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Abstract
This study seeks to dissect the basic factors that can elucidate the efficiency and innovation in biomass utilization to control carbon
dioxide (CO2) emission and economic growth nexus particularly at the time that the worldwide CO2 emission is at an all-time
high and COVID-19 is ravaging the word. We use data principally from theWorld Bank Indicators covering the period 1990–2016
to study the nexus among biomass utilization, economic growth, and CO2 emission based on the moderating role of biotechnology
in China. On the basis of the results of our preliminary tests, we apply the autoregressive distributed lag (ARDL) for this analysis and
employ the nonlinear autoregressive distributed lag (NARDL) as a robust check and also deploy the vector error correction model
(VECM) to determine the direction of causality. We find that long-run relationship exists among the factors in this study. We
additionally find that biotechnology has a critical but negative relationship with CO2 emission in China. Through hierarchical
multiple regression analysis and PROCESS macro for mediation, moderation, and conditional process, we establish that biotech-
nology significantly moderates the relationship between biomass utilization and CO2 emission in China. Again, we discover that
biomass utilization significantly decreases CO2 emission in China. Through the ARDL, NARDL, and VECM, we find empirical
support for the growth hypothesis in China.We conduct a series of diagnostic tests that prove the robustness of our estimates. Based
on our empirical evidence, this study recommends that China seeks sustainable economic development and environmental sustain-
ability simultaneously by prioritizing biomass utilization and biotechnological innovation in the country.

Keywords Biomass .Biotechnology .Economicgrowth .CO2emission .Sustainability .Nonlinearautoregressivedistributed lag
(NARDL)

Introduction

It will be recalled that the worldwide carbon dioxide contin-
ued its 3% yearly ascent of carbon dioxide (CO2) outflow for
over 10 years until 2013. However, the subsequent years

witnessed a flattened ascent of CO2 outflow from 2014 to
2016, and this gave an impression that the battle against
CO2 outflow had been won. Notwithstanding, it resumed the
ascent pattern in 2017. In 2018, CO2 outflow was at
an unprecedented level, and Jackson et al. (2018) predicted
that this ascent in CO2 outflow will recur in 2019, but it again
flattened between 2018 and 2019 (IEA 2020). Interestingly, it
has been established that CO2 outflow increases intensely with
fossil-led economic advances (World Bank 2014) and the tre-
mendous CO2 outflow that comes with fossil-led economic
advances imperils living beings (NASA 2018). It has also
been predicted that the peril associated with fossil energy will
continue to be on the upsurge as fossil energy demand con-
tinues to upsurge (Boamah et al. 2017). This has caused im-
mense concerns from international bodies such as the United
Nation Framework Convention on Climate Change
(UNFCCC) and other stakeholders for the need to tackle the
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monstrous environmental difficulties that comes with fossil
energy (Global Bioeconomy Submit 2018). One of the surest
ways of curbing these difficulties is the use of clean energy
sources (Dong et al. 2018). Thus, most economies are giving
tremendous consideration to sustainable economic develop-
ment (Awuni and Du 2016) with the view of addressing the
supplies of the present need without trading the resource and
environmental capacity of the future generation (Imperatives
1987). It is therefore obvious that the need to replace fossil
raw material is inexorable; thus, a choice for the replacement
has to bemade. One possible substitute is biomass, and it is for
this reason that biomass utilization has become imperative for
various countries, hence the focus of this study.

Biomass is a natural material got from living or recently
living things. Biomass incorporates woody materials, agricul-
ture harvest buildups, animal dung and body remains, and
municipal wastes (Mohammed et al. 2014; Nakada et al.
2014; Mboumboue and Njomo 2018; Jeguirim et al. 2019).
At the global level, forest and other wood-related materials are
the principal source of biomass (Sánchez et al. 2019).
Agriculture ranks second in the order of importance of bio-
mass supply in the world, contributing about 10% of all the
biomass feedstock (Kummamuru 2017; Jeguirim et al. 2019;
Sánchez et al. 2019), and its three main biomass sources are
energy crops, by-products of other crops, and harvest residues
(Kummamuru 2017; Sánchez et al. 2019). Biomass presents
great energy potential that can be reaped to produce energy
source with key benefits, including its contribution to eco-
nomic and social development (Hernández et al. 2018).

To realize the desired duality of sustainable environment
and economic growth, numerous studies have explored the
link between economic growth and environmental quality
(Bilgili et al. 2017; Bekhet and Othman 2018; Li et al.
2018). In any case, the vast majority of the studies explored
the relationship among energy utilization, economic growth
and environmental quality (Boamah et al. 2017, 2018), emis-
sions trading (Springer et al. 2019), bioeconomy (Wen et al.
2019), etc. Studies have hardly been directed at renewable
energy utilization, economic growth, and CO2 emission
(Bekhet and Othman 2018). The dearth of studies on renew-
able energy utilization, for example, biomass, is likewise ob-
served by Wang (2019). As indicated by Adewuyi and
Awodumi (2017), most of the past studies that analyzed the
connections between renewable energy and economic growth
did not consider the impact of biomass utilization on CO2

emission. Sadly, the findings from the few studies that
considered biomass are not consistent as observed by
Adewuyi and Awodumi (2017) and Wang (2019). For in-
stance, Dogan and Ozturk (2017), Hdom (2019), and
Shahbaz et al. (2019) find that biomass energy mitigates
CO2 emission, while others, such as Solarin et al. (2018) ex-
hibit opposite discoveries in their studies. Likewise, our re-
view of literature shows that there are restricted studies on

biomass utilization, economic growth, and CO2 emission in
BRICS nations which incorporate China. This position is like-
wise observed by Wang (2019). It is against this background
that our study proves to be useful.

Again, our review of literature reveals that most of the al-
ready very limited studies on biomass utilization, economic
growth, and CO2 emission nexus missed a key variable, bio-
technological innovation (biotechnology), which may give ef-
ficiency to the biomass supply chain and facilitate the influence
of biomass to propel economic progress while reducing CO2

emission. The conceivable variable omission bias in the already
limited literature has been demonstrated by Ahmed et al.
(2016). The authors find that technological innovation funda-
mentally facilitates the decrease of CO2 emissions in the studied
European countries. Similarly, Lokko et al. (2017) conclude in
their review study that the incorporation of biotechnology in
sustainable industrial development can advance the attainment
of the Sustainable Development Goals (SDGs). A recent study
in China confirms that biotechnological innovation will reduce
CO2 in China. The authors demonstrate that renewable energy
technological innovation considerably reduces CO2 emission in
China (Lin and Zhu 2019). However, the authors did not study
the moderating role that biotechnology plays in the relationship
among biomass utilization, economic progress, and CO2

emission. Also, in their recommendation, Adewuyi and
Awodumi (2017) postulate that CO2 emission can be curtailed
via energy-efficient technologies and biomass utilization.
Shockingly, extant literature has, to a great extent, overlooked
the role of biotechnology in biomass utilization, economic
growth, and CO2 emission studies. As postulated by Mardani
et al. (2018), understanding the nexus between CO2 emissions
and economic growth will help economies in detailing energy
policies and developing energy resources in sustainable ways.

Thus, this present study seeks to fill this major knowledge
gap, particularly in China. Our study contributes to extant
literature by fusing biotechnological innovation into the equa-
tion of biomass utilization, economic growth, and CO2 emis-
sion in an attempt to study the critical factors that can elucidate
the efficiency in biomass utilization to control the carbon di-
oxide emission associated with economic growth especially at
the time that global CO2 emission is at an unsurpassed
high and COVID-19 is ravaging the word.

This present study is of critical importance in an attempt to
propel sustainable economic growth and plunge carbon diox-
ide emission in China. As far as we could possibly know, no
study has considered the moderating role that biotechnology
plays in directing the relationship among biomass utilization,
economic growth, and CO2 in China. Our study likewise adds
to literature by utilizing the recently developed nonlinear
autoregressive distributed lag (NARDL) by Shin et al.
(2014) in our analysis. Kocaarslan and Soytas (2019) show
that disregarding nonlinearity in time series study could end in
wrong estimates and deluding inferences. Shockingly,
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most studies, for example, Bilgili and Ulucak (2018), Wen
et al. (2019), and Kim et al. (2020), disregarded nonlinearity
in their time-series studies.

For several good reasons, we conduct our study in China.
China is, at present, the biggest energy user and CO2 emitter
on earth (Meng et al. 2017; Ma et al. 2019), and simultaneous-
ly, the nation has the highest renewable energy capacity and a
significant user of biomass energy (Aydin 2019a, b).
Nonetheless, there is a dearth of research on biomass utiliza-
tion, GDP growth, and CO2 emission in the whole of BRIC
nations including China (Aydin 2019a, b; Wang 2019). These
attributes make China an awesome candidate for this study. At
the 2015 UN Climate Conference, China assured 60–65%
drop of its carbon emission in 2030 based on the 2005 level.
China needs to be laborious in its effort to achieve this targeted
drop (Lin and Zhu 2019), and thus studies in China such as the
one presented in this paper is worthwhile. According to the
World Bank (2020), China’s most present challenge is related
to economic, social, and public health impacts of the COVID-
19 pandemic. Nonetheless, China needs to be involved in
global environmental engagement. Given China’s size as the
second largest economy, the largest emitter of greenhouse
gases, the biggest energy user, highest renewable energy ca-
pacity, and a significant user of biomass energy, China is
central to important regional and global development issues,
hence our decision to conduct our study in China.

The rest of the paper is organized as follows: Section two
presents the materials and methods for this study.
Section three presents the results and discussions, while sec-
tion four concludes the study.

Materials and methods

Data source

This study uses data primarily from the World Bank Indicators.
The study utilizes updated data contrasted with the vast previous
studies. The study time frame ranges from 1986 to 2016which is
the most recent available data. This study examines the relation-
ship among biomass utilization, CO2 emission, and economic
growth based on the moderating role of biotechnological inno-
vation. Biomass utilization is estimated as a 1000 extraction from
farm produce, biotechnological innovation is proxied as biotech-
nological patent grants, CO2 is proxied as carbon dioxide emis-
sion per capita, and economic growth is proxied as GDP growth
per capita. The source of data and variable definition are in
Table 1.

Methods

As indicated byCutcliffe andMcKenna (1999), any attempt to
model a given time-series data must be preceded by precise

fundamental examination to completely assess the issues that
can distort the result. Subsequently, we initially assess the
stationarity within our time-series data to decide on the fitting
analytical techniques to employ.

Stationarity tests

The most famous stationarity tests are the augmented Dickey-
Fuller test (ADF) and the Phillips-Perron test (PP). This study
utilizes the ADF test for stationarity testing and the PP test as a
robust check.

Augmented Dickey-Fuller test (ADF) unit root test The ADF
test is specified as follows:

Δyt ¼ μ0 þ αt þ γyt−1 þ δ1Δyt−1 þ…þ δi−1Δyt−iþ1

þ vt ð1Þ

where μ is a constant,α is the coefficient of the time trend t,
and i is the lag order of the autoregressive process (for more,
see Dickey and Fuller (1981)).

The Phillips-Perron (PP) The Phillips-Perron (PP) unit root test
differs from the ADF test mainly in how it deals with serial
correlation and heteroskedasticity in the errors. Formulation:

Δy ¼ α0 þ δi−1Δyt−1 þ vt ð2Þ

One advantage of the PP test over the ADF test is that the
PP test is robust to general forms of heteroskedasticity in the
error term. Another advantage is that the user does not have to
specify a lag length for the test regression (Phillips and Perron
1988).

Kruse test Beyond the conventional unit root tests, our study
employs a recent unit root test to confirm our estimates.
Recent unit root tests include Kapetanios et al. (2003)
and Kruse (2011) . One major shor tcoming in
Kapetanios et al. (2003) unit root test is that it is too
restrictive for variables where the threshold value may
be different from zero. Thus, we employ Kruse (2011)
which extends the unit root test of Kapetanios et al.
(2003) and overcome its shortcoming (see Kruse
(2011) for details).

Co-integration test

This study deploys autoregressive distributed lag
(ARDL) bounds test to research the relationship that
exists among the factors under investigation. Our choice
to deploy ARDL is fundamentally premised on the fact
that the variables in our dataset are integrated in order
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l(0) and l(1) as revealed by our preliminary tests.
Notwithstanding the appropriateness of the ARDL pro-
cedure in this study, we also deploy nonlinear
autoregressive distributed lag (NARDL) as a robust test.
The ills of earlier studies that deployed only the ARDL
model is that if the relationship among their variables is
not linear, then all those studies may have produced
wrongful estimates about the actual relationships among
their variables (Kocaarslan and Soytas 2019). To defeat
this potential risk, we follow Shin et al. (2014) and
utilize their newly created asymmetric NARDL model
that captures conceivable long- and short-run nonlinear-
ities. Both the ARDL and NARDL offer the malleability
to initiate a co-integration test for factors that are inte-
grated in order l(0) and l(1) such as the one presented
in this study. Moreover, ARDL and NARDL produce
more effective evaluations for a small sample size.
Finally, ARDL and NARDL can evaluate both short-
run and long-run nexus in contrast to the conventional
co-integration strategies. This study utilizes Akaike’s in-
formation criterion (AIC) and Schwarz criterion (SC)
among others to choose the ideal lag order of our
models. We perform the ARDL first then the NARDL.
To perform the ARDL bounds test for co-integration,
we specify the models as follows:

ΔCO2t ¼ β0 þ ∑
p

i−1
β1ΔCO2t−1 þ ∑

q

i¼1
β2ΔY t−1

þ ∑
q

1¼1
β3ΔEt−1 þ ∑

q

1¼1
β4ΔTt−1 þ λ1CO2t−1

þ λ2Y t−1 þ λ3Et−1 þ λ4Tt−1 þ εit ð3Þ

ΔY t−1 ¼ β0 þ ∑
p

i−1
β1ΔY t−1 þ ∑

q

i¼1
β2ΔCO2t

þ ∑
q

1¼1
β3ΔEt−1 þ ∑

q

1¼1
β4ΔTt−1 þ λ1CO2t−1

þ λ2Y t−1 þ λ3Et−1 þ λ4Tt−1 þ εit ð4Þ

ΔEt−1 ¼ β0 þ ∑
p

i−1
β1ΔEt−1 þ ∑

q

i¼1
β2ΔCO2t

þ ∑
q

1¼1
β3ΔY t−1 þ ∑

q

1¼1
β4ΔTt−1 þ λ1CO2t−1

þ λ2Y t−1 þ λ3Et−1 þ λ4Tt−1 þ εit ð5Þ

ΔTt−1 ¼ β0 þ ∑
p

i−1
β1ΔTt−1 þ ∑

q

i¼1
β2ΔCO2t

þ ∑
q

1¼1
β3ΔY t−1 þ ∑

q

1¼1
β4ΔEt−1 þ λ1CO2t−1

þ λ2Y t−1 þ λ3Et−1 þ λ4Tt−1 þ εit ð6Þ

where β0 is the constant and εit is the white noise. The terms
with the summation sign, Σ, represent the short-run dynamics
where the terms with lambda, λ, represent the long-run dynam-
ics of themodel. The null hypothesis is H0: λ1 = λ2 = λ3 = λ4 = 0
against the alternate hypothesis H1: λ1 ≠ λ2 ≠ λ3 ≠ λ4 ≠ 0.

We specify the general form of the NARDL as follows:

yt ¼ βþXT þ β−X t
− þ μt ð7Þ

where yt and xt refer to CO2t, Yt, Et, and Tt and in the case of
Eq. (7) above. β+ and β− represent the associated long-run
parameters. xt is a k*1 vector of regressors defined as xt = x0
+ xt

++xt
− where x0 is the initial value. The NARDL model

employs the decomposition of the exogenous variables into
their negative and positive partial sums for decreases and in-
creases as follows.

xtþ ¼ ∑
t

i¼1
Δxiþ ¼ ∑

t

i−1
max Δx1; 0ð Þ ð8Þ

xt− ¼ ∑
t

i¼1
Δxi− ¼ ∑

t

i−1
min Δx1; 0ð Þ ð9Þ

We adjust the symmetric ARDL in Eqs. (3) and (4) to
include the asymmetric NARDL in line with Shin et al.
(2014) and present in Eqs. (10) and (11) when carbon dioxide
emission and economic growth are the dependable variables,

Table 1 Data source and variable definition

Variable Definition Source

CO2 Carbon dioxide emission (metric tons per capita) World Bank (http://data.worldbank.org)

Y Economic growth (real GDP per capita) World Bank (http://data.worldbank.org)

E Biomass utilization (1000 tons of used agric. extraction) (http://www.materialflows.net/home/)a

T Biotechnology (biotechnology patent grated per year) WIPO (https://www.wipo.int/portal/en/)b

aMaterialflows.net is hosted by WU Vienna in collaboration with Commonwealth Scientific and Industrial Research Organization and Nagoya
University
bWIPO is World Intellectual Property Organization
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respectively. Subsequent variables follow in a similar fashion.
We specify the models as follows:

ΔCO2t ¼ β0 þ χCOt−1 þ ω1
þyt−1

þ þ ω1
−yt−1

− þ ω2
þEt−1

þ þ ω2
−Et−1

− þ ω3
þTt−1

þ þ ω3
−Tt−1

−þ
∑
p−1

i¼1
τΔC02t−i ∑

q−1

i¼0
ϕ1

þΔyt−i
þ þ ∑

q−1

i¼0
ϕ1

−Δyt−i
− þ ∑

q−1

i¼0
ϕ1

þΔEt−i
þ þ ∑

q−1

i¼0
ϕ1

−ΔEt−i
− þ ∑

q−1

i¼0
ϕ1

þΔTt−i
þ þ ∑

q−1

i¼0
ϕ1

−ΔTt−i
− ð10Þ

Δyt ¼ β0 þ χyt−1 þ ω1
þCO2t−1

þ þ ω1
−CO2t−1

− þ ω2
þEt−1

þ þ ω2
−Et−1

− þ ω3
þTt−1

þ þ ω3
−Tt−1

− þ ∑
p−1

i¼1
τΔyt−i

∑
q−1

i¼0
ϕ1

þΔCO2t−i
þ þ ∑

q−1

i¼0
ϕ1

−ΔCO2t−i
− þ ∑

q−1

i¼0
ϕ1

þΔEt−i
þ þ ∑

q−1

i¼0
ϕ1

−ΔEt−i
− þ ∑

q−1

i¼0
ϕ1

þΔTt−i
þ þ ∑

q−1

i¼0
ϕ1

−ΔTt−i
−

ð11Þ

Similar to the ARDL models, we employ the F-statistic to
test the null hypothesis of no asymmetric co-integration rela-
tionship that

χ ¼ ω1
þ ¼ ω1

− ¼ ω2
þ ¼ ω2

−…ω4
þ ¼ ω− ¼ 0

We instigate the long-run nonlinearities by testing the null
hypothesis of long-run asymmetry that is:

β+ = β- where β+ = -ωj
+/ χ and β- = -ωj

-/ χwith j = 1 to 4.
We assess the short-run relationships by testing the null hy-
pothesis that:

∑
q−1

i¼0
ϕk

þ ¼ ∑
q−1

i¼0
ϕk

− where k ¼ 1 to 4

Causality test

Granger (1969) contends that the certainty of the existence of
at least a single directional causality between two or more
variables is accentuated by the establishment of co-
integration relationship among those variables. Subsequent
to the above co-integration tests, we test the bearing of the
causality among our variables. We utilize the vector error
correction model (VECM) for this purpose. We use the statis-
tical significance of the t test for the lagged error correction
term (ECTt-1) to examine the long-run causal relationships of
the model and the F-tests applied to the joint significance of
the sum of the lags of each explanatory variable in their first
differences to examine the short-run causal effects in the sys-
tem. We specify the VECM Granger causality modules trans-
formed from Eqs. (3) to (6) above as follows:

ΔCO2t ¼ β0 þ ∑
p

i−1
β1ΔCO2t−1 þ ∑

q

i¼1
β2ΔY t−1

þ ∑
q

1¼1
β3ΔEt−1 þ ∑

q

1¼1
β4ΔTt−1 þ ECTt−1

þ εit ð12Þ

ΔY t−1 ¼ β0 þ ∑
p

i−1
β1ΔY t−1 þ ∑

q

i¼1
β2ΔCO2t

þ ∑
q

1¼1
β3ΔEt−1 þ ∑

q

1¼1
β4ΔTt−1 þ λ1ECTt−1

þ εit ð13Þ

ΔEt−1 ¼ β0 þ ∑
p

i−1
β1ΔEt−1 þ ∑

q

i¼1
β2ΔCO2t

þ ∑
q

1¼1
β3ΔY t−1 þ ∑

q

1¼1
β4ΔTt−1 þ λ1ECTt−1

þ εit ð14Þ

ΔTt−1 ¼ β0 þ ∑
p

i−1
β1ΔTt−1 þ ∑

q

i¼1
β2ΔCO2t

þ ∑
q

1¼1
β3ΔY t−1 þ ∑

q

1¼1
β4ΔEt−1 þ λ1ECTt−1

þ εit ð15Þ

where ECTt-1 represents the error correction model indicating
long-run causality among the variables. All the other terms are
as defined above.

Moderation analysis

We use hierarchical multiple regression analysis and the
recently created PROCESS macro for mediation,
moderation, and conditional process by Hayes (2013) as a
robust check to study the moderation effect of biotechnology

Table 2 Result of lag length selection criterions

Lag LogL LR FPE AIC SC HQ

0 59.8 NA 2.50 − 3.84 − 3.66 − 3.78

1 198 230 5.25 − 12.3 − 11.3 − 12.0

2 235* 50.20* 1.38* − 13.7* − 12.0* − 13.2*
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on the relationship between biomass consumption and CO2

emission in China.

Results and discussions

We begin our analysis with the lag selection to determine the
appropriate lag length to be used for our study. Like Akalpler
and Hove (2019), we use the VAR for the variable at levels for
this analysis. The result in Table 2 shows that all the lag
selection criterions including the Akaike’s information crite-
rion (AIC) suggest lag 2 for our study. Thus, this study uses
lag 2 for our estimations.

Unit root test

This study conducts an ARDL bound test to examine the long-
and short-run relationship among the variables. Literature
shows that ARDL bound test will produce spurious estimates
if any of the variables in the study is integrated in order two.
Thus, we employ the widely used ADF unit root test for this
analysis, and then we use the PP and Kruse (2011) as a robust
check as stated above.

According to our results, the F-statistics in each variable in
the ADF test is less than their respective critical value when
we test for unit root at level. However, the F-statistics in each
variable in the ADF test is greater than their respective critical
value when we test for unit root after the first difference. Thus,
according to the ADF unit root test, biomass utilization, bio-
technological innovation, economic growth, and CO2 emis-
sion all have unit root at level. These variables, however, show
no evidence of unit root after the first difference. The PP test is
consistent with the ADF result except in the case of biotech-
nological innovation. According to the PP result, the F-
statistic of biotechnological innovation is greater than its crit-
ical value at level, and this means the variable has no unit root
at level. The results of the Kruse (2011) test are consistent
with the PP test. We conclude from these tests that the vari-
ables in this present study are all integrated at most in order 1
(see Table 3).

Co-integration test

After the unit root test, we then test the presence of co-
integration relationship among the variables in this study.
The results, showing ARDL bounds test and NARDL bounds
test, are presented in Table 4. The table has two parts, (a) and
(b). According to our results, the 5% critical computed F-
statistic value which includes trend and constant terms is
5.69. In the model with constant and trend Pesaran table,
I(0) value is 4.01, while the I(1) is 5.07 at 5% critical value.
According to Pesaran et al. (2001) criterion, this result indi-
cates that there is co-integration among CO2 emission, bio-
mass utilization, biotechnological innovation, and economic
growth at 5% significant level.

(a) presents ARDL bounds test result when CO2 emission
is the dependent variable. (b) presents NARDL bounds. The
computation includes trend and constant terms. Critical values
are taken from Pesaran et al. (2001).

For robustness, we verify this result within the NARDL
framework and report the result in Table 4 (b). It can be seen
that the computed F-statistic, which also includes trend and
constant terms, is 4.62, and this is greater than the correspond-
ing Pesaran et al. 5% critical I(1) value of 4.57. This indicates
that the NARDL result confirms that of the ARDL result. We
conclude that co-integration exists among CO2, utilization,
biotechnological innovation, and economic growth at 5% sig-
nificant level in China.

ARDL and NARDL short- and long-run estimates

First, we start our analysis by estimating Eq. (3) to (6) in the
linear form. We use the autoregressive distributive lag
(ARDL) model to examine the relationship among economic
growth, biomass utilization, biotechnology, and CO2 emis-
sions in the short and long run. The findings of the symmetry
ARDL (p, q) models are illustrated in Table 5. We discuss the
short- and long-run results of each variable in turn. We study

Table 4 Co-integration test when CO2 is dependent variable

(a) ARDL bounds test I(0) I(1)

F-statistic 5.68712 10% 3.47 4.45

K 3 5% 4.01 5.07

2.50% 4.52 5.62

1% 5.17 6.36

(b) NARDL bounds test I(0) I(1)

F-statistic 4.624746 10% 3.03 4.06

K 4 5% 3.47 4.57

2.50% 3.89 5.07

1% 4.4 5.72

Table 3 Summary of unit root test

Variable ADF PP KRUSE Decision

CO2 I(1) I(1) I(1) I(1)

E I(1) I(1) I(1) I(1)

Y I(1) I(1) I(1) I(1)

T I(1) I(0) I(1) I(0)
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whether an increase in biomass utilization under the moderat-
ing effect of biotechnology will result in a decrease in CO2 per
capita in China, all else being the same.We also studywhether
an increase in biomass utilization in the presence of biotech-
nology will result in an increase in economic growth (GDP per
capita) in China, all else being the same. The result is present-
ed in Table 5 below.

Table 5 shows that 1% percent increase in biomass utiliza-
tion is associated with a 0.32% decrease in carbon emissions
in the short term, and this is significant at 10%, all else being
the same. This result provides evidence that biomass utiliza-
tion leads to a reduction of CO2 emission in China; albeit this
evidence is at best a weak evidence. We also find that the first
lag of biomass utilization (E) leads to a reduction in CO2, but
this is completely insignificant. However, the second lag of
biomass utilization shows that a 1% increase in biomass

utilization will result in a significant decrease in CO2 emission
by 0.44%. In the long run, we find that biomass utilization has
a higher and more significant negative impact on CO2 emis-
sion in China. The sum effect of these results is that biomass
utilization decreases CO2 emission in China. Our finding is
similar to that of Jaforullah and King (2015), Ahmed et al.
(2016), Chen et al. (2019), Hdom (2019), Shahbaz et al.
(2019), and Kim et al. (2020). For instance, Shahbaz et al.
(2019) find that the nexus between biomass energy use and
carbon emissions is negative and significant. According to
Chen et al. (2019), the finding that renewable energy use such
as the one presented in this study is a key solution in reducing
CO2 emissions over time in China. Our result from China is
similar to a recent study from the USA (Kim et al. 2020). The
impacting mechanism of biomass energy utilization on CO2

reduction is that carbon dioxide released from biomass energy

Table 5 ARDL short- and long-run estimates

Short run

EV CO2 E T Y

Coef. Prob. Coef. Prob. Coef. Prob. Coef. Prob.

ΔCO2 - - − 0.20 0.13 − 5.97 0.52 0.14 0.00

ΔE − 0.32 0.09 - - − 2.06 0.52 0.04 0.09

ΔEt-1 − 0.15 0.50 0.17 0.43 - - 0.35 0.06

ΔEt-2 − 0.44 0.03 - - - - - -

ΔY 0.86 0.01 0.12 0.50 5.97 0.03 - -

ΔYt-1 − 0.87 0.07 - - - - 1.13 0.00

ΔYt-2 0.55 0.09 - - - - − 0.7 0.00

ΔT − 0.01 0.07 0.01 0.83 - - 0.01 0.49

ΔTt-1 - - - - 0.22 0.16 - -

C − 2.42 0.09 − 0.50 0.62 0.06 0.02 3.08 0.00

TREND − 2.42 0.05 0.01 0.57 0.70 0.02 0.03 0.00

CointEq(− 1) − 0.27(0.000)

Long run

CO2 - - 0.04 0.69 − 4.85 0.00 0.25 0.00

E − 3.34 0.041 - - − 2.68 0.52 0.7 0.00

Y 1.97 0.003 0.15 0.479 7.75 0.02 - -

T − 0.04 0.046 − 0.00 0.828 - - 0.01 0.47

Diagnostics

R2 0.99 - 0.99 - 0.99 - 0.99 -

Adj. R2 0.98 - 0.98 - 0.98 - 0.98 -

F-stat. 836 0.00 416 0.00 299 0.00 1829 0.00

SC 1.26 0.1 0.75 0.12 2.79 0.50 1.26 0.4

Heter. 1.18 0.3 1.72 0.32 2.75 0.20 1.18 0.7

JB 0.48 0.6 0.3 0.67 0.79 0.30 0.46 0.7

EV denotes the explanatory variables. CO2, E, Y, and T denote carbon dioxide emission, biomass utilization, economic growth, and biotechnological
innovations, respectively. The subscripts t-1 and t-2 represent the time lag measured in years. R2 , Adj. R2 , DW, F-stat, SC, Heter. and JB represent the R
squared, adjusted R squared, F-statistics, serial correlation LM test, heteroskedasticity test and Jarque-Bera normality test. Maximum lag length is
determined by Akaike information criteria (AIC). Estimations include trend and constant terms
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utilization is compensated by the carbon dioxide captured in
the photosynthesis process (Payne 2011). It is noteworthy that
our study is consistent with Solarin and Bello (2019) who
have shown strong evidence of substitution possibilities be-
tween biomass and fossil fuels indicating that sustainable
development could be achieved with continued use of more
biomass and lesser fossil fuels in their studied country.
Nonetheless, other authors such as Adewuyi and Awodumi
(2017) have found varied results relating to the relationship
between biomass utilization and CO2 emission in different
countries. Similarly, Nguyen and Kakinaka (2019) show that
for low-income countries, renewable energy utilization such
as biomass is positively associated with carbon emissions,

while they show that renewable energy utilization such as
biomass is negatively associated with carbon emissions in
high-income countries. The varied finding among these em-
pirical studies could be attributed to differences in variables
used and country characteristics.

Our study also finds that biotechnology reduces CO2 emis-
sion in China. The finding shows that a 1% increase in bio-
technology will reduce CO2 emission by 0.01 percent also
statistically significant at 10%. We find that the long-run neg-
ative effect of biotechnology on CO2 emission is higher and
more significant than its short-run effect on CO2 emission in
China, all things being the same. A recent study in China
confirms this study’s finding that biotechnology reduces

Table 6 NARDL short and long-run estimates

Short run

EV CO2 E T GDP

Coef. Prob. Coef. Prob. Coef. Prob. Coef. Prob.

CO2
+ - - -0.01 0.89 1.71 0.53 0.21 0.07

CO2t-1
- - - 1.43 0.02 − 2.0 0.52 0.06 0.05

Et-1 − 0.22 0.01 - - 23.5 0.11 0.17 0.03

E+ − 0.27 0.01 - - 1.71 0.53 0.18 0.08

Et-1
+ − 0.17 0.56 - - − 2.0 0.52 0.04 0.09

Et-2
+ − 0.46 0.02 - - 23.5 0.11 0.27 0.04

E- − 1.84 0.18 - - − 61.1 0.00 − 0.89 0.35

T − 0.02 0.05 − 0.00 0.88 - - 0.01 0.41

Y 0.97 0.03 0.134 0.47 2.61 0.02 - -

Yt-1 − 0.95 0.09 - - 0.43 0.06 - -

Yt-2 0.52 0.06 − 0.00 0.83 0.42 0.03 - -

C − 2.94 0.02 − 0.48 0.67 0.23 0.16 2.5 0.00

TREND 1.87 0.01 0.008 0.43 2.12 0.02 2.10 0.01

Long run

E+ − 8.72 0.020 - - 1.54 0.53 0.99 0.07

E- − 4.34 0.025 - - − 33.9 0.00 − 0.12 0.06

T − 0.10 0.056 0.156 0.47 - - 0.01 0.04

Y 2.54 0.043 − 0.003 0.82 2.36 0.28 - -

CO2 - - - - − 0.38 0.73 0.26 0.00

Diagnostics

R2 0.99 - 0.99 - 0.99 - 0.99 -

Adj. R2 0.98 - 0.98 - 0.99 - 0.98 -

F-stat. 837 0.00 348 0.00 370 0.00 125 0.00

SC 1.76 0.20 1.22 0.34 2.02 0.16 2.77 0.09

Heter. 1.58 0.19 0.89 0.52 1.71 0.15 2.35 0.05

JB 0.45 0.60 0.09 0.95 1.91 0.38 0.36 0.83

EV denotes the explanatory variables. CO2, E, Y, and T denote carbon dioxide emission, biomass utilization economic growth, and biotechnological
innovations, respectively. The subscripts t-1 and t-2 represent the time lag measured in years. The superscripts “+” and “−” refer to positive and negative
partial sums, respectively;R2 , Adj. R2 , DW, F-stat, SC, Heter. and JB represent the R squared, adjusted R squared, F-statistics, serial correlation LM test,
heteroskedasticity test, and Jarque-Bera normality test. Maximum lag length is determined by Akaike information criteria (AIC). Estimations include
trend and constant terms
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CO2 emission in China even though different variables were
used in the various studies. The authors demonstrate that re-
newable energy technological innovation (RETI) significantly
reduces CO2 emission in China (Lin and Zhu 2019). In their
recommendation to curtail carbon emission, Adewuyi and
Awodumi (2017) postulate that there is the need to reduce
energy intensity of output via the adoption of energy-
efficient technologies and to find alternative clean energy
sources to reduce carbon emissions associated with biomass
use to promote growth. Also similar to our finding, Ahmed
et al. (2016) find that technological progress helps to reduce
CO2 emissions by promoting energy efficiency. Our finding
implies that as China uses better biotechnology in their pro-
duction progress, economic growth is taking place and that
CO2 emissions are being reduced. This finding is also
consistent with a study by Sohag et al. (2015) who indicate
that technological innovation improves energy efficiency and
reduces CO2 intensity.

Relative to economic growth, it can be seen from Table 5
that biomass utilization has a positive effect on GDP, and this is
significant in both the short and long run. Biomass utilization
based on the moderating effect of biotechnology has a
significant effect both in the short and long run on economic
growth due to the efficiency that biotechnology brings to
biomass production, process, and usage. Thus our study
supports the growth hypothesis in China. Some previous
authors who did not include biotechnology in their studies
find different result. For instance, Tuna and Tuna (2019) recent-
ly studied the relationship between renewable energy utilization
and economic growth. The authors confirmed the neutrality
hypothesis for Indonesia, Malaysia, Singapore, and Thailand.
For Philippines, the authors confirmed conservation hypothesis.
In other words, renewable energy utilization in their five studied
countries does not cause economic growth. Aydin (2019a, b)
analyzed the relationship between economic growth and bio-
mass energy utilization within the framework of the production
function in BRICS countries. The author confirmed that the
conservation hypothesis is valid in China and South Africa
indicating that renewable energy utilization which includes
biomass utilization does not have a significant impact on
economic development.

In addition to the above estimations, we also examine a
series of diagnostic tests to ensure that our estimates are not
spurious. The diagnostic results are shown in the lower part of
Tables 5 and 6. First, R2 and the adjustedR2 show that our data
have a good fit to the respective models. The F-statistics show
that there is statistical significance in the overall relationship
in our models. The serial correlation LM, heteroskedasticity,
and Jarque-Bera tests show that we do not have problems of
serial correlation, heteroskedasticity, or normality issues in
our respective models. Figures 1 and 2 below also show that
our models are free from instability issues. Figures 3 and 4
also show there is no autocorrelation or partial autocorrelation

associated with our model. Thus, our models are robust and
that statistical inference could be made from our estimations.

Again, for robustness, we examine the relationship among
our variables in the NARDL framework, and the result is
presented in Table 6. First, it can be seen from the result that
a positive change (+) in CO2 emission has a negative effect on
biomass utilization, but this is highly insignificant (p value =
0.89). More important to our study is the effect of biomass
utilization and biotechnology on both CO2 emission and eco-
nomic growth. It can be seen that biomass utilization nega-
tively influences CO2 emission in the short and long run in
such a way that the larger impact of biomass utilization on the
CO2 is resulting from a positive change in biomass utilization,
which significantly decreases the CO2 at 5% significant level,
rather than a negative change in the biomass utilization. We
also find that biotechnology negatively impacts CO2 emission
in China with a larger impact seen in the long run than the
short run. The sum effect is that the findings in the NARDL
largely confirm that of the above ARDL findings that biomass
utilization and biotechnology contribute to CO2 emission re-
duction, thus consistent with previous studies such as
Jaforullah and King (2015), Ahmed et al. (2016), Chen et al.
(2019), Hdom (2019), and Shahbaz et al. (2019).

Fig. 2 Cusum of Squares for NARDL model

Fig. 1 Cusum of Squares for ARDL model
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Relative to economic growth in the NARDL framework, it
can be seen that biomass utilization has a positive effect on
GDP growth in the short and long run in such a way that the
larger impact of biomass utilization on GDP is resulting from
a positive change in lag 2 of biomass utilization, rather than a
negative change in the biomass utilization in the short run. Our
NARDL result is largely similar to that of the ARDL result in
direction but not in magnitude.

VECM estimates

A local Ghanaian adage states “there is no smoke without
fire.” Consistent with this adage, Granger (1969) argues that
once there is co-integration relationship among variables stud-
ied, there is bound to be at least, a one-way causality.

Thus, we investigate the causal relationship among vari-
ables by applying the Granger causality test based on vector
error correction model (VECM). The result is presented in
Table 7. The result indicates that all the error correction terms
(ECT) are negative and also statistically significant. This im-
plies that the system can return to its equilibrium level in the
long-term at yearly adjustment speed of 27%, 82%, 57%, and
77% when CO2 emission, biomass utilization, economic
growth, and biotechnological advancements are used as de-
pendent variables, respectively.

In the short run, we find bi-causality running from biomass
utilization to CO2 emission and vice versa. This result shows a

negative coefficient for biomass utilization, and this indicates
that biomass utilization in the presence of biotechnology can
be used to reduce CO2 emission in China. This is a confirma-
tion of the ARDL and NARDL findings above. This result is
also confirmed by prior studies such as Jaforullah and King
(2015), Ahmed et al. (2016), Chen et al. (2019), Hdom (2019),
and Shahbaz et al. (2019).We also find that biotechnology has
a negative relationship and causal effect of CO2 emission, but
it is only at 10% significant level. Biotechnology is expected
to bring efficiency to the biomass processes and usage and
thus facilitate biomass utilization’s influence on CO2 emis-
sion. Our finding is similar to prior studies (Ahmed et al.
2016; Lin and Zhu 2019). Similarly, we find that biomass
utilization and biotechnology have causal effect on GDP in
China.

Moderation analysis

To test the hypothesis that biotechnology moderates the rela-
tionship between biomass utilization and CO2 emission in
China, we conduct a hierarchical multiple regression analysis.
The result is presented in Table 8 below. First, we center our
variables to satisfy the assumption of nomulticollinearity with
the interaction term, and then we create the interaction term.
We include biomass utilization and biotechnology as our pre-
dictor variables, and we find that these variables account for a
significant amount of variance in CO2 emission in China, R2 =
0.396, F(1, 35) = 22.946, p = 0.000.

Next, we include the interaction term in the regression
model and find that it has a significant impact on the regres-
sion model. Specifically, ΔR2 = 0.058, ΔF (1, 34) = 3.587,
and p = 0.067. The 5.8% change in R2 among other changes
after the introduction of the interaction term provides empiri-
cal evidence of the moderation effect of biotechnology on
biomass utilization and CO2 emission nexus in China. We
confirm our result by using the PROCESS macro for media-
tion, moderation, and conditional process introduced by
Hayes (2013). The PROCESSmacro has become increasingly

Fig. 4 Autocorrelation and partial autocorrelation

Table 7 Results of VECM

ΔCO2 ΔE ΔY ΔT ECT

ΔCO2 - − 0.3 [0.1]a 0.8 [0.3]b − 0.01 [01]c − 0.27 [0.05]c

ΔE 0.2[0.1]a - 0.1 [0.1]c − 0.01 [0.1] − 0.82 [0.18]c

ΔY 0.1[0.1]c 0.3 [0.1] - 0.01 [0.1] − 0.57 [0.06]c

ΔT 12[5.3]b − 2 [3.1] 5 [2.6]b - − 0.77 [0.13]c

Coefficient std error and sig. level. a, b, and c denote 10%, 5%, and 1%
significant levels

Fig. 3 Autocorrelation and partial autocorrelation
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popular in a variety of journal publications and academic con-
ferences (Hayes et al. 2017). The PROCESS macro result is
similar to that of the hierarchical multiple regression analysis.

Conclusion and policy implications

Understanding the nexus between CO2 emissions and eco-
nomic growth will help countries in formulating policies in
sustainable ways. Thus, we study the relationship among bio-
mass utilization, economic growth, and CO2 emission based
on the moderating role of biotechnology which hitherto has
been ignored in literature.

First, we test the stationarity of our variables and find that
our variables are integrated, at most, in order 1. Next, we
employ symmetric ARDL bounds testing approach and the
asymmetric NARDL bounds testing approach as a robust
check. Both methods prove the existence of co-integration
among our variables. We thus study the short- and long-run
symmetric and asymmetric relationships among the variables.
The short- and long-run results of both methods show that
there is a short- and long-run relationship among biomass
utilization, economic growth, CO2 emission, and biotechnol-
ogy. The estimated models indicate that increasing biomass
utilization decreases CO2 emission and increases economic
growth in China. We find that biomass utilization has a statis-
tically significant negative relationship with CO2 emission in
China. We also find that biotechnology also has a statistically
significant negative relationship with CO2 emission in China.
However, economic growth in the presence of biomass utili-
zation and biotechnology has a positive relationship with CO2

emission in China. Again, we find that both biomass utiliza-
tion and biotechnology have a positive relationship with eco-
nomic growth in China.

The VECM-based Granger causality test was also
employed to study the causal link among the variables. The
result shows that there exists a long-run Granger causality for
all our models. For instance, the results show VECM-based
Granger causality running from biomass utilization, economic
growth, and biotechnology to CO2 emission in the long run. In

the short run, we find that both biomass utilization and bio-
technology have a causal relationship with CO2 in China with
a negative relationship. Our result also showed support for the
growth hypothesis in China. Through hierarchical multiple
regression analysis and the recently created PROCESS macro
for mediation, moderation, and conditional process, we
established that biotechnology significantly moderates bio-
mass utilization and CO2 emission in China.

Our empirical results have important policy implications.
First, because biomass utilization and biotechnology have
negative and significant relationships with CO2 emission
and because biotechnology significantly moderates the rela-
tionship between biomass utilization and CO2 emission in
China, the country should pay more attention to the develop-
ment and utilization of biomass in various forms, and this
ought to be done in tangent with biotechnological innovation
to give efficiency to biomass usage in China. Second, because
biomass utilization and biotechnology show positive relation-
ship with economic growth and negative relationship with
CO2 emission, China can thus achieve economic growth and
environmental sustainability simultaneously. China must,
therefore, continue to make all the necessary policies and in-
vestments in biomass production and encourage biomass us-
age with the aim of achieving both economic growth and
environmental sustainability.
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