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Abstract
Currently, investigations are intensively conducted on modeling, forecasting, and studying the dynamic spread of coronavirus
(Covid-19) new pandemic. In the present work, the sigmoidal-Boltzmannmathematical model was applied to study the Covid-19
spread in 15 different countries. The cumulative number of infected persons I has been accurately fitted by the sigmoidal-
Boltzmann equation (SBE), giving rise to different epidemiological parameters such as the pandemic peak tp, the maximum
number of infected persons Imax, and the time of the epidemic stabilization t∞. The time constant relative to the sigmoidΔt (called
also the slope factor) was revealed to be the determining parameter which influences all the epidemiological parameters.
Empirical laws between the different parameters allowed us to propose a modified sigmoidal-Boltzmann equation describing
the spread of the pandemic. The expression of the spread speed Vp was further determined as a function of the sigmoid
parameters. This made it possible to assess the maximum speed of spread of the virus Vpmax and to trace the speed profile in
each country. In addition, for countries undergoing a second pandemic wave, the cumulative number of infected people I has
been successfully adjusted by a double sigmoidal-Boltzmann equation (DSBE) allowing the comparison between the two waves.
Finally, the comparison between the maximum virus spread of two waves Vpmax 1 and Vpmax 2 showed that the intensity of the
second wave of Covid-19 is low compared to the first for all the countries studied.
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Introduction

The emergence of the new infectious disease of coronavirus
(Covid-19) is currently the most intriguing field of research
for the entire scientific community around the world. Unlike
other diseases, the gigantic effects of this pandemic go beyond
the health dimension to have serious, even disastrous conse-
quences on other areas, namely, the economic situation of the
affected countries, the suspension of school and university
activities, cultural, sporting events.... From a virological point
of view, SarS-CoV-2 (Covid-19) is a new virus, not studied
enough for virologists to give all the answers related to its
spread mode. As a result, scientists from all disciplines such
as biologists, physicists, chemists, mathematicians, and

economists were intensively involved in the study of this pan-
demic in order to consolidate the epidemiologist’s efforts. The
aim is to understand the spread dynamics of Covid-19 and
predict the pandemic peak as well as the stabilization time of
the epidemic in order to study the possible twists and turns of
the epidemic and therefore the appearance of new waves. This
can provide policymakers with efficient solutions to fight and
control this pandemic. In this sense, several studies have been
conducted based on typical epidemiologic models such as the
susceptible infected recovered (SIR) model (Fanelli and
Piazza (2020), Castro et al. (2020) Arima model
(Chakraborty and Ghosh (2020)) to forecast and predict the
spread dynamic. Others have used mathematical models such
as the Poisson model (Zhang et al. (2020)), the Gauss error
function (Ciufolini and Paolozzi (2020)) and power lawmodel
(Manchein et al. (2020)) to analyze data related to the evolu-
tion of the pandemic. In their report, Hao (2020) considered
that the dynamics of virus infection are analogous to the dy-
namics of certain colloidal systems, and therefore developed a
model based on the Eyring model to predict the evolution of
Covid-19. In this context that our current study takes place.
Indeed, by observing the evolution of the cumulative number
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of people infected with Covid-19 in each step, we can distin-
guish 3 consecutive growth modes: slow growth, exponential
rapid growth, and slow growth. It is indeed a sigmoidal pattern.
Typically, nonlinear models from the Richards family
(Fekedulegn et al. (1999)) are themost indicated in the literature
for the description of sigmoidal growth curves, namely
Logistic, Gompertz, Brody, and von Bertalanffy. Usually, biol-
ogists of all specialties are used to apply this type of model to
describe the growth of certain processes, namely, complex mo-
lecular processes and cellular properties, including interactions
between molecules and cell proliferation as well as the devel-
opment of the compactness of the grape clusters (Dubois et al.
(2009)). Furthermore, Navarro-Verdugo et al. (2011) proposed
a modified sigmoidal-Boltzmann model for the phase transition
of smart gels. Also, Hait et al. (2002) proposed a refinedmethod
based on sigmoidal-Boltzmann equation (SBE) to estimate the
parameters of physical’s process in micellar solutions like mi-
cellization process and percolation parameters. In certain
physical, chemical, or biological processes, the sigmoidal
pattern is reproduced consecutively with two points of
inflection. In this regard, we can cite the work of Fernandes
et al. (2017) who modeled the growth of coffee berries by
double sigmoid function. In addition, Román-Román et al.
(2019) proposed multi-sigmoidal Gompertz functions to de-
scribe growth at multiple inflection points.

The main objective of this study is to apply this sigmoidal
model to the cumulative number of people infected with Covid-
19 during a pandemic wave. In addition, we plan to adopt a
double sigmoid model for countries where a second pandemic
wave has been observed. Indeed, in this model, to describe the
double sigmoid growth, two simple sigmoids are considered in
the same model, each in order to explain a certain stage of
growth. We will thus exploit the characteristics of the sigmoid
model to derive epidemiological parameters relating to the
spread of the pandemic. Our study is based on data of the
cumulative number of infected people provided by the Johns
Hopkins University Resource Center (COVID-19 Dashboard
(2020)) until the date of 28 May 2020 for Lebanon, Jordan,
South Korea, North Macedonia, andMalta. Otherwise, the data
on cumulative number of infected people for the United States
of America (USA), United Kingdom (UK), Chile, Brazil,
Mexico, Saudi Arabia, India, Turkey, and Spain are collected
until the date of 10 September 2020.

Theoretical background

Sigmoidal-Boltzmann equation

The application of mathematical models in the analysis of
experimental data relating to transition phenomena revealed
patterns of their physical and geometric behaviors. In the same
phases, for example, sigmoidal patterns and inflection points

are identified. Also, whether the transition from continuous to
discontinuous at inflection point, the inflection point will lead
to the critical phase. To model this pattern, Boltzmann have
suggested equation (Reséndiz-Muñoz et al. (2017)) was based
on the sigmoidal equation of logistics:

y xð Þ ¼ 1

1þ exp −xð Þ ð1Þ

Typically, Eq. (1) has been used to describe observed be-
haviors where a given element causes a transition from one
state to another of quite different significance. Therefore, the
following sigmoidal-Boltzmann equation is formulated,
where the original formula is modified, and includes the nec-
essary geometric properties. In fact, to describe the evolution
of a magnitude evolving as a function of a variable, the
sigmoid-Boltzmann equation (SBE) has the following form:

y xð Þ ¼ yr 1þ yi−yr
yr

� �
� 1þ exp x−x0ð Þ=Δxf g−1

� �
ð2Þ

where y is the measured magnitude of the system which de-
pends on x, yi and yr are the left and right asymptotes of y, x0 is
the center (where y returns the mean of yi and yr), andΔx is the
constant period of the independent variable that determines the
rise profile or decrease from yi to yr (for a highΔx, the increase
is slow while for low Δx, increase is quick), and it was called
also the slope factor. The equation therefore basically deals with
the flipping of a parameter from an original state (state of yi) to a
final state (state of yr) through a transition x0.

In some cases, the independent variable, y, reproduces the
sigmoidal pattern with a time offset; a double sigmoidal-
equation (DSBE) takes the following form (Fernandes et al.
(2017)):

y ¼ y0 þ ymax p 1þ exp
x−x01
Δx1

� �� �−1

þ 1−pð Þ 1þ exp
x−x02
Δx2

� �� �−1
" #

ð3Þ
where y0 and ymax are the minimum and the maximum values
taken by y. P is the fraction of the curve comprising phase 1, 1
− p is the fraction of the curve comprising phase 2, Δx1 and
Δx2 are the constant intervals that control the rise of phase 1
and phase 2 (called also slope factors).

A modified sigmoidal-Boltzmann equation for the
number of infected persons I

By applying the sigmoidal growth equation for the cumulative
number of infected people, I evolving over the time, t the
equation therefore deals with the flipping of numbers, I from
an original state, Ii, to a final state, Imax, through the transition,
tp. At this point, the transition, tp corresponds therefore to what
is called the pandemic peak or the turning point.

40401Environ Sci Pollut Res  (2021) 28:40400–40408



I tð Þ ¼ Imax 1þ I i−Imax

Imax

� �
� 1þ exp t−tp

� 	
=Δt


 �−1
� �

ð4Þ

Δt is a time constant.
Knowing that Imax ≻ ≻ ≻ Ii Eq. (4) becomes:

I tð Þ ¼ Imax 1− 1þ exp t−tp
� 	

=Δt

 �−1

h i
ð5Þ

Therefore, we can derive from Eq. (5) two essential epide-
miological parameters, namely the maximum number of in-
fectious individuals reached Imax from which the disease starts
to stabilize. The pandemic peak time tp, often called the turn-
ing stage, is the time which marks the transition from a dan-
gerous epidemic state marked by a high speed of virus trans-
mission to a declining epidemic with a speed of the virus
spread in decrease.

Generally, the epidemic state stabilizes when the number of
infected cases I reaches almost the maximum number of in-
fected cases I = 0.99Imax which corresponds to infinite time, t∞
of pandemic spread:

Considering Eq. (5), the t∞ value can be calculated from the
following equation:

t∞ ¼ 2:19Δt þ tp ð6Þ

Generalized sigmoidal-Boltzmann equation for the
number of infected persons I

In cases where the spread of the virus in some countries un-
dergoes a rebound, thus, the speed of virus spread accelerates
again and the number of people infected increases exponen-
tially again. This is manifested by the appearance of a new
sigmoidal portion in the cumulative case curves.
Epidemiologists call this trend a secondwave pandemic wave.
The Boltzmann sigmoid equation takes the following form in
this case:

I tð Þ ¼ I i þ Imax p 1þ exp
t−tp1
Δt1

� �� �−1

þ 1−pð Þ 1þ exp
t−tp2
Δt2

� �� �−1
" #

ð7Þ
where Ii ≈ 1 and Imax are the initial and the maximum values
taken by I. p is the fraction of the first curve (first wave inten-
sity) 1, 1 − p is the fraction of the second wave 2 (second wave
intensity), and Δt1 and Δt2 are the time constant intervals

(slope factors) that control the rise of the first and the second
waves. tp1 and tp2 are the pandemic peaks of the two waves.

Knowing that Imax ≻ ≻ ≻ Ii Eq. (7) becomes:

I tð Þ≈Imax p 1þ exp
t−tp1
Δt1

� �� �−1

þ 1−pð Þ 1þ exp
t−tp2
Δt2

� �� �−1
" #

ð8Þ

Expression of speed of the virus spread

Case of one wave spread

Knowing that the variation in the number of infected people
over time defines the speed of spread of virus, Vp, in a given
population, the speed of propagation can therefore be deter-
mined from I expression (Eq. (5)) by the following equation:

Vp ¼ ∂I tð Þ
∂t

ð9Þ

So,

Vp tð Þ ¼ Imaxexp t−tp=Δt
� 	

Δt 1þ exp t−tp=Δt
� 	� 	2 ð10Þ

Since the speed of virus spread is maximized during the
pandemic peak, i.e., at t = tp, the maximum speed of virus
spread Vp, max is expressed as follows:

Vp;max ¼ Imax

4Δt
ð11Þ

By rearranging Eq. (11), we can express the modified
Boltzmann sigmoid spread equation (Eq. (5)) as a function
of Vp, max, Imax, and tp:

I tð Þ ¼ Imax 1− 1þ exp 4 t−tp
� 	

Vp;max=Imax

� 	
 �−1
h i

ð12Þ

Case of one two spread

For countries where a second wave appears, the expression of
the spread speed Vp is obtained from the derivative of Eq. (8)
as follows:

Vp≈Imax −pexp
t−tp1
Δt1

� �
Δt1 1þ exp

t−tp1
Δt1

� �� �2
( )−1

− 1−pð Þexp t−tp2
Δt2

� �
Δt2 1þ exp

t−tp2
Δt2

� �� �2
( )−1

2
4

3
5 ð13Þ
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Analysis of the spread of Covid-19 in 15
different countries using the Boltzmann
sigmoid model

In our study, we collected the data relating to the cumulative
number of people infected I by Covid-19 since the first detect-
ed case. Provided by the Johns Hopkins University resource
center (COVID-19 Dashboard (2020)), the data concern 15
countries affected by the pandemic differently.

Case of countries undergoing one pandemic wave

Epidemiological parameters describing the pandemic spread

By plotting the variation in the cumulative number of infected
persons with respect to time from the day of the first detected
case, we noted a sigmoidal growth for 10 of the 15 countries
studied (USA, UK, India, Brazil, Mexico, Saudi Arabia,
Turkey, Spain, Chile, and Russia). The adjustment of these
curves by the modified sigmoidal-Boltzmann equation (SBE)
(Eq. 5) has been carried out successfully using nonlinear least
squares method (very high values of the adjusted R squared).

The results are reported in Figs. 1 and 2. It is clear that the
USA (Fig. 1) recorded the highest number of people infected
with Covid-19 compared to other countries. However, it ap-
pears that the UK is the country least affected by the pandem-
ic. We have reported in Table 1 the different epidemiological
parameters from the fit associated with the infinite time of the
pandemic spread t∞ estimated from Eq. (6). It is important to
note that the country currently most affected is the USA with
Imax = 9.633 106 and t∞ = 299.943, and the fit results predict
also that India is the second country where the pandemic has
spread on a large scale with respectively Imax = 8.877.106 and
t∞ = 291.567. Obviously, the infinite time for the pandemic
spread t∞ is a reliable indicator of the effectiveness of the
precautionary measures taken by each country (general quar-
antine, isolation, etc.). In fact, the lower this parameter, the
more effective the measures, and vice versa. From Table 1, we
can observe that this parameter takes minimum values for
Turkey and the UK and maximum values for the USA and
India.

Table 1 Sigmoid-Boltzmann (SBE) fit parameters for countries undergoing 1 pandemic wave

Country Imax (infected people) tp (days) Δt t∞ (days) R2

USA 9.633. 106 196 47.463 299.943 0.995

UK 303,214.290 87 15.330 120.572 0.994

Brazil 5.235.106 155 29.304 219.175 0.999

Russia 1.032.106 133 27.981 194.278 0.994

Mexico 763,067.871 144 28.748 206.958 0.999

India 8.877.106 233 26.743 291.567 0.999

Chile 404,168.448 107 17.664 145.684 0.995

Turkey 343,280.196 106 13.970 136.594 0.986

Spain 526,050.092 71 45.068 169.698 0.979

Saudi Arabia 328,807.990 113 22.770 162.866 0.999

Fig. 2 Variation in the cumulative number of infected people I in 6
studied countries since the day of first detected case

Fig. 1 Variation in the cumulative number of infected people I in the 4
countries most affected by the pandemic since the day of first detected
case
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A novel expression of the sigmoidal-Boltzmann equation

In Fig. 3, we plot the variation of the pandemic infinite time t∞
as a function of the pandemic peak tp. According to the curve,
a linear relationship between these two parameters was
highlighted.

So t∞ is connected to tp by the following equation:

t∞ ¼ 19:35þ 1:07tp ð14Þ

Given Eq. (6), the constant time can be connected to the
pandemic peak as follows:

Δt ¼ 8:83þ 0:03tp ð15Þ

By replacing in Eq. (5), the modified sigmoidal-Boltzmann
equation can be expressed only as function of tp and Imax as
follows:

I ¼ Imax 1− 1þ e t−tp=8:83þ0:03tpð Þn o−1
� �

ð16Þ

Speed profile of virus spread

Using Eq. (10), we have calculated the speed of the virus
spread for the 10 studied countries since the first detected case.
Results are depicted in Fig. 4 as function of ttp. With a maxi-

mum spread speed Vpmax more than 80.000 cases/day, India
far exceeds other countries. It was succeeded by the USA and
Brazil which recorded considerably high maximum spread
speeds. However, the lowest maximum propagation speed
was recorded for Spain (nearly Vpmax = 3000 cases/day).
From an epidemiological point of view, we consider that the
maximum speed of pandemic spread is a key factor reflecting
the intensity of the pandemic affecting each country.

Case of countries undergoing two pandemic waves

Epidemiological parameters describing the pandemic spread

By plotting the variation in the cumulative number of infected
persons with respect to time from the day of the first detected
case, we noted a double sigmoidal growth for the 5 countries
studied (Jordan, Lebanon, Malta, North Macedonia, and
South Korea). The reproduction of the same sigmoid pattern
is considered the sign of a second pandemic wave. The fit of
these curves by the double sigmoidal-Boltzmann equation
(DSBE) (Eq. 8) has been carried out accurately (Fig. 5). The
fit results are listed in Table 2.

The difference (tp2 − tp1) allows us to estimate the time
difference between the two peaks relating to each wave.
Ranging from 22.4 in South Korea to 53.6 in Jordan, this
difference can give us an idea of the speed of governments’
response to the pandemic rebound. On the other hand, the ratio

between two time constants Δt1
Δt2

allows to compare the rhythms

of exponential growth between the two waves and therefore
the intensity of two waves.

We have reported in Fig. 6 the infinite time (time of the
epidemic stabilization) t∞1, 2 variation of each of the waves
versus the pandemic peaks tp1, 2 of two waves. Similar to the
case of countries with a single wave, a linear relationship was
also observed:

t∞1;2 ¼ 13:53þ 1:007tp1;2 ð17Þ

The time constant Δt1, 2 can be therefore expressed:

Δt1;2 ¼ 6:17þ 0:03tp1;2 ð18ÞFig. 4 Speed of the pandemic spread Vp profile in 10 studied countries
since the day of first detected case

Fig. 3 t∞ versus tp for the 10 countries studied (with 1 wave)
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Thus, the modified sigmoidal-Boltzmann equation can be
expressed according to Eq. (19):

I tð Þ≈Imax p 1þ e t−tp1=6:17þ0:03tp1ð Þn o−1
þ 1−pð Þ 1þ e t−tp2=6:17þ0:03tp2ð Þn o−1

� �

ð19Þ

Speed profile of virus spread

Using Eq. (13), we have determined the profile of the virus speed
spread in countries undergoing 2 pandemic waves (Fig. 7). We
clearly observe the existence of two maximums in the speed
curve corresponding respectively to the speeds Vpmax 1 and Vp
max 2 recorded during the two pandemic peaks tp1 and tp2.

Fig. 5 Variation in the
cumulative number of infected
people I in 5 studied countries
undergoing 2 pandemic waves

Table 2 Double sigmoid-Boltzmann (DSBE) fit parameters for countries undergoing 2 pandemic waves

Country Imax p tp1 tp2 (tp2 − tp1) Δt1 Δt2
Δt1
Δt2

t∞1 t∞2 R2

Jordan 1034.371 0.70 19 73 54 8.89 5.10 1.74 39 84 0.99

Lebanon 1168.71 0.62 33 87 53 7.52 7.13 1.05 50 102 0.99

North Macedonia 2294.64 0.64 37 79 41 7.27 7.59 0.95 54 96 0.99

South Korea 10,847.18 0.68 38 60 22 2.53 7.86 0.32 43 78 0.99

Malta 521.49 0.63 32 71 38 4.01 5.70 0.70 41 83 0.99
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The values found (Table 3) show that for all countries the
maximum speed of the second Vpmax 2 wave is lower than that
of the first wave Vpmax 1.

To quantify this decrease, we have calculated the relative
decay rate ε of maximum speed spread according to the fol-
lowing equation:

ε ¼ 100
Vpmax1−Vpmax2

Vpmax1

����
���� ð20Þ

The found values are reported in Table 3.
By following the evolution of relative decay rate ε as a

function of the Δt1
Δt2

ratio, we noted a parabolic dependence

(Fig. 8) between these two parameters described by the fol-
lowing equation:

ε ¼ λ1 þ λ1
Δt1
Δt2

� �
þ λ2

Δt1
Δt2

� �2

;λ1 ¼ 114:15;λ2

¼ −104:9;λ3 ¼ 30:35 ð21Þ

Conclusions

In this report, investigation was carried out on the spread dy-
namic of Covid-19 in 15 different countries. The work was
based on the use of a mathematical model, the Boltzmann
sigmoid model (SBE), strongly used in different fields, name-
ly, biology, chemistry, physics, and economics, to model the
Covid-19 spread.

Initially, a modified sigmoidal-Boltzmann equation was
introduced following the application of the model on the cu-
mulative number of infected people I in 10 countries (UK,
USA, Brazil, Mexico, Russia, India, Spain, Turkey, Saudi
Arabia, and Chile). In addition, 3 major epidemiological pa-
rameters were drawn, the time for epidemic stabilization since
the first day t∞, the pandemic peak tp, and the maximum num-
ber of people infected Nmax.

Then, the adjustment of I with a double sigmoidal-
Boltzmann equation (DSBE) in 5 other countries (North
Macedonia, Jordan, Lebanon, Malta, and South Korea) un-
dergoing a second pandemic wave made it possible to char-
acterize the second wave and the comparison with the first.
Furthermore, a spread speed equation was given in both
cases, countries with one wave and countries with two
waves. This allowed us to estimate the values of the maxi-
mum spread speeds Vpmax for each country. In the countries

Fig. 7 Speed of the pandemic
spread Vp profile in 5 studied
countries undergoing 2 waves

Fig. 6 t∞1, 2 versus tp1, 2 for the 5 countries studied (with 2 waves)
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undergoing a second wave, the comparison of two maximum
speeds revealed that the epidemic intensity of the second
wave is lower than that of the first for all the countries stud-
ied. This finding proves that the possible rebound of the
Covid-19 wave remains relatively low. It is necessary to note
that whether for countries undergoing a single pandemic
wave or those undergoing two pandemic waves, the param-
eter having the most influence on all the epidemiological
parameters is the time constant of the sigmoid Δt. Even for
the start of a second wave, we only need to compare this
parameter Δt2 to that of the first wave Δt1 to predict the
intensity of a second wave.

It seems crucial to mention that in the present study we
have focused on the cumulative number of cases infected with
Covid-19, based on data provided by various government

health sources, and gathered by the Johns Hopkins
University Resource Center. As a result, our modeling repre-
sents a quantitative analysis of the Covid-19 spread rate aimed
at approaching reality independently of various factors that
may influence the reliability of the results such as the effec-
tiveness of the testing strategy adopted by each country stud-
ied, the different procedures taken by each country in relation
to general containment and targeted containment, the financial
resources dedicated to Covid-19 which differs from one coun-
try to another, and the strength of the health system in each
country. We believe that these deficiencies have a definite
effect on the accuracy of the results found in all current studies
aimed at modeling the spread of the virus. However, we see
that obtaining results close to reality, especially with regard to
the first wave, can give us a rough picture of the dynamics of
the spread of the Covid-19. At present, virologists and epide-
miologists are intensifying their efforts to fully understand the
intrinsic characteristics of this new virus Sars-Cov-2 (Covid-
19) in order to have clear answers on its mode of contamina-
tion as soon as possible. In parallel, clinical trials are under-
way to identify an effective treatment to neutralize the virus.
For this, at the moment, only mathematical models can shed
light on the dynamics of propagation of Covid-19. This can
provide policymakers to adopt precautionary and preventive
measures to mitigate the damage and fight against this
pandemic.
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Table 3 Maximum speed of pandemic spread Vpmax for the 15 countries studied

Country Vpmax (cases/day) Vpmax 1 (cases/day) Vpmax 2 (cases/day) ε (%)

USA 51,000.92 --- --- ---

UK 4900.31 --- --- ---

Brazil 44,622.38 --- --- ---

Russia 9240.04 --- --- ---

Mexico 6659.25 --- --- ---

India 83,091.33

Chile 5731.55

Turkey 6176.22

Spain 2908.04

Saudi Arabia 3594.40

Jordan --- 20.73 15.80 23.78

Lebanon --- 24.91 16.25 34.76

North Macedonia --- 51.34 28.70 44.09

Malta --- 20.73 9.05 56.34

South Korea --- 725.66 121.20 83.29

Fig. 8 Variation of relative decay rate ε as a function of Δt1
Δt2

ratio for the 5
studied countries undergoing 2 waves
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