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Abstract
The big data revolution has created data center sustainability problems, whose solutions require the consideration of environ-
mental factors. The purpose of this study is to establish a big data center sustainability evaluation index and provide guidance for
sustainable data center construction. This research formulated a big data center sustainability evaluation model that integrates
multiple-criteria decision-making methods based on the analytic network process and fuzzy technique for order preference by
similarity to an ideal solution (TOPSIS). Furthermore, a case study was used to examine the proposed model. The refrigeration
system, layout and ventilation, data center location, data volume, and server power consumption are the five most crucial factors
in determining the sustainability level of a big data center. The areas that require further development are the balancing of tasks on
different IT equipment, renewable energy use, and waste heat utilization. This research provides a method or guide that can be
used by managers when they build new big data centers or upgrade and optimize existing big data centers to make them more
sustainable. This study is the first to assess the sustainability of a big data center according to multiple criteria decision-making
methods, in which fuzzy theory is applied to evaluate the imprecise and subjective judgments of decision-makers. This study
provides a systematic evaluation framework that is based on qualitative and quantitative criteria and comprises the four factors of
big data level, equipment level, room level, and data center level. Big data is new oil, but it is not clean oil. It is both a vital driver
of economic growth and a source of environmental damage. We need to ensure that big data centers are run in a sustainable way.
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Introduction

In recent years, concerns regarding climate change and envi-
ronmental sustainability have increased. Energy savings and
environmental protection are crucial issues that the world faces
today (Zhang et al. 2015; Song and Wang 2017; Lucivero
2020). Big data is viewed as an efficient resource that helps
reduce material consumption; however, managing and storing
such data require considerable energy consumption (McKinsey
2016; Karnama et al. 2019; Rahmani et al. 2020). The big data

revolution has created data center sustainability issues, whose
solutions require the simultaneous consideration of economic
and environmental factors (Corbett 2018; Herman et al. 2018;
Singh and El-Kassar 2019; Kheybari et al. 2020). According to
Corbett (2018), the power consumption of IT equipment for
storage was 27.8 kWh per TB of data, and the total power
consumption of data centers was 46.33 kWh per TB of data
per year, which corresponds to approximately 35 kg of CO2

emissions per TB of data per year. These estimates are discon-
certing due to the growing workloads of data center from busi-
ness needs. The processing of large quantities of data requires
massive and efficient computing resources, which raises con-
cerns regarding the harmful environmental effects of big data
(Ramli et al. 2017). With the development of the big data in-
dustry, high cost, high energy consumption, and high carbon
emissions have become increasingly common (Rong et al.
2016; Möbius et al. 2014; Shuja et al. 2016; Lucivero 2020).
According to the Climate Group, 76 million metric tons of CO2

(MtCO2) were emitted by worldwide data centers in 2002. This
figure could reach 259 MtCO2 by 2020 even after
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implementing advanced technologies in virtualization, data
center cooling, and power supply (Webb 2008). The data center
industry was estimated to account for 1.3% of the world’s pow-
er consumption and 2% of the USA’s power consumption
(Nadjahi et al. 2018).

The assessment and management of energy consumption
in big data centers are crucial challenges for data center oper-
ations. Currently, there is no conceptual framework available
to evaluate the sustainability level of big data centers, and
most evaluation criteria only include crisp-value ratings, but
not qualitative linguistic ratings. To the best of our knowl-
edge, numerous data centers currently use power usage effec-
tiveness (PUE) as the only indicator to assess their energy
consumption. The PUE value is closely related to the efficien-
cy of the electricity grid and an accurate calculation of the IT
load, and a data center with higher PUE values and higher
server utilization is more efficient (Brady et al. 2013).
However, IT equipment energy consumption is but a part of
the data center’s total energy consumption (Whitehead et al.
2014; Ahmad and SMK 2015). To comprehensively evaluate
the degree of sustainability of a data center, many factors must
be considered in addition to PUE. Data center sustainability
depends on not only the room layout, energy sources, and
energy consumption of the IT equipment but also the features
of the big data processed (e.g., its volume, variety, and veloc-
ity). Few studies have attempted to develop a holistic evalua-
tion method for a sustainable data center. Therefore, a flexible
and comprehensive evaluation method must be developed, as
a new frontier of research, to solve energy problems in data
centers and reduce carbon emissions. Therefore, we investi-
gated and reviewed the literature on data center sustainability
to develop a four-factor evaluation index system (comprising
the factors of big data, equipment level, room level, and data
center level) for assessing data center sustainability.

Given the nature of multiple-criteria decision-making, sus-
tainability assessments of large data centers include both qual-
itative and quantitative criteria. Specifically, experts present
linguistic ratings for the qualitative criteria and crisp-value
ratings for the quantitative criteria. In many cases, crisp values
are not available for the qualitative criteria or the data is insuf-
ficiently precise to be used directly in the evaluation pro-
cess because the judgments and preferences of experts are
ambiguous or uncertain, making it impossible to establish
an assessment with accurate values (Mehrjerdi 2012). In
response, fuzzy theory has been used to address the sub-
jective and imprecise assessments of experts and to cap-
ture the ambiguity and vagueness arising from incomplete
information in the decision-making process (Zadeh 1965).
In this study, by combining qualitative and quantitative
measures, a fuzzy technique for order preference by sim-
ilarity to an ideal solution (TOPSIS) was used to develop
a comprehensive performance rating on a data center’s
sustainability.

The remainder of this paper is structured as follows.
Section 2 provides a review of some recent studies on the
sustainability and energy consumption evaluation of big data
centers. Section 3 introduces the proposed methodology, in-
cluding the analytic hierarchical process (AHP), the analytic
network process (ANP), and its fuzzy extension. In Section 4,
we propose a fuzzy multiple-criteria approach for evaluating
data center sustainability. In Section 5, a numerical example is
used to examine the proposed framework. The conclusions are
provided in Section 6.

Literature review

Theoretical background

The increased energy demand from data centers has encour-
aged operators to take measures to decrease energy consump-
tion and enhance energy efficiency. Accordingly, numerous
researchers have attempted to formulate approaches aimed at
decreasing energy consumption and enhancing energy effi-
ciency. However, research has indicated that sustainable data
centers can be achieved only upon the adoption of a system-
wide procedure that involves the holistic management of dif-
ferent data center components. Guitart (2017) proposed a
comprehensive management strategy for sustainable data cen-
ters that involves introducing energy as a driving force for
operation programs. Recent research on the design and archi-
tecture of green data centers has mainly focused on the im-
provement of data center building design, computer room de-
sign, floor layout, the cooling and refrigeration system, the
electrical system, and the IT equipment. This paper summa-
rized the results of the aforementioned research, noting the
four crucial factors of data center level (site selection and
energy management), room level (computer room design
and heat dissipation), equipment level (IT equipment and elec-
trical systems), and data level (big data resource characteris-
tics and service).

In its site selection and energy management, the data center
should be situated where power transmission loss can be re-
duced, power supply is convenient (Sheme et al. 2018; Daim
et al. 2013), and natural cooling can be achieved at low loca-
tion temperatures. As a new frontier of research, the replace-
ment of traditional energy with renewable energy in data cen-
ters has been receiving increasing attention. Data centers using
renewable energy have low greenhouse gas emissions due to
the decreased use of fossil fuels (Shuja et al. 2016). Oró et al.
(2015) proposed numerical models by analyzing renewable
energy use in data centers. Furthermore, because most of the
electrical supply of data center servers is dissipated as thermal
energy, the management of the energy conversion process has
become a new and crucial aspect for achieving data center
sustainability (Jones and Fleischer 2014). Ideally, waste heat
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can be used to offset heating costs (Haywood et al. 2012), and
heating facilities in cold regions can partly meet energy de-
mands through the intermittent generation of renewable ener-
gy (Woodruff et al. 2014; Lin 2018; Kwon 2020). The main
challenge involved in consolidating data center resources for
achieving energy efficiency is that maximizing the quality of
services conflicts with minimizing the energy consumption of
the data center.

With regard to computer room design and heat dissipation,
the indoor temperature has a considerable effect on big data
center energy consumption. When run at full load, the refrig-
eration system increases energy consumption while maintain-
ing the temperature in the computer room (Rong et al. 2016).
Through suitable cooling methods, the energy efficiency and
thermal management of big data centers can be enhanced to
various degrees; thus, most data centers have begun to intro-
duce cooling technologies to enhance cooling efficiency (Li
et al. 2016; Ni and Bai 2017; Arora and Bala 2020). These
technologies are classified into air-cooled, liquid-cooled, and
two-phase technologies (Jones and Fleischer 2014). A higher
airflow from the layout is crucial to making room temperature
more uniform, in addition to enhancing sustainable develop-
ment and the efficiency of task implementation (Zhang et al.
2014). Technologies for controlling the environment of com-
puter rooms and to ensure that big data centers operate stably
and securely are being developed. The aforementioned re-
search developments can contribute to the effective operation
and energy savings of data centers.

IT equipment and power distribution systems consume ap-
proximately 40% and 15% of the total energy of a data center,
respectively (Boru et al. 2015). Industry specifications and the
scholarly literature have proposed several metrics for estimat-
ing the energy consumption and performance of computing
systems. The most important metric focuses on the efficiency
of IT facilities, communication systems, and refrigeration and
power distribution systems (Fiandrino et al. 2017; Uddin and
Rahman 2012; Arora and Bala 2020). PUE is currently the
most popular evaluation indicator in many data centers
(Capozzoli and Primiceri 2015), measuring the percentage of
overall power demand from IT equipment. An increasing
awareness of the energy crisis and the importance of IT pro-
ductivity have shifted managers’ view toward a sustainable
energy strategy. However, energy-saving IT equipment has
had limited use in practice, and many companies lack aware-
ness on whether they should establish large-scale sustainable
data centers. Considerably reducing the energy consumption
of servers is an important requirement for sustainability
(Möbius et al. 2014) because high energy consumption does
not entail high performance (Dargie et al. 2011). Data center
networks have been evolving to meet the high demand for
services and applications (Wang et al. 2013), and the construc-
tion of a data center network directly influences the scalability,
agility, and power consumption of a data center. Hammadi

and Mhamdi (2014) classified most data center network struc-
tures into switch-centric and server-centric topologies.
However, no unified and standardized set of ordinances have
been formulated for data center design and improvement.
Virtual machine migration has also been used to solve load
balancing in data centers to eliminate overloaded equipment
(Yu et al. 2018). Furthermore, in most recent studies, data
centers have widely adopted the multi-objective coevolution-
ary algorithm and a simulation method for achieving an en-
hanced green-oriented scheduling strategy (Ham et al. 2015;
Lei et al. 2016; Rahmani et al. 2020). Equipment, optimiza-
tion, integrated design, and other issues related to the data
center architecture should be viewed as necessary components
of a sustainability evaluation of data centers.

With respect to big data characteristics and information
service, massive amounts of data can be regarded as the
“raw material” of data centers. Massive data volumes are cre-
ated daily at record-high rates from heterogeneous prove-
nances (e.g., from healthcare, government, social networks,
and commerce) (Oussous et al. 2018; Addo-Tenkorang and
Helo 2016; Lucivero 2020), and data centers are the backbone
for communication, cloud services, data computing, and other
computational services (Weihl et al. 2011). Such data allow
for data-driven decision-making and the obtaining of action-
able insights. In general, big data refers to a dataset that cannot
be captured, stored, conducted, and processed efficiently by
normal computers within a reasonable duration (Hashem et al.
2015). Laney (2001) noted volume, velocity, and variety to be
the three primary characteristics of big data. In addition to
these traits, veracity and value were also proposed as impor-
tant characteristics of a data center (Kacfah Emani et al. 2015).
These features of big data affect the carbon emissions of a data
center. At present, researchers and practitioners have commit-
ted to extracting actionable intelligence and discernment from
big data in applications such as E-health (Dimitrov 2016),
Internet of Things (Zhong et al. 2016), supply chain manage-
ment and logistics (Sanders and Ganeshan 2018), and retail
(Fisher and Raman 2018). A data center provides a platform
for data analytics (e.g., descriptive, predictive, exploratory,
and prescriptive analytics), allowing for advanced analytic
techniques.

Currently, physical-level improvement is the main subject
of research in big data (Todorovic and Kim 2014). Many of
the practices and measures adopted by firms to successfully
improve the energy consumption of data centers involve im-
provements to IT equipment and the cooling system
(Priyadumkol and Kittichaikarn 2014; Kim et al. 2017;
Kunkel et al. 2019). However, few studies have addressed
the sustainable development of big data itself. Big data may
not convey valuable information, and additional data do not
entail better decisions (Corbett 2018). Approximately 90% of
the data generated on the market is never used, and 60% of
these data become useless within milliseconds (Johnson
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2015). In this study, we incorporated the features of data in
evaluating the sustainability of a big data center. Moreover,
although many studies have examined the energy consump-
tion of traditional data centers (e.g., PUE), none has system-
atically appraised the sustainability of big data centers. Hence,
this study formulated a comprehensive method that evaluates
the source, consumption, and output (e.g., waste heat utiliza-
tion) of energy in a data center through accounting for the four
aforementioned factors. Furthermore, in this study on the sus-
tainability of a big data center, fuzzy ANPwas used to analyze
responses to the qualitative and quantitative criteria adopted.
Generally, big data centers should be constructed and devel-
oped in a sustainable and cautious manner.

Sustainability evaluation

Big data have been characterized as 5 Vs: volume, variety, ve-
locity, veracity, and value (Cheng et al. 2017). The details of five
aspects are as follow: (1) volume: the amount of data is huge and
the size is enormous; (2) variety: the range of data types and
sources is large (e.g., multiple sources with multiple dimensions)
and data is mixed, heterogeneous, and unstructured; (3) velocity:
the speed of data changes is high and data is accumulated rapidly;
(4) veracity: the data quality is unreliable due to data inconsisten-
cy, incompleteness, and data accuracy is uncertain; (5) value: the
value refers to the insights and benefits from data, and maximiz-
ing value is to gain insights in real time (e.g., fraud detection). Big
data centers aim to get the insights or benefits from the massive
amount of changing data. The huge amount and rapidly varying
data increases the hardness of getting benefits from them. Even
for a simple search operation, the problem with big data is much
more difficult than a problemwith ordinary data. Big data cannot
be handled by typical database, normal computers, or traditional
software. It needs huge parallel processing power of computer
clusters. Big data look like chaotic, but some hidden knowledge
can be discovered. However, the operations of big data centers
consume huge energy and generate enormous carbon emissions.
Out of the 5 Vs, the first three (i.e., volume, variety, and velocity)
are more related to the sustainability of data centers.

Researchers have studied the energy consumption and per-
formance of data centers from different aspects, such as com-
puting power, cooling, and network-related factors. Many
companies are still using PUE-based assessment methods.
However, sustainability evaluation involves the examination
of various characteristics of a data center; among these char-
acteristics, uncertain criteria are challenging to measure.
Hence, few studies have successfully established a holistic
system for evaluating data center sustainability. Through an
extensive literature review and discussions with experts in the
data center industry, the criteria presented in Table 1 were
determined to be important to data center sustainability. The
criteria were divided into four categories: big data level,
equipment level, room level, and data center level. The big

data level comprises criteria on the volume, velocity, and va-
riety of big data. The equipment level comprises criteria on
PUE, the network, storage devices, power sourcing equip-
ment, the server, and the quantity of IT racks. The room level
comprises criteria on room monitoring and management, lay-
out and ventilation, the computer room environment, and the
refrigeration system. The data center level comprises criteria
on renewable energy, waste heat utilization, data center loca-
tion, and energy consumption per unit area.

Methods

An integrated approach was proposed as effective to evaluate
the sustainability of big data centers by combining the ANP
and fuzzy TOPSIS. ANP is used to weight the relative impor-
tance of the dimensions and subdimensions; then, perfor-
mance scores and weights are combined using fuzzy
TOPSIS. This approach is specifically useful for dealing with
the situations where the evaluations are uncertain and impre-
cise. This integration is applied successfully to the complex
big-data-center-sustainability problem of the vague and im-
precise nature of linguistic assessments, where the experts’
comparisons are denoted as fuzzy numbers.

ANP

The AHP was first proposed by Saaty (1980) for hierarchically
structured decision problems. Based on expert judgments, this
method is implemented by comparing measurements obtained
through absolute scales on tangible and intangible criteria (Saaty
1980). However, many real decision problems are not hierarchi-
cally structured: their structure includes interdependent relation-
ships and feedback among the components and decision levels.
Therefore, the ANP is more appropriate to such problems, where
a network is treated as having clusters of elements rather than a
hierarchy (Saaty and Vargas 2006). The ANP has been widely
applied in many decision-making problems in the last decade
(Seyhan and Mehpare 2010).

Fundamental scale

To balance between competing multiple objectives and
criteria, decisions are usually made qualitatively to determine
the numerical value that should represent relative importance.
As in the AHP, we should make pair-wise comparisons using
a scientific and carefully designed approach. The fundamental
scale used for decision-making is presented in Table 2. In this
research, the ANP was applied to weight the relationships
among the main criteria and subcriteria with respect to the
goal.
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Main steps of the ANP

Model construction The purpose of the data center eval-
uation problem should be determined, and the elements
affecting the goal of the model must be divided into
main criteria and subcriteria. This division results in a
three-layer hierarchical model structure. According to
the opinions of decision-makers, the relationships
among the elements in each cluster are marked by ar-
rows. Finally, the alternative data centers are incorporat-
ed into the model as the fourth layer (e.g., Fig. 2).

Pair-wise comparison The elements of every cluster are
compared singly according to their importance for their
control criteria. Judges then evaluate the pair-wise com-
parisons. For every pair-wise comparison matrix, the
consistency ratio (CR) is used to evaluate for logical
consistency. A CR value < 0.1 indicates a consistent
pair-wise comparison matrix.

CR ¼ λmax−n
n−1ð Þ*RI

Where λmax = the average of normalized weighted sum
vector, n = number of criteria; RI = consistency index of
a randomly generated pairwise comparison matrix.

Formation of the supermatrix To obtain the global priorities,
the local preference is calculated in the appropriate columns of
the supermatrix. This forms a partitioned matrix. Every sec-
tion represents the contact between clusters. However, the
supermatrix is unweighted and must be transferred into rele-
vant limiting priorities. For this purpose, a weighted
supermatrix must be obtained by normalizing each column
of the unweighted supermatrix.

Acquiring the weights of criteria The weighted supermatrix is
converted to a limiting supermatrix, where the relative weights
of the elements can then be obtained from the rows of the
limiting supermatrix. Eventually, the overall score Sj of a de-
cision alternative is shown as follows.

S j ¼ ∑
i
wirij

Where wi = the weight for criterion i, rij = the rating for crite-
rion i and decision alternative j.

Fuzzy set theory

Decision-making is difficult in an ambiguous and uncertain
environment. Zadeh’s fuzzy set theory (Zadeh 1965) can be
used to better regulate ambiguity and uncertainty. Fuzzy set
theory can improve the synthesis and rationalization of the
decision-making process (Chen 2000), and it has been applied
to resolve ambiguities in human perception and decision-mak-
ing. The use of fuzzy sets has enabled the importance of
criteria to be evaluated in linguistic terms.

Establishing the fuzzy number

To enable decision-makers to precisely assess criteria, a trian-
gular fuzzy number is commonly introduced in most fuzzy
applications (Lan 2016). Figure 1 illustrates a triangular fuzzy
numberM (Shaw et al. 2012).We represent a fuzzy number as
(a, m, b), and the function of membership is presented in
Eq. (1). The lower and upper bounds of the fuzzy number M
are a and b, respectively, wherem is the mode ofM (Lee et al.
2009).

Table 2 Fundamental evaluation
scale Numerical importance Definition

1 Equal importance

3 Moderate importance

5 Strong importance

7 Very strong importance

9 Extreme importance

2, 4, 6, and 8 Intermediate values

Reciprocals of the aforementioned
nonzero numbers

If activity i has one of the aforementioned numbers assigned to it relative
to activity j, then j has the reciprocal of that number relative to i.

Fig. 1 Triangular fuzzy number
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μ ∼
M

zð Þ ¼
z−að Þ= m−að Þ;
b−zð Þ= b−mð Þ;

0;

a≤z≤m
m≤z≤b
otherwise

8
<

:
ð1Þ

Let two triangular fuzzy numbers M1 and M2 be parame-
terized by (a1, m1, b1) and (a2, m2, b2), respectively. We pro-
pose the following order of operations for triangular fuzzy
numbers.

M 1 þM 2 ¼ a1;m1; b1ð Þ þ a2;m2; b2ð Þ
¼ a1 þ a2;m1 þ m2; b1 þ b2ð Þ ð2Þ

M 1 �M 2 ¼ a1;m1; b1ð Þ � a2;m2; b2ð Þ
¼ a1a2;m1m2; b1b2ð Þ ð3Þ

M 1 �M 2 ¼ a1;m1; b1ð Þ � a2;m2; b2ð Þ
¼ a1=a2;m1=m2; b1=b2ð Þ ð4Þ

The distance between M1 and M2 is defined as follows
(Krohling and Campanharo 2011).

d M 1;M 2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a1−a2ð Þ2 þ m1−m2ð Þ2 þ b1−b2ð Þ2
h i

=3

r

: ð5Þ

Determining the linguistic variables

Linguistic terms are part of the subjective labels of the linguistic
variable. We defined the value of a linguistic variable to be a
word or phrase. In this study, nine basic linguistic terms were
used in the pair-wise comparisons of the sustainability of two
data centers (Gumus 2009). These terms are listed in Table 3.

Fuzzy TOPSIS

TOPSIS is generally used to solve ranking problems
with a finite set of alternatives. The method depends

on the principle that the selected alternative should have
the shortest distance from the positive-ideal solution and
the farthest distance from the negative-ideal solution
(Sun 2010; Gumus 2009). In this study, we evaluated
the sustainability of data centers using TOPSIS. The
steps in the fuzzy TOPSIS procedure are as follows
(Kuo et al. 2007; Önüt and Soner 2008; Kaya and
Kahraman 2011).

Step 1: Weight the evaluation criteria. In this study, fuzzy
ANP was used to detect the fuzzy preference
weights.

Step 2: Construct the fuzzy decision matrix and select suit-
able linguistic variables for the alternatives in rela-
tion to the criteria. Specifically,

C1 C2 ⋯ Cq

eD ¼
A1

A2

⋮
Ap

ez11 ez12 ⋯ ez1q
ez21 ez22 ⋯ ez1q
⋮ ⋮ ⋱ ⋮
ezp1 ezp1 ⋯ ezpq

2

6
6
6
4

3

7
7
7
5

; ð6Þ

where ezkij is the weight given by the kth expert and

describes the performance of alternative Ai with re-

spect to criterion Cj. The parameter ezkij is such that

ezkij ¼ akij;m
k
ij; b

k
ij

� �
.

Step 3: Construct the normalized fuzzy decisionmatrix. The
matrix is expressed as follows:

R ¼ erij
h i

p�q
; i ¼ 1; 2;⋯; p; j ¼ 1; 2;⋯q: ð7Þ

The normalization method can be implemented using the
following equations:

rij ¼ aij=bþj ;mij=bþj ; bij=b
þ
j

� �
and bþj ¼ max

i
bij

when rijis a benefit criterion
� �

ð8Þ

rij ¼ a =bij; a =mij; a =aij
� �

and a−j ¼ min
i

aij

when rij is a cost criterion
� �

ð9Þ

Step 4: Calculate the weighted normalized fuzzy decision
matrix U by multiplying the fuzzy decision matrix
(R) with the evaluation criteria weights (Wj).

U ¼ uij
� �

p�q; i ¼ 1; 2 ;⋯; p; j ¼ 1; 2;⋯q

The weighted normalized value uij is calculated using
Eq. (10).

Table 3 Linguistic variables for pair-wise comparisons of criteria

Fuzzy number Linguistic Scale of fuzzy number

9 Perfect (Pe) (8, 9, 10)

8 Absolute (A) (7, 8, 9)

7 Very good (VG) (6, 7, 8)

6 Fairly good (FG) (5, 6, 7)

5 Good (G) (4, 5, 6)

4 Preferable (Pr) (3, 4, 5)

3 Not bad (NB) (2, 3, 4)

2 Weak advantage (WA) (1, 2, 3)

1 Equal (E) (1, 1, 1)
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uij ¼ rij⊙wj ð10Þ

Step 5: Define the fuzzy positive-ideal solution (FPIS) and
fuzzy negative-ideal solution (FNIS). The compo-
nent uij is a normalized positive triangular fuzzy
number whose limits are within [0, 1]. The FPIS
S+ and FNIS S− can be determined using the fol-
lowing.

Sþ ¼ uþ1 ;⋯; uþj ;⋯; uþq
� �

ð11Þ

S− ¼ u−1 ;⋯; u−j ;⋯; u−q
� �

ð12Þ

Step 6: Calculate the Euclidean distance of each alternative
from S+ to S−.

Dþ
i ¼ ∑

q

j¼1
d uij; uþj
� �

; i ¼ 1; 2;⋯; p; j ¼ 1; 2;⋯; q ð13Þ

D−
i ¼ ∑

q

j¼1
d uij; u−j
� �

; i ¼ 1; 2;⋯; p; j ¼ 1; 2;⋯; q ð14Þ

du represents the distance between two fuzzy numbers,
which can be calculated using Eq. (5).
Step 7: Calculate the relative closeness of each alternative to

the ideal solution. The relative closeness is as fol-
lows.

CCi ¼ D−
i = Dþ

i þ D−
i

� � ð15Þ

Step 8: Rank the alternatives in descending order according
to their relative closeness. The basic principle is that
the best alternative has the highest closeness coeffi-
cient and is thus closest to the FPIS and farthest
from the FNIS.

Proposed model

The proposed model comprises four basic stages. In the first
stage, the objective of evaluation is determined. This determi-
nation is crucial for applied big data research. In the second
stage, the criteria to be used in the model are identified
through a literature review and through consultations with
experts. The problem examined in this study had a decision-
making structure that was hierarchical and networked, as il-
lustrated in Fig. 2. For three data centers, the network of their
performance assessment can be clearly visualized. We select-
ed four main criteria (B1 to B4) and 17 subcriteria (C1 to C17)

for constructing the model. Among the 17 subcriteria, C4 and
C14 are cost criteria, whereas the other subcriteria are benefit
criteria.

After constructing the framework, we calculated the indi-
vidual priority weights for each criterion using the ANP.
Subsequently, the relative weights of the criteria in the
supermatrix were obtained and the matrix of the weighted
decision was constructed. In the last stage, alternatives were
evaluated and ranked using fuzzy TOPSIS. By measuring, in
linguistic terms, the decision-makers’ opinions on the perfor-
mance of alternatives, fuzzy TOPSISwas used to rank the data
centers.

Application of the proposed model

To evaluate alternative solutions and help managers of big
data centers improve sustainability, data center sustainability
was evaluated using the proposed model in a case study. The
alternatives (A1, A2, and A3) are three big data centers locat-
ed in universities, one in north China (Beijing), one in south
China (Shenzhen), and one in central China (Wuhan). The
main service items of the big data centers include scientific
research, school–enterprise cooperation, managed rental ser-
vices, bandwidth access, and security services. An increase in
data processing volume and energy consumption has resulted
in considerable pressure on the implementation of green prac-
tices in traditional big data centers. The case study was used to
illustrate how data center sustainability is affected when dif-
ferent aspects are integrated into the evaluation problem.

Calculation of the criteria weights

After developing the research evaluation framework, the
Super Decisions software was used to calculate the criteria
weights according to the ANP. Four groups of pair-wise ma-
trices were determined for the interdependent relationships
and relative importance among the main criteria, subcriteria,
and alternatives. Expert opinions for the pair-wise comparison
were solicited from professors and practitioners in the fields of
big data and data analytics. The first pair-wise matrices were
used for assessing the influence of the main criteria on the
evaluation objectives, and the comparison results of the
criteria are presented in Table 4. For the second group of
matrices, we analyzed the interdependence between B1 (Big
data), B2 (Equipment), B3 (The room), B4 (Data center), and
their subcriteria. The last group of pair-wise matrices de-
scribes the effect of the subcriteria (C4 to C17) on the alter-
natives (A1 to A3). The weighted supermatrix is presented in
Table 5, and the limited supermatrix is presented in Table 6.
From the results of the limited supermatrix, we obtained the
relative weights of each subcriterion.
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Evaluation of alternatives and determination of the
final rank

This case study focused on evaluating the sustainability of three
data centers. Three experts used a nine-item scale (Table 4) to
judge the relative importance of the selection criteria when
performing the pair-wise comparisons. The opinions of all ex-
perts were of equal weight, and the mean value was used to
represent the overall fuzzy value of the experts’ collective judg-
ment for the same evaluation dimensions. Subsequently, linguis-
tic variables, such as “Perfect,” “Absolute,” “Very good,” “Fairly
good,” “Good,” “Preferable,” “Not bad,” “Weak advantage,”
and “Equal” were used to evaluate the performance of the data
center with respect to the criteria in Table 4. The decision matrix
was also constructed by comparing the alternatives in relation to
each subcriterion (see Tables 5 and 7). The weight of each sub-
criterion is also presented in Fig. 3. The assessments of data
center performance by the three experts are presented in Table 7.

First, the decision matrix should be normalized with the
triangular fuzzy numbers using Eqs. (8) and (9), which include
benefit and cost criteria. For criteria C1 of the alternative A1,
the normalized value for r11 is as follows:

z11 ¼ 4þ 6þ 7; 5þ 7þ 8; 6þ 8þ 9ð Þ=3
¼ 5:67; 6:67; 7:67ð Þ ð16Þ

r11 ¼ z11=9 ¼ 0:63; 0:74; 0:85ð Þ ð17Þ

After we obtained the fuzzy evaluation matrix, the fuzzy
weighted decision table was calculated. We then obtained the
weighted evaluation matrix, as presented in Eq. (10), using the
criteria weights computed with the ANP (Table 5). The fuzzy
weighted decision matrix is presented in Table 8.

u11 ¼ r11 � w11 ¼ 0:63; 0:74; 0:85ð Þ � 0:066

¼ 0:042; 0:049; 0:056ð Þ ð18Þ

Fig. 2 Multiple-criteria decision-making model for evaluating the sustainability of big data centers

Table 4 Comparison results for
the criteria and the criteria’s
relative weights

B1:Bigdata B2:Equipment B3:The room B4:Data center Weight

B1:Big data 1 2 3 6 0.4564

B2:Equipment 1/2 1 3 7 0.3334

B3:The room 1/3 1/3 1 5 0.1609

B4:Data center 1/6 1/7 1/5 1 0.0493

CR= 0.0622
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According to Table 8, we normalized the elements Uij,
and ∀i, j as positive triangular fuzzy numbers, with
values within [0, 1]. Therefore, the FPIS and FNIS were
assigned as uþi = (1, 1, 1) and u−i = (0, 0, 0) for the
benefit criterion, respectively, and uþi = (0, 0, 0) and u−i

= (1, 1, 1) for the cost criterion, respectively. The dis-
tance between the FPIS and FNIS of each criterion of
alternatives was calculated using Eq. (5).

dþu11 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−0:041ð Þ2 þ 1−0:049ð Þ2 þ 1−0:056ð Þ2
h i

=3

r

¼ 0:951 ð19Þ

Table 5 Weighted supermatrix

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17

C1 0.000 0.100 0.167 0.099 0.103 0.067 0.144 0.067 0.094 0.112 0.000 0.000 0.106 0.066 0.000 0.000 0.000

C2 0.167 0.000 0.167 0.039 0.065 0.029 0.020 0.067 0.037 0.064 0.000 0.000 0.028 0.083 0.000 0.000 0.000

C3 0.167 0.100 0.000 0.062 0.082 0.154 0.086 0.067 0.119 0.024 0.000 0.000 0.067 0.052 0.000 0.000 0.000

C4 0.015 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.014 0.000 0.000 0.000 0.020 0.000 0.000 0.000

C5 0.000 0.007 0.000 0.200 0.000 0.050 0.029 0.013 0.012 0.009 0.012 0.018 0.010 0.015 0.250 0.000 0.017

C6 0.028 0.015 0.028 0.000 0.029 0.000 0.154 0.065 0.035 0.028 0.024 0.058 0.033 0.025 0.000 0.000 0.045

C7 0.153 0.092 0.215 0.000 0.019 0.000 0.000 0.086 0.053 0.021 0.040 0.043 0.020 0.017 0.000 0.000 0.023

C8 0.073 0.038 0.090 0.000 0.073 0.000 0.000 0.000 0.150 0.085 0.106 0.127 0.064 0.066 0.000 0.000 0.093

C9 0.064 0.049 0.000 0.000 0.129 0.200 0.067 0.037 0.000 0.043 0.068 0.087 0.073 0.057 0.000 0.000 0.071

C10 0.000 0.128 0.000 0.123 0.000 0.000 0.000 0.141 0.000 0.000 0.188 0.039 0.019 0.062 0.250 0.000 0.188

C11 0.000 0.042 0.000 0.045 0.000 0.250 0.250 0.042 0.250 0.150 0.000 0.205 0.125 0.039 0.000 0.000 0.000

C12 0.000 0.020 0.000 0.014 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.056 0.000 0.000 0.000 0.000

C13 0.000 0.010 0.000 0.018 0.000 0.000 0.000 0.017 0.000 0.050 0.063 0.089 0.000 0.099 0.000 0.000 0.063

C14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.042

C15 0.000 0.200 0.000 0.040 0.036 0.000 0.000 0.050 0.000 0.133 0.100 0.000 0.000 0.067 0.000 0.500 0.208

C16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.063 0.000 0.000

C17 0.000 0.000 0.000 0.160 0.214 0.000 0.000 0.150 0.000 0.067 0.082 0.000 0.000 0.130 0.189 0.000 0.000

Table 6 Limited supermatrix

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17

C1 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066

C2 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050

C3 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058

C4 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

C5 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036

C6 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037

C7 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057

C8 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060

C9 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052

C10 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079

C11 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075

C12 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

C13 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019

C14 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

C15 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072

C16 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018

C17 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.057

Weight 0.066 0.050 0.058 0.003 0.036 0.037 0.057 0.060 0.052 0.079 0.075 0.003 0.019 0.003 0.072 0.018 0.057
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d−u11 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0−0:041ð Þ2 þ 0−0:049ð Þ2 þ 0−0:056ð Þ2
h i

=3

r

¼ 0:049 ð20Þ

The relative closeness of alternatives between the FPIS and
FNIS for each criterion of alternatives could be determined by
adding the results obtained from Eqs. (13) and (14). Similarly,
computations were performed for the other alternatives, and
the results of fuzzy TOPSIS analyses are presented in Table 9.
The last stage involved solving for the similarities to the ideal

solution using Eq. (15). As indicated by the data in Table 9,
the final ranking was A1 >A3 >A2.

Results and discussion

The sustainability of big data centers was evaluated and CCi

values were obtained. According to the CCi values, the alter-
natives, in descending order, were A1, A3, and A2. A1 was
the best performing data center, having the highest CCi of
0.1402. The weight of each element was obtained from a

Table 7 Ratings of the three alternatives under 14 criteria

A 1 A 2 A 3

E1 E2 E3 E1 E2 E3 E1 E2 E3

B1 C1 G VG A NB G EG Pr Pr VG

C2 FG G Pr FG Pr NB G NB WA

C3 Pr VG A VG A FG VG G G

B2 C4 A FG G NB NB E G FG NB

C5 Pr G Pr FG A G NB NB WA

C6 G Pr FG Pr WA NB Pr G NB

C7 FG A A WA Pr G G Pr Pr

C8 NB WA NB NB Pr NB VG FG VG

C9 FG VG A Pr Pr G WA NB Pr

B3 C10 G FG FG FG A VG A VG VG

C11 NB NB Pr FG VG G G Pr NB

C12 A Pe VG Pr FG FG WA NB Pr

C13 FG VG A VG VG A G NB Pr

B4 C14 A G VG FG Pr G NB E NB

C15 Pr G G WA WA E E WA NB

C16 VG A VG G G Pr Pr FG G

C17 FG VG A WA NB WA Pr NB NB

Fig. 3 Weights of subcriteria

Table 8 Weighted evaluation matrix

A1 A2 A3

C1 (0.042,0.049,0.056) (0.034,0.044,0.053) (0.033,0.042,0.050)

C2 (0.029,0.036,0.043) (0.024,0.031,0.038) (0.020,0.028,0.072)

C3 (0.041,0.046,0.052) (0.039,0.045,0.052) (0.034,0.041,0.048)

C4 (0.002,0.002,0.002) (0.002,0.001,0.001) (0.001,0.001,0.001)

C5 (0.013,0.017,0.021) (0.021,0.025,0.029) (0.001,0.011,0.015)

C6 (0.016,0.021,0.025) (0.008,0.012,0.016) (0.012,0.016,0.021)

C7 (0.040,0.042,0.053) (0.017,0.023,0.030) (0.021,0.027,0.034)

C8 (0.011,0.018,0.024) (0.016,0.022,0.029) (0.038,0.044,0.051)

C9 (0.035,0.040,0.046) (0.019,0.025,0.031) (0.012,0.017,0.023)

C10 (0.041,0.050,0.059) (0.053,0.061,0.070) (0.056,0.064,0.076)

C11 (0.019,0.028,0.036) (0.042,0.050,0.058) (0.025,0.033,0.042)

C12 (0.002,0.003,0.003) (0.001,0.002,0.002) (0.001,0.001,0.001)

C13 (0.013,0.015,0.017) (0.013,0.015,0.018) (0.006,0.008,0.011)

C14 (0.002,0.002,0.003) (0.001,0.002,0.002) (0.001,0.001,0.001)

C15 (0.029,0.037,0.045) (0.008,0.013,0.019) (0.011,0.016,0.021)

C16 (0.013,0.015,0.017) (0.007,0.009,0.011) (0.008,0.010,0.012)

C17 (0.047,0.041,0.036) (0.043,0.024,0.017) (0.024,0.017,0.013)
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previous study, which used the ANP to evaluate the pair-wise
comparison matrix (Table 6). In the evaluation of data center
sustainability using the ANP, C10 (refrigeration system), C11
(layout and ventilation), C15 (data center location), C1 (data
volume), and C8 (server) were determined to be the five most
important criteria. Conversely, C16 (waste heat utilization),
C14 (renewable energy), C12 (room monitoring and manage-
ment), and C4 (power sourcing equipment) were determined
to be the four least important criteria. Finally, we calculated
the CR of the pair-wise comparison matrix to be 0.0622,
which was less than 0.1, indicating that consistent weights
were obtained and could be used in the evaluation process.

Rong et al. (2016) provided an energy consumption distri-
bution diagram for data centers, in which the two most impor-
tant factors were refrigeration system energy consumption
(40%) and storage device energy consumption (40%). The
results of this study’s proposed method indicated that the re-
frigeration system and servers are the main contributors of
energy consumption in a data center, consistent with Rong
et al. (2016). As expected, the main concerns in a sustainable
data center are related to refrigeration and hardware, particu-
larly the server. Moreover, in the construction of data centers,
a suitable data center location as well as layout and ventilation
are used to lower cooling costs. Another factor that requires
attention is the volume of big data, which is a significant
indicator of the data handling capabilities of a data center.
Data centers must reasonably distribute data processing tasks
to appropriate IT equipment to avoid idle hosts, energy wast-
age, or overload due to large data volumes. Furthermore, sus-
tainable energy techniques have been a challenge to exploit
for the industry. Nevertheless, data center operators should
pay more attention to renewable energy use and waste heat
utilization, which have considerable potential for improving
data center sustainability.

Like any new technologies, big data have sweeping exter-
nalities, both good and bad. The positive aspects of big data
are real-time monitoring or periodic updating of water, elec-
tricity, and other resources at greater granularity, resulting in a
greater variety, volume, and velocity of data. By sharing such
big data and information with managers, Disney has reduced
its electricity usage by nearly billion kWh annually.
Caterpillar’s customer found out that using more generators
at lower output is better than using fewer ones at maximum
power (Corbett 2018).

Big data might help people make better decisions; howev-
er, large-scale big data centers have their concomitant down-
sides and uninvited or detrimental consequences—they can
consume too much energy or generate too many carbon emis-
sions. From the perspective of carbon emissions, data volume
is more important than variety and velocity based on our
study. But the large volume of data might not be the right data
for decision making. Sometimes, we need to ask what data is
not being collected (Sachs 2012). Even there are big volumes
of data available for analysis, they might not be correct—
veracity concerns. How these data are collected or reported
needs to be verified. The more accurate the carbon emission
data, the lower emissions a big data center can achieve
(Melville et al. 2017). In addition, when big volume data be-
come available, we might be past the prevention time and into
the risk mitigation time, like the case of COVID-19 pandemic.
Thus, we must also concentrate on making decisions with
multi-criteria with little rather than a large volume of data.

What is alarming is that most stored data are considered as
waste or dark data. These gigantic amounts of data just safely
stay there, but only 0.5% of the data in the world is used and
99.5% is dark data, of which 32% is trivial, obsolete, and
redundant (Cohen 2018). A substantial amount of energy
use for big data can be avoided if the dark data can be reduced.
Thus, we must find a way to curtail the unrestrained data
growth including being collected, reported, stored, distributed
and disposed of.

Big data can help reduce material or energy consumption,
but running big data centers entails physical processes (e.g.,
server, equipment, and room) consuming energy. The biggest
data centers in the world are ever more depending on renew-
able energy. Apple’s and Google’s data centers run on 100%
renewable energy (Corbett 2018; Kwon 2020). Firms that in-
vest in green IT achieve lower energy consumption and higher
profits (Khuntia et al. 2018). Thus, it is necessary to start
gauging and abating the environmental costs of big data cen-
ters by investing in renewable energy.

Conclusions

This study proposes a data center sustainability evaluation
model in which multiple-criteria decision-making methods
are integrated using the ANP and fuzzy TOPSIS. The ANP
is used to obtain the relative criteria weights for determining
their interdependent relationships, and fuzzy TOPSIS is used
to rank the performance of alternatives. The applicability of
the proposed model was examined using a case study.

Numerous studies have examined technologies for reduc-
ing the energy consumption of data centers. However, few
theoretical studies have investigated how energy consumption
can be reduced by managing data characteristics, energy input
(power source), and energy output (location and waste heat

Table 9 Result of the fuzzy TOPSIS analyses

Alternatives D+ D− CCi Rank

A1 14.617 2.383 0.1402 1

A2 14.652 2.343 0.1381 3

A3 14.634 2.366 0.1391 2
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treatment). This study proposes a comprehensive strategy,
based on a holistic architecture, for the evaluation of the en-
ergy consumption of a data center. The results suggest that
designers of a data center should pay attention to the center’s
carbon footprint and the various factors—such as data charac-
teristics, IT equipment, refrigeration system, and waste heat
utilization—affecting energy consumption. Refrigeration sys-
tem, layout and ventilation, data center location, data volume,
and server power consumption were determined to be the five
most significant elements in evaluating data center sustain-
ability. The areas that require further development are renew-
able energy use, waste heat utilization, and how tasks should
be optimally allocated to various IT equipment.

To the best of our knowledge, this study is the first to assess
data center sustainability through multiple-criteria decision-
making methods, where fuzzy theory is used to evaluate the
imprecise and subjective judgments of decision makers. This
study formulated a systematic evaluation framework based on
qualitative and quantitative criteria and comprising the four
factors of big data level, equipment level, room level, and data
center level. This framework provides a method that managers
can use to enhance sustainability when constructing new data
centers or upgrading and optimizing existing ones. The man-
agers of data centers must strive to optimize the refrigeration
system, layout and ventilation system, data center location,
and arrangement of tasks to increase the energy efficiency of
IT equipment. They should also better understand clean ener-
gy use and waste heat utilization. Moreover, the research re-
sults indicate that achieving sustainability and energy con-
sumption reduction for a data center is a systematic problem
influenced by factors such as the efficiency of equipment,
airway layout, location, data characteristics, and renewable
energy. Big data is like unclean oil, which is not only a pow-
erful force for economic development, but also a root cause of
environmental harm. We need to make certain that big data
centers operate in a sustainable way.
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