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Abstract
To control the spread of COVID-19, China has imposed national lockdown policies to restrict the movement of its population
since the Chinese New Year of January 2020. In this study, we quantitatively analyzed the changes of pollution sources in
Shanghai during the COVID-19 lockdown; a high-resolution emission inventory of typical pollution sources including stationary
source, mobile source, and oil and gas storage and transportation source was established based on pollution source data from
January to February 2020. The results show that the total emissions of sulfur dioxide (SO2), nitrogen oxides (NOx), particulate
matter (PM), and volatile organic compounds (VOCs) were 9520.2, 37,978.6, 2796.7, and 7236.9 tons, respectively, during the
study period. Affected by the COVID-19 lockdown, the mobile source experienced the largest decline. The car mileage and oil
sales decreased by about 80% during the COVID-19 lockdown (P3) when compared with those during the pre-Spring Festival
(P1). The number of aircraft activity decreased by approximately 50%. The impact of the COVID-19 epidemic on industries such
as iron and steel and petrochemicals was less significant, while the greater impact was on coatings, chemicals, rubber, and plastic.
The emissions of SO2, NOx, PM2.5, and VOCs decreased by 11%, 39%, 37%, and 47%, respectively, during P3 when compared
with those during P1. The results show that the measures to control the spread of the COVID-19 epidemic made a significant
contribution to emission reductions. This study may provide a reference for other countries to assess the impact of the COVID-19
epidemic on emissions and help establish regulatory actions to improve air quality.
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Introduction

The air pollution in China has become the focus of attention of
scientists and the public due to frequent air pollution events in
recent years (Wang et al. 2014). Air pollutant emission

inventories are essential for understanding air pollutant emis-
sion and developing effective pollution control strategies (Qi
et al. 2017). Tremendous efforts have been made to establish
atmospheric emission inventories of nation-scale (Wang et al.
2005) and city-scale (Zhang et al. 2008) in China. However,
these emission inventories are often implemented on a yearly
basis, such that the time resolution was low. An atmospheric
emission inventory of high resolution is favorable for a com-
prehensive understanding of the changes of pollution sources,
clarifying the spatial and temporal changes of pollutants, fore-
casting air quality, and guiding air pollution control strategies
(Liu et al. 2018). Several studies have established high-
resolution emission inventories for a single pollution source,
such as for power plants (Chen et al. 2019), vehicles (Liu et al.
2018), and ships (Li et al. 2016). Such high-resolution emis-
sion inventories for single pollution sources often analyzed the
daily or hourly variation of the emissions, while the emission
inventories established for multiple pollution sources mostly

Responsible Editor: Lotfi Aleya

* Jinping Cheng
jpcheng@sjtu.edu.cn

1 China-UK Low Carbon College, Shanghai Jiao Tong University,
Shanghai 200240, China

2 School of Environmental Science and Engineering, Shanghai Jiao
Tong University, Shanghai 200240, China

3 Shanghai Environmental Monitor Center, Shanghai 200235, China
4 Shanghai Environmental Protection Information Center,

Shanghai 200235, China

https://doi.org/10.1007/s11356-020-11858-x

/ Published online: 16 April 2021

Environmental Science and Pollution Research (2021) 28:45344–45352

http://crossmark.crossref.org/dialog/?doi=10.1007/s11356-020-11858-x&domain=pdf
mailto:jpcheng@sjtu.edu.cn


demonstrated the monthly changes of pollution sources (Zhou
et al. 2015; Qiu et al. 2014; Hua et al. 2019). There is a need
for an accurate daily-resolution emission inventory to
meet the demands of policy making for significant in-
ternational events or heavy pollution weather warning
when strict and temporary pollution control measures
are required (Su et al. 2017).

In January 2020, COVID-19 broke out in China. To control
the spread of the virus, China has imposed lockdown policies
to keep social distance. This has resulted in widespread col-
lateral effects, such as factory shutdowns, school suspensions,
and banned parties. As people were required to reduce unnec-
essary contact with each other and remain isolated, the
transportation industry was expected to be significantly
affected by the COVID-19 epidemic, e.g., air traffic
saw a dramatic decline of 60% (Josephs 2020). Thus,
the accompanying emissions from air traffic were be-
lieved to be reduced. Additionally, the National
Aeronautics and Space Administration (NASA) pollu-
tion monitoring satellite has also detected a consider-
able decrease in NO2 concentration when compared
with the concentrations before and during the outbreak
of the COVID-19 epidemic (NASA 2020), which is
largely attributed to the decrease in anthropogenic ac-
tivities due to the strategies in containing the spread of
COVID-19 in China.

To assess the impact of the containing measures of the
COVID-19 spread on air quality quantitatively, a few studies
have addressed the changes in air pollutant concentration
(Mahato et al. 2020), and some others have analyzed data
from statistical reports, such as power generation and cement
production, combined with the emission inventory from pre-
vious years for simulation modeling (Li et al. 2020).
According to published literature, there has been no establish-
ment of a high-resolution emission inventory of pollution

sources, to analyze the changes of air pollutant emissions dur-
ing the COVID-19 lockdown, which is very important for us
to assess the impact of the COVID-19 lockdown on air
quality.

In this study, we obtained activity data of several pollution
sources with high time resolution and established a high-
resolution atmospheric emission inventory during the period
of 1 January 2020 to 29 February 2020 in Shanghai, China.

Methods and materials

Data sources

Pollution source activity data during the period of 1 January
2020 to 29 February 2020 were collected. The pollution
source activity data used in this study were mainly provided
by the Shanghai Municipal Bureau of Ecology and
Environment. The pollution source activity data are shown
in Table 1. The detailed emission factors are shown in
Tables S1.

Methods

Stationary source

For enterprises which have a continuous emission monitoring
system (CEMS), the SO2, NOx, and PM emissions were cal-
culated according to the “Specifications and test procedures
for continuous emission monitoring system for SO2, NOx and
particulate matter in flue gas emitted from stationary sources
(HJ76-2017).” The emissions can be calculated according to
Eq. (1).

Di ¼ Ci � Qi � 10−6 ð1Þ

Table 1 Pollution source activity data in this study

Category Sub-category Activity data description

Stationary source Enterprises that have continuous
emission monitoring system (CEMS)

Daily concentration and emissions of SO2, NOx, and PM

Enterprises that do not have CEMS The daily electricity consumption of industrial
enterprises and the total annual electricity consumption
and pollutant emissions of the last year

Mobile source Motor vehicle Vehicle ownership at all types and emission stages,
annual mileage, vehicle operating conditions,
and real-time vehicle flow

Ship Real-time automatic identification system (AIS) data

Aircraft Daily flights

Oil and gas storage and transportation source Service stations Daily oil sales

Dust source Road, construction site, aggregate pile Daily particulate concentration of dust from roads,
construction sites, and aggregate pile
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where Di represents the total emissions of pollutants, kg h−1;

Ci is the concentration of SO2, NOx, and PM, mg m−3; and

Qi is the smoke volume, m3 h−1.
For enterprises where CEMS is not accessible, high-

frequency data are generally necessary to study their emission
character, but obtaining the production data timely is difficult.
The electricity consumption of an enterprise is correlated to its
production character. Therefore, the daily electricity con-
sumption and the annual total electricity consumption and
total pollutant emission of the industrial enterprise in last year
were considered. The emissions can be calculated on the basis
of Eq. (2):

E j ¼ Aj � Bj

Dj
ð2Þ

where Ej represents the emissions of pollutants, kg; j repre-
sents the industrial enterprise; Aj is the daily electricity con-
sumption of the industrial enterprise in 2020, kW h; Bj is the
total atmospheric emission of industrial enterprise in the last
year, kg; and Dj is the annual electricity consumption of the
industrial enterprise in the last year, kW h.

Mobile sources

Vehicle source The types, emission stages, annual mileage,
driving condition of each vehicle, and real-time vehicle flow
were obtained. Basic emission factors of each type of vehicle
were taken from the IVE model (Chen et al. 2007). The emis-
sions can be calculated according to Eq. (3):

Ev ¼ VTc;r � Lr � EFv ð3Þ
where Ev represents the emissions of pollutants, kg h−1; c
represents the vehicle type; r is the road type; VT is traffic
volume, vehicle h−1; L is road length, km; and EFv is the
emission factor, kg (km·vehicle)−1.

Aircraft source An aircraft flight is usually divided into two
parts: landing and takeoff cycle (LTO) and cruise. The impact
of aircraft flying above the atmospheric mixing layer on the air
quality of the airport vicinity can be ignored, while the LTO
cycle has a significant impact on the local air quality (Xu et al.
2020). The emissions can be calculated based on the number
of LTO cycles according to Eq. (4):

Ea ¼ Aa � EFa ð4Þ
where Ea represents the emission of pollutants, kg; Aa is the
daily takeoff and landing cycles of the aircraft; and EFa is the
emission factor, kg LTO−1.

Ship source The emissions were calculated based on automat-
ic identification system (AIS) data. Calculation methods and

emission factors were selected by referring to relevant litera-
ture (Fan et al. 2016).

Oil and gas storage and transportation sources

The VOC emissions from oil and gas storage and transporta-
tion were estimated by the following equation:

Eg ¼ EFg � Qg � 1−ηð Þ ð5Þ

where Eg represents the emission of pollutants, kg; EFg is
the emission factor; Qg is the daily sales of oils at service
stations, kg; and η represents the removal efficiency of
VOCs by pollution control technology.

Uncertainty analysis

The accuracy of activity data and emission factor is vitally
important for emission quantification (Zhao et al. 2010). The
Monte Carlo analysis method was applied to quantify the po-
tential uncertainty of the established emission inventory
(Streets et al. 2003). The uncertainty of the emission factor
and activity level were given by simulation equation, and
10,000 simulations were implemented. The upper and lower
limits of 95% confidence interval were assigned to determine
the uncertainty range.

Results and discussions

Primary air pollutant emissions

The emissions of SO2, NOx, PM2.5, and VOCs from
typical sources in Shanghai during the period of 1
January 2020 to 29 February 2020 are summarized in
Table 2. Industrial enterprise represents the largest emis-
sion source of PM2.5 and VOCs, accounting for 44%
and 73% of the total emissions, respectively, while con-
tributing only 17% and 12% of the SO2 and NOx emis-
sions, respectively. NOx was emitted largely from ships
(61%), vehicles (23%), and industrial enterprises (12%).
Ships and industrial enterprises were the two dominant
sources for SO2, accounting for 79% and 17%, respec-
tively, while power plants accounted for only 4%. This
may be because the coal-fired power plants in Shanghai
had met the ultralow emission requirements in 2017,
and the coal-fired power plants’ pollutant emissions
had been reduced significantly (Chen et al. 2019). It is
noteworthy that emissions from ships account for 79%,
61%, and 32% of the total SO2, NOx, and PM2.5 emis-
sions, respectively. Ship emissions account for a rela-
tively large proportion and should not be ignored. It is
necessary to formulate effective control measures.
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Analysis of pollution source changes during COVID-19

Figure 1 shows the daily variation of atmospheric pollutant
emissions from January to February 2020. To analyze the
changes in intensity of the source activity before and after
the implementation of strategies to contain the spread of
COVID-19, the period of 1 January 2020 to 29 February
2020 was divided into four phases: pre-Spring Festival period
(P1, 1.1–1.23), during the Spring Festival (P2, 1.24–1.31),
during the COVID-19 lockdown (P3, 2.1–2.9), and during
the resumption of work and production (P4, 2.10–2.29).
There are no emission reduction measures during P1, so it
can represent the general pollution status. The comparison
between the changes in pollution sources during P3 and those
during P1 can objectively analyze the impact of the disease on
pollution sources. The Spring Festival is the most important
festival in China. Traffic and industrial businesses are gener-
ally reduced sharply during the Spring Festival in most cities
in China because a large number of non-local residents will
leave the city and return to their hometowns for vacation.
Figure 1 depicts all other pollutants except NOx with a de-
creasing trend during P2, and NOx emissions increased due

to the increase in ship emissions at P2. After the Spring
Festival, a large number of public spaces were closed and
enterprises were suspended due to the COVID-19 lockdown.
Traffic flow, catering enterprises, and construction sites were
also affected. Emissions of all the investigated pollutants
showed a steady decreasing trend during P3. According to
the COVID-19 prevention and control arrangement, industrial
enterprises in Shanghai began to resume to work conditionally
since February 9, and road traffic flow showed an increase
since then. Correspondingly, emissions also showed an up-
ward trend but did not reach the level during P1.

Stationary source

CEMS data were adopted to analyze the change of the emis-
sions for enterprises with CEMS, while electricity consump-
tion data were used for enterprises without CEMS.

Comparing with the emissions during P1, SO2, NOx, and
PM emissions of power plants decreased by 10%, 38%, and
26% during P3, respectively.

For enterprises without CEMS, the electricity consumption
during P2, P3, and P4 decreased by 16%, 19%, and 12%,
respectively, when compared with that during P1. The con-
taining measures during P3 had a considerable impact on the
production activities of the enterprises. Electricity consump-
tion has been restored to some extent during P4; however, the
level was still lower than that during P1.

According to “Industry classification for national economic
activities (GB/4754-2017),” industrial enterprises are divided
into eight major industries: steel and iron, chemical, petro-
chemical, painting, rubber and plastic, printing, nonferrous,
and other industries. Figure 2 shows the four-stage variation
of electricity consumption in different industries. Comparing
with the electricity consumption of different industry branches
during P1, the electricity consumption of the steel and iron
industry was almost the same and the petrochemical industry
saw a reduction of 9% during P3, which were less affected by
the COVID-19 lockdown. This has a certain correlation with
the production character and production scale of the enter-
prise. The two industries are mainly composed dominantly
of large enterprises, and the production character of the iron

Table 2 Emission in Shanghai from January to February 2020 (t)

Category Sub-category SO2 NOx PM2.5 VOCs

Stationary source Industrial enterprise 1587.8 4518.1 1242.1 5261.7

Power plant 336.6 864.6 33.4 –

Mobile source Vehicle – 8760.2 596.9 1640.2

Aircraft 27.7 606.7 20.9 105.5

Ship 7568.1 23229.0 903.4 –

Oil and gas storage and transportation source Service station – – – 229.5

Total 9520.2 37978.6 2796.7 7236.9

Fig. 1 Daily temporal profiles of SO2, NOx, PM2.5, and VOC emissions
from January to February 2020
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and steel industry determines that the enterprises can hardly
suspend their production (Huang et al. 2017). Chemical, paint-
ing, rubber and plastic, printing, nonferrous, and other indus-
tries declined by 18%, 38%, 91%, 55%, 84%, and 57%, re-
spectively. Small-sized and medium-sized industrial en-
terprises experienced a significant decline in emissions
during P3, which is consistent with the observation by
Li et al. (2020).

Mobile sources

Vehicle source Fig. S1 shows that car mileage and oil sales
were reduced sharply during COVID-19 lockdown. The mile-
age of diesel trucks during P1, P2, and P3 decreased by 91%,
89%, and 53%, respectively, when compared with those dur-
ing P1, which was approximately consistent with the declin-
ing trend of diesel sales (85%, 80%, and 54%, respectively).
The mileage of passenger cars declined by 57%, 64%, and
49%, respectively, which was basically consistent with the
declining trend of gasoline sales (66%, 73%, and 64%,
respectively).

The mileage of vehicles was significantly correlated with
oil sales (Pearson correlation coefficient R = 0.97, p < 0.01).
Previous studies have reported daily emissions without con-
sidering the detailed relationship between car mileage and oil
sales.

Aircraft source The number of aircraft during P2, P3, and P4
decreased by 16%, 52%, and 71%, respectively, when com-
pared with those during P1. Due to lockdown policies, the
number of flights showed a trend of continuous decline, as is
shown in Fig. S2. However, other pollution source activities
showed an upward trend during P4, while aircraft movements
did not, suggesting that the control measures had a great in-
fluence on the aviation industry.

Ship source The number of ships during P2, P3, and P4 de-
creased by 50%, 47%, and 44%, respectively, when compared
with those during P1. Fig. S3 shows that the port ships with
larger emissions have a smaller decline than inland ships. The
number of inland ships decreased by 84%, 82%, and 76%,
respectively, while port ships dropped by 41%, 37%, and
35%, respectively.

Dust source

As indicated in Fig. 3, the concentration of road dust experi-
enced the largest decline, followed by the construction
dust and the aggregate pile dust during P3. The concen-
tration of road dust during P2, P3, and P4 decreased by
27%, 47%, and 48%, respectively, when compared with
those during P1. The concentration of construction dust
decreased by 15%, 24%, and 32%, respectively. The
concentration of aggregate pile dust decreased by 12%,
20%, and 26%, respectively.

Emissions during different phases

The emissions of SO2, NOx, VOCs, and PM2.5 during P2
decreased by 0.4%, 35%, 43%, and 28%, respectively, when
compared with those during P1. Emissions decreased by 11%,
39%, 47%, and 37%, respectively, during P3. Emissions
rebounded significantly during P4 but did not reach the P1
level, with reductions of 4%, 22%, 35%, and 37%,
respectively.

The emissions of NOx and VOCs had a sharp drop during
P3 when compared with P1, and that was mainly caused by
reductions in emissions from the diesel vehicles (85%) and
gasoline vehicles (82%), indicating the control measures
greatly reduced the pollution emissions caused by the move-
ment of people.

Fig. 2 Four-stage changes of
electricity consumption in
different industries
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Industrial emissions account for the majority of PM2.5 pol-
lution in China (Shi et al. 2017). However, essential industries
with large pollutant emissions did not curtail operations dur-
ing the control period for COVID-19 (MEP 2020); the PM2.5

emissions from industrial and power plants decreased by 25%
and 10% during P3 when compared with those in P1.

As a major pollutant emitted from the coal heating in winter
(Kuerban et al. 2020), the emissions of SO2 decreased by
11%, the slowest decline during P3 when compared with P1,
suggesting that coal heating activities were probably little af-
fected by the control measures (Fig. 4).

Uncertainty analysis

According to Monte Carlo uncertainty analysis, the uncertain-
ty ranges of SO2, NOx, PM2.5, and VOCs are − 21~28%, −
34~30%, − 29~27%, and − 35~32%, respectively. The power
plant source is relatively reliable because the majority of the
activity data were obtained from the detailed facility-level
census source. Uncertainties for SO2 and NOx emissions are
mainly caused by mobile sources because we are less confi-
dent of the emission estimates of those sources owing to the
considerable uncertainty in emission factors and activity

Fig. 3 Time series of
concentrations of dust from 1
Jan. to 29 Feb. 2020, in Shanghai

Fig. 4 Four-stage pollutant emissions (t). (a) NOx, (b) SO2, (c) PM2.5, (d) VOCs
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levels. Industrial enterprise source is the main contributor to
the uncertainties in PM2.5 and VOCs.

In this study, electricity consumption was applied to study
the production character of the enterprise. To analyze the ac-
curacy of this method, a large enterprise with employees >
1000 and operating income > 40 million yuan (http://www.
stats.gov.cn/tjgz/tzgb/201801/t20180103_1569254.html) was
selected to analyze the correlation between the enterprise’s
electricity consumption and the CEMS emission data. The
reason for selecting this enterprise is that the CEMS almost
covers all production lines of this enterprise, which can better
reflect the pollutant emissions of the enterprise.

A Pearson’s correlation coefficient analysis was conducted
to identify the correlation between the daily electricity con-
sumption of the enterprise and CEMS emission data through
SPSS 25.0 statistical software (IBM Corp., Armonk, NY,
USA). The electricity consumption of the enterprise showed
a significant positive correlation with CEMS emission data.
The correlation coefficients of SO2, NOx, and PMwere 0.806,
0.642, and 0843, respectively, and p < 0.01. Therefore, the
electricity consumption adopted in this study can reflect the
changes in production and emissions of enterprises.

Comparison with previous studies

Emission inventories of air pollutants in Shanghai were stud-
ied only for some specific emission sources, lacking compre-
hensive estimation especially in the province. The average
daily emissions from our study are compared to previous stud-
ies by emission sources.

For power plants, our estimated average daily emissions of
SO2, NOx, and PMwere 5.61 ± 0.88, 14.41 ± 4.25, and 0.56 ±
0.11 t, respectively, which were lower than those of Chen et al.
(2019) in 2017. The main reason for the differences was the
application of an ultralow emissions policy since 2017.
Additionally, the lockdown policy during P3 also has made
a significant contribution to emission reductions. As for ships,
the average daily emissions of NOx were higher than those of
Wan et al. (2020) in 2018, while SO2 and PM2.5 were lower.
These differences mainly derive from emission factors and
activity data.

For NOx and VOC average daily emissions of vehicles, our
estimates, applying emission factors obtained by the IVE
model, were only about 60% of what Yi (2020) studied in
2018, which also applied the IVEmodel. This large bias could
be explained by the emission reductions during the COVID-
19 lockdown.

Due to the control measures during COVID-19 lockdown,
the emissions from our study are generally lower than those of
previous studies. The emission reductions from our study are
compared with those of the other studies in the same period.

In our study, the emissions of SO2, NOx, VOCs, and PM2.5

decreased by 11%, 39%, 47%, and 37%, respectively, during

P3 when compared with P1. Li et al. (2020) estimated the
emission reductions during the epidemic control period based
on changes in the activity data. The emissions of SO2, NOx,
VOCs, and PM2.5 decreased by 26%, 47%, 57%, and 46%,
respectively, which were higher than those of our study, main-
ly due to the differences in sources and range of activity data.
Wang et al. (2020) used the Community Multi-Scale Air
Quality (CMAQ) model to assess emission during the out-
break of COVID-19, and the changes in transportation source
and industry source were considered in their study. The
emissions of pollutants decreased by about 20–40%.
Our study considered more sources (power plants, aircraft,
gas stations). That was the main reason why our results were
higher than theirs.

Conclusions

An emission inventory of typical air pollution sources in
Shanghai was established by obtaining the pollution source
data with high temporal resolution. The period of 1 January
2020 to 29 February 2020 was divided into four stages, focus-
ing on analyzing the changes in emissions and air quality
during P3. The main conclusions are as follows:

The emissions of SO2, NOx, VOCs, and PM2.5 were
9520.2, 37,978.6, 2796.7, and 7236.9 tons, respectively, dur-
ing the study period. The emissions from various pollution
sources decreased significantly during P3. Mobile source de-
picts the largest decrease, with the car mileage and oil sales
dropping by over 80%. The COVID-19 lockdown has a great-
er impact on the coating, chemical, rubber, and plastic indus-
tries and a relatively smaller impact on steel and iron, and
petrochemical industries. The emissions of SO2, NOx,
VOCs, and PM2.5 dropped by 11%, 39%, 47%, and 37%,
respectively, during P3 when compared with those in P1.

Although we recorded a temporary decline in air pollution
resulting from the lockdown, it is hard to maintain this reduc-
tion after China gradually returns to work. Although travel
restrictions cannot apply to air pollution control and preven-
tion, it is possible to improve air quality by reducing nones-
sential individual movements by highlighting the importance
of green commuting (Bao and Zhang 2020).

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s11356-020-11858-x.
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