • Uniyal SK, Singh KN, Jamwal P, Lal B (2006) Traditional use of medicinal plants among the tribal communities of ChhotaBhangal, Western Himalayan. J Ethnobiol Ethnomed 2:1–14

    Article  Google Scholar 

  • Velioglu YS, Mazza G, Gao L, Oomah BD (1998) Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem 46:4113–4117. https://doi.org/10.1021/jf9801973

    Article  CAS  Google Scholar 

  • Yakubu R, Musa F, Lukman A, Sheikh F (2015) Activity guided fractionation with antimicrobial evaluation of Pergularia tomentosa L. (Asclepiadacea) whole plant. Br Microbiol Res J 8:567–576. https://doi.org/10.9734/BMRJ/2015/17027

    Article  Google Scholar 

  • Young IS, Woodside JV (2001) Antioxidants in health and disease. J Clin Pathol 54:176–186. https://doi.org/10.1136/jcp.54.3.176

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Hafedh Hajlaoui (Research Unit Valorization and Optimization of Resource Exploitation (UR16ES04), Faculty of Science and Technology of Sidi Bouzid, University of Kairouan, Campus University Agricultural City—Sidi Bouzid 9100, Tunisia), for collecting material samples.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Fatma Haddagi: performed experimental work related to plant extraction, antimicrobial activities testing, data analysis, and original draft writing. Prof. Adele Papetti and Prof. Rafaella Colombo: analyzed the phytochemical composition of the obtained extracts, helped in paper revision, and editing. Dr. Emira Noumi: experimental supervision and data collection and analysis. Dr. Sumukh Deshpande and Dr. Mohd Adnan: performed the computational study and helped in original draft writing. Dr. Kaiis Aouadi: performed ADMET prediction. Prof. Adel Kadri: analyzed all data obtained related to pharmacokinetic properties and toxicity prediction and helped in the final paper editing and revising. Prof. Boulbaba Selmi: Co-supervision. Dr. Mejdi Snoussi: designed the work, supervised the experimental work, helped in formal analysis, and original draft writing.

Corresponding author

Correspondence to Mejdi Snoussi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval and consent to participate

No human or animal specimens were used in this work.

Consent to publish

Not applicable.

Additional information

Responsible editor: Mohamed M. Abdel-Daim

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haddaji, F., Papetti, A., Noumi, E. et al. Bioactivities and in silico study of Pergularia tomentosa L. phytochemicals as potent antimicrobial agents targeting type IIA topoisomerase, TyrRS, and Sap1 virulence proteins. Environ Sci Pollut Res 28, 25349–25367 (2021). https://doi.org/10.1007/s11356-020-11946-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-11946-y

Keywords

Navigation