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Abstract
The COVID-19 outbreak has become a global pandemic. The spatial variation in the environmental, health, socioeconomic, and
demographic risk factors of COVID-19 death rate is not well understood. Global models and local linear models were used to
estimate the impact of risk factors of the COVID-19, but these do not account for the nonlinear relationships between the risk
factors and the COVID-19 death rate at various geographical locations. We proposed a local nonlinear nonparametric regression
model named geographically weighted random forest (GW-RF) to estimate the nonlinear relationship between COVID-19 death
rate and 47 risk factors derived from the US Environmental Protection Agency, National Center for Environmental Information,
Centers for Disease Control and the US census. The COVID-19 data were employed to a global regression model random forest
(RF) and a local model GW-RF. The adjusted R2 of the RF is 0.69. The adjusted R2 of the proposed GW-RF is 0.78. The result of
GW-RF showed that the risk factors (i.e. going to work by walking, airborne benzene concentration, householder with a
mortgage, unemployment, airborne PM2.5 concentration and per cent of the black or African American) have a high correlation
with the spatial distribution of the COVID-19 death rate, and these key factors driven from the GW-RF were mapped, which
could provide useful implications for controlling the spread of the COVID-19 pandemic.
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Instruction

The 2019 novel coronavirus disease (COVID-19) caused by
SARS-CoV-2 is a rapidly spreading infectious disease that
mainly affects the respiratory system (Landi 2020). Because
the disease is highly contagious with rapid transmission be-
tween humans (Huang et al. 2020), the World Health
Origination (WHO) declared on March 11, 2020 that the
COVID-19 outbreak is a global pandemic (World Health

Organization 2020). As of July 6, 2020, a total of
11,520,953 COVID-19 confirmed cases and 532,633 deaths
have been recorded worldwide. The current epicentre of the
COVID-19 is the USA with 2,982,928 confirmed cases and
132,569 deaths as of July 6, 2020. The economic impact of the
COVID-19 crisis is unprecedented in USA with a substantial
stock market shifting and unemployment rate reaching the
peak (O’Connor et al. 2020). The health care system is also
overwhelmed across the world, which are already operating at
full capacity struggling to meet the demand for ventilators,
intensive care beds and personal protective equipment.

Some researches about the COVID-19 have found that var-
ious factors including environment (Xu et al. 2020; Ahmadi
et al. 2020; Bashir et al. 2020), socioeconomic (de León-
Martínez et al. 2020; Zheng et al. 2020), demographic
(Serge et al. 2020) and underlying disease (Marhl et al.
2020; Ruthberg et al. 2020; Dariya and Nagaraju 2020;
Malik et al. 2020) may influence the transmission of
COVID-19. Bashir et al. (2020) found that air pollution in-
cluding PM10, PM2.5, SO2, NO2 and CO is a significant risk
factor to the COVID-19 epidemic. Tosepu et al. (2020)
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analysed the correlation between weather and the COVID-19
and found that the average temperature was highly correlated
with the COVID-19. Virus carried via public transportation
played an important role in the transmission of COVID-19
(Zheng et al. 2020). Serge et al. (2020) found that males are
about 60% more likely than females to suffer severe illness or
death from the COVID-19 complications. Targher et al.
(2020) found that patients with diabetes were at an approxi-
mately 4 times risk of having severe COVID-19. Chronic
diseases such as diabetes, hypertension and cholesterol levels
are apparently related to the severity of COVID-19 (Zaki et al.
2020). The risk of COVID-19 is related to blood type, in
which people with blood type A have a higher risk of
COVID-19, while people with blood type O have a lower risk
(Pourali et al. 2020). Low-income older people are at higher
risk of COVID-19 because they are more likely to suffer from
chronic diseases, loneliness, uneven diet and lack of exercise
etc. (Calderón-Larrañaga et al. 2020). The epidemic had a
greater psychological impact on people with female gender,
student status and specific diseases (e.g. hypertension and
chronic lung diseases) (Wang et al. 2020).

With the increased availability of health care data online and
the development of spatial analysis techniques, multiple analyses
by the GIS tool (Guliyev 2020; Rosenkrantz et al. 2020) found
that the distribution of COVID-19 cases (Desjardins et al. 2020;
Shim et al. 2020; Lau et al. 2020) and its risk factors (Mollalo
et al. 2020) exhibits patterns of spatial heterogeneity. A study by
Lau et al. (2020) showed that the number of flight routes was a
highly relevant factor of the COVID-19 spread. Their study
showed that regions in Asia, North America and Europe were
at a serious risk of constant exposure to highly infected countries,
while the exposure risk to COVID-19 was relatively low in
South America and Africa. Liu et al. (2020) employed a contact
model to reconstruct the contact and air spread to simulate the
outbreak of COVID-19 on the “diamond princess.” They sug-
gested rigorous prevention measure should be followed by high-
risk susceptible people. Mollalo et al. (2020) mapped the spatial
variability of the relationships betweenCOVID-19 incidence rate
and income inequality, median household, the proportion of
black females and proportion of nurse practitioners using
multiscale geographically weighted regression (MGWR). Sun
et al. (2020) used several spatial models including spatial lag,
spatial error and spatial autoregressive model to examine geo-
graphic differences in COVID-19 in US counties and found that
the spatial model was able to better estimate COVID-19 preva-
lence in counties compared with aspatial models. Sannigrahi
et al. (2020) found that the uneven distribution of the COVID-
19 confirmed cases and deaths across Europe, and this can be
attributed to the discrepant sociodemographic factors such as the
old population and income between European counties.

Many mathematical models have been employed to explore
the risk factors of COVID-19. Typical global models such as
partial correlation coefficient (PCC) (Ahmadi et al. 2020),

ordinary least squares (OLS), Poisson regression model (Xu
et al. 2020) and Bayesian hierarchical model (Millett et al.
2020) and geographical local model such as geographically
weighted regression model (GWR) (Mollalo et al. 2020;
Imran et al. 2015) were used to model the correlations between
COVID-19 data and other impacting factors. However, the
global model assumes the relationship between risk factors does
not vary over space and is inconsistent with the imbalanced
distribution of COVID-19. Although spatial error model
(SEM) and spatial lag model (SLM) do consider spatial factors,
they focus more on the analysis of spatial correlation and do not
analyse the spatial variation of the relationships between vari-
ables in different regions from the perspective of spatial hetero-
geneity (Ahmadi et al. 2020). The GWR (Brunsdon 2010;
Fotheringham et al. 2002; Lu et al. 2017) as a local regression
model can obtain the linear relationship between variables in
different locations. However, the GWR is constructed based on
multiple linear regression models; thus, it is not suitable to
estimate the nonlinear relationships between independent and
dependent variables, and local multicollinearity exists when
dealing with correlated variables (Wheeler and Tiefelsdorf
2005). The real relationship between risk factors and COVID-
19 is complex and is not always linear. In order to explore the
spatial variation of the nonlinear relationship between multiple
risk factors and COVID-19, it is necessary to deal with the
nonlinear situation in a local regression model.

The uneven spatial distribution of COVID-19 is related to
environmental and socioeconomic and demographic differences
among counties. Analysis of the relationship between these pos-
sible risk factors (e.g. air pollution, old age, diabetes) and
COVID-19 in different counties will be helpful in developing
policies to prevent and control the spread of COVID-19. The
relationship between risk factors and mortality is not completely
linear in the real world. In this study, we proposed a local non-
linear nonparametric regression method, geographically weight-
ed random forest (GW-RF), to evaluate the geographical differ-
ence in the relationship between COVID-19 death rate and mul-
tiple risk factors including air pollution, climate, land cover, di-
saster, health status, commuting to work and socioeconomic and
demographic indicators at county level across the continental
USA. This paper tries to explore the variation in the nonlinear
relationships between multiple risk factors and COVID-19 death
rate in different locations by using the GW-RF for the first time.
We expect that this study can provide scientific evidence for
implementing control and prevention measure in COVID-19.

Materials and methods

Data and preparation

The county-level daily COVID-19 death cases data and pop-
ulation data of 3108 counties of continental USA from Jan 22,
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2020 to June 26, 2020 were downloaded from the website of
USA FACTS (https://usafacts.org/). The death rate at county
level was calculated based on the daily COVID-19 death cases
and population data. We selected 47 indicators including at-
mosphere, climate, land cover, disaster, health status, com-
muting to work and socioeconomic and demographic factors
as independent variables to evaluate their correlation with the
COVID-19 death rate. The indicators we selected and their
meanings and sources are presented in Table 1. The shapefile
of the selected 3108 counties was downloaded from geo-
graphical program of US Census Bureau (https://www.
census.gov/programs-surveys/geography.html).

Due to the units of these 47 indicators are different, the
indicators should be normalized before regression. The meth-
od is as follows:

X ki ¼ X ki−X k

σk
i∈1; 2;⋯2056; k∈1; 2;⋯; 28ð Þ ð1Þ

where Xki represents the normalized value of the kth indicator
in the ith county, Xki represents the original value of the kth
indicator in the ith county; X k represents the average value of
the kth indicator; σk represents the standard deviation of kth
index. The COVID-19 death rate and 47 indicators were
joined to the county-level shapefile for further processing.

Nonlinear nonparametric model

RF

We selected the random forest (RF) machine learning
method (Breiman 2001) because it is nonparametric; it
can easily learn nonlinear relationships and interactions
from data without explicitly modelling them. RF is an
ensemble of multiple decision trees. The decision tree is
a nonparametric model that does not have a fixed struc-
ture. The decision tree grows according to the complexity
of the input data in the learning process. The RF works
well for high-dimensional variables with a relatively small
number of samples and can access variable importance
(Grömping 2009). The algorithm flow of the RF is as
follows:

1. The n data sets D1, D2,⋯, Dn are extracted by repeatedly
using the bootstrap method to randomly extract the whole
dataset D, and the corresponding n decision trees H1, H2,
⋯, Hn are generated.

2. At each node of the decision tree, randomly selectm (m <
k) variables from all the k variables of the decision tree,
and each node is split using the selectedm variables by the
optimal segmentation method determined by a segmenta-
tion criterion.

3. The value ofm remains unchanged while the forest grows.
Each tree grows to its largest extent without pruning until
it cannot be split.

Thus, the correlation between the decision trees in the for-
est decreases through a random selection of variables at each
node of the tree and the optimal split of each node is deter-
mined by the selected variables only, instead of all variables.
Each tree can grow to its largest extent without pruning.
Therefore, the algorithm can deal with excessive redundant
features and avoid over fitting.

In the first step in constructing the RF, whether with or
without replacement, approximately 36.8% of the data sam-
ples are not used to grow the tree; these samples are the out-of-
bag (OOB) for the tree. The accuracy of the RF model can be
estimated from the OOB data as presented by Eq. (2):

MSE ¼ 1

N
∑N

i¼1 yi−byi
� �2

ð2Þ

where N is the number of samples from the OBB data, yi is the

actual value of the ith sample, and byi is the average prediction
for the ith sample from all trees.

The overall sum of squares (SST) and coefficient of deter-
mination (R2) are respectively defined in Eqs. (3) and (4):

SST ¼ ∑N
i¼1 yi−y

� �2
ð3Þ

R2 ¼ 1−N
MSE
SST

ð4Þ

where R2 ∈ (0, 1). The closer the value of R2 to 1, the better the
regression performance of the GW-RF will be.

Variable importance can sort the independent (predictor)
variables according to their degree of correlation to the depen-
dent (response) variable. There are two popular methods to
measure the variable importance in the RF, which are average
impurity reduction (Gini importance) and mean square error
(MSE) reduction. Because the result of variable importance by
impurity reduction is biased (Strobl et al. 2007), many re-
searchers have verified and suggested choosing the MSE re-
duction method when permuting the variables (Strobl et al.
2008; Ishwaran 2007). The MSE reduction method uses the
MSE value of the out-of-bag (OOB) data to evaluate the var-
iable importance (Cai et al. 2018). It is determined as follows:

1. Calculate the MSE of the OBB data for each tree. For tree
t, the MSE of OOB data is calculated by Eq. (5):

MSEt ¼ 1

Nt
∑Nt

i¼1 yi−byi;t
� �2

ð5Þ

where Nt is the number of samples from the OBB data in the
tree t; byi;t is the prediction for the ith sample of the tree t.
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Table 1 Definitions of indicators and sources

Theme Indicators Indicator meaning Source

Atmosphere Airborne PM2.5 concentration Annual average ambient concentrations of PM2.5

in micrograms per cubic metre
US Environmental Protection Agency

(https://www.epa.gov/) and Centers
for Diseases Control and Prevention
(https://www.cdc.gov/)

Airborne benzene
concentration

Annual average concentration of benzene estimates
in microgram per cubic metre

Airborne formaldehyde
concentration

Annual average air concentration of formaldehyde
estimates in microgram per cubic metre

Airborne acetaldehyde
concentration

Annual average air concentration of acetaldehyde
estimates in microgram per cubic metre

Airborne carbon tetrachloride
concentration

Annual average air concentration of carbon
tetrachloride estimates in microgram per
cubic metre

Climate Air temperature Average daily max air temperature (°F) National Center for Environmental
Information (https://www.ncei.noaa.
gov/)

Precipitation Average daily precipitation (mm)

Sunlight exposure Annual average sunlight exposure measured by
solar irradiance (kJ/m2)

Centers for Diseases Control and
Prevention (https://www.cdc.gov/)

UV radiation exposure Annual average daily dose of UV irradiance (J/m2)

Land cover Land cover with water Per cent of land covered by water

Land cover with forest Per cent of land covered by forest

Disaster Drought Number of weeks of moderate drought or worse
per year

Flood Percentage of people within FEMA-designated
flood hazard area

Health status Disability Percentage of population aged 5 years and over with
a disability

Asthma Per cent of adults diagnosed with asthma

Obese Percentage of adults aged 18 years and over who
were obese

Overweight Percentage of adults aged 18 years and over who
were overweight

Cancer Number of people with lung and bronchus cancer
per 1,000,000 population

Commuting
to work

Go to work by private
transportation

Percentage of workers 16 years and over who drove
alone (car, truck or van)

US Census Bureau (https://www.census.
gov/en.html)

Go to work by public
transportation

Percentage of workers 16 years and over who go to
work by public transportation (excluding taxicab)

Go to work by walking Percentage of workers 16 years and over who go to
work by walking

Work at home Percentage of workers 16 years and over who
worked at home

Mean travel time to work Mean travel time to work (min) of the workers
16 years and over

Socioeconomic Health insurance Percentage of population without health insurance

Householder with a mortgage Percentage of household with a mortgage

Poverty Percentage of population whose income is below the
poverty level

Service occupations Percentage of employed population 16 years
and over with service occupations

Unemployment Percentage of population 16 years and over
unemployed

Hospital Number of hospitals Centers for Diseases Control and
Prevention (https://www.cdc.gov/)Hospital beds Number of hospital beds per 10,000 population

People living in group quarter Percentage of population living in group quarter US Census Bureau (https://www.census.
gov/en.html)People living near a park Percentage of population living within a half mile

of a park
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2. Randomly replace the target variable j, and then the new
value of the MSE of tree t is calculated by Eq. (6):

MSEt jð Þ ¼ 1

Nt
∑Nt

i¼1 yi−byi;t jð Þ
� �2

ð6Þ

wherebyi;t jð Þ is the prediction for the ith sample of the new tree

t when randomly replacing the target variable j.

3. Calculate the difference between MSEt and MSEt(j), and
the MSE reduction is the variable importance for variable
j of tree t. The MSE reduction of variable j of the whole
forest is obtained as the average overMSE reduction of all
n trees. The variable importance of variable j is expressed
as in Eq. (7):

VI jð Þ ¼ MSE jð Þ ¼ 1

n
∑n

t¼1 MSEt−MSEt jð Þð Þ ð7Þ

GW-RF

In this section, a local nonlinear machine learning method,
denoted as GW-RF, is proposed. The GW-RF is designed

by integrating spatial weight matrix (SWM) and RF into a
local regression analysis framework. The GW-RF inherits
the merits of the RF, making the RF from being applicable
from a global system to a local system. Thus, it can handle
high-dimensional variables with nonlinear relationships and
multicollinearity. The variable importance for each spatial unit
can be obtained from the GW-RF. The process of constructing
the GW-RF model is designed as follows:

1. The SWM for each spatial unit of the study area should
first be made according to the specified spatial weight
rule. The SWM for the whole study area with p spatial
units can be expressed as in Eq. (8):

W ¼

W 1ð Þ
W 2ð Þ
⋮
W ið Þ
⋮

W pð Þ

2
6666664

3
7777775
¼

w11w12⋯w1p

w21w22⋯w2p

⋮ ⋮ ⋮ ⋮
wi1wi2⋯wip

⋮ ⋮ ⋮ ⋮
wp1wp2⋯wpp

2
6666664

3
7777775
; i∈ 1; 2;⋯; pð Þ ð8Þ

As the local random forest of an individual unit needs to
consider the unit itself, the value of wii is set to 1 (wii = 1).
According to the spatial weight rule, for spatial unit i, if
sample j (j ∈ (1, 2,⋯, p) ∧ i ≠ j) is a “neighbour” of unit i,

Table 1 (continued)

Theme Indicators Indicator meaning Source

Householder with no internet
access

Percentage of households with no internet access

Median household income

Mean household retirement
income

Mean household cash public
assistance income

Mean household supplemental
security income

Demographic Per cent of males
Median age

Per cent of people under
18 years

Per cent of people 65 years
and over

Per cent of the white race

Per cent of the black or
African American

Per cent of American Indian
and Alaska Native

Per cent of Asian

Per cent of native Hawaiian
and other Pacific islander

Per cent of Hispanic or Latino
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the value of spatial weight between them is set to 1, that is,
wij = 1.While spatial unit j is far away from spatial unit i, not a
neighbour of spatial unit i, wij = 0.

2. Select all the neighbours of each spatial unit according to
the spatial weight matrix. For unit i, the neighbours of it
can be selected from the special weight matrix W where
wij ≠ 0, (j ∈ (1, 2,⋯, p) ∧ i ≠ j).

3. The spatial unit i and its neighbours are as the inputs to
construct a local RF for unit i (RF (i)). By executing RF
(i), the variable importance for spatial unit i can be
computed.

4. Repeat steps (2) and (3) to construct a local RF for each
spatial unit in the study area and estimate the local vari-
able importance for each spatial unit.

The nonlinear nonparametric models (RF, GW-RF) do not
need to consider multicollinearity and can analyse all indepen-
dent variables without screening. R software (version 3.5.3,
http://cran.r-project.org) was used to perform the regression
analysis.

Results

All 47 indicators were employed to the nonlinear nonparametric
models (RF, GW-RF). The adjusted fitting coefficient (R2) of the
RF was 0.69, while the adjusted R2 of the GW-RF was 0.78,
indicating that the regression result of the GW-RF was more
accurate than that of the RF. The variable importance of an
independent variable represents the correlation between the inde-
pendent variable and the dependent variable, and the higher the
value of the variable importance is, the stronger the correlation
will be. The variable importance of 47 independent variables in
modelling COVID-19 death rate using the RF is shown in Fig. 1.
The risk factors referring to socioeconomic are most correlated
with COVID-19 death rate, followed by risk factors referring to
demographic, commuting to work, atmosphere, health status,
land cover, disaster and climate. The variables including house-
holder with a mortgage, going to work by walking, land cover
with forest, hospital beds, overweight, per cent of Hispanic or

Fig. 1 The variable importance of the independent variables of the RF model in modelling COVID-19 death rate

Table 2 The statistic of
local R2 of the GW-RF in
modelling COVID-19
death rate; we calculated
the average value of local
R2 and the percentage of
counties in five local R2

range (≤ 0.2, (0.2, 04],
(0.4, 06], (0.6, 08], > 0.8)

The value of local R2 GW-RF

Average value 0.59

≤ 0.2 1.1%

(0.2, 04] 9.5%

(0.4, 06] 38.9%

(0.6, 08] 44.8%

> 0.8 5.7%
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Latino, people living in group quarter and airborne benzene con-
centration have a high correlation with the COVID-19 death rate.

We used the local R2 to estimate the performance of the
GW-RF. Table 2 describes the statistic of local R2 of the GW-
RF. The average value of local R2 was 0.59. The value of local
R2 was higher than 0.4 in 89.4% of the counties and higher
than 0.6 in 50.5% of the counties. This shows that the GW-RF
can accurately evaluate the correlation between the risk factors
and the COVID-19 death rate in most of the study areas.

Figure 2 shows the distribution of the local R2 of the GW-
RF across the study area. As can be seen from Fig. 2, the
distribution of local R2 was imbalanced in the whole study
area. The local R2 value of the GW-RF was high in most of
the counties across the whole continental USA, indicating that
the GW-RF worked well in the prediction of the local
COVID-19 death rate in most regions across the study area,
especially in Nevada, Arizona, Washington and some
counties in the East-central region.

We computed the average local effect of each independent
variable on COVID-19 death rate in the GW-RF model (see
Fig. 3). The effect of going to work bywalking had the highest
correlation with the COVID-19 death rate, followed by air-
borne benzene concentration, householder with a mortgage,
unemployment, airborne PM2.5 concentration and per cent of
the black or African American.

The proportion of counties with local primary risk factor
(the risk factor with the highest value of local variable impor-
tance) at county level in the GW-RF was calculated (see
Table 3). Going to work by walking was the most influential
risk factor in 35% of the counties. As SARS-CoV-2 can
spread through the air, going to work by walking will shorten
the social distance between people, thereby increasing the

likelihood of person-to-person contact, which increases the
risk of COVID-19 infection. The airborne benzene concentra-
tion was the leading risk factor in 24% of the counties. It is
because that the virus always attaches to suspended particles
to spread in the air, so the higher the concentration of pollution
particles, the more conducive to the spread of the virus. The
COVID-19 outbreak has also changed people’s emotions dra-
matically, especially for those who are already in danger, such
as people who suffer from depression. Thirteen per cent of
counties were most affected by householder with a mortgage.
The outbreak of COVID-19 placed great financial and emo-
tional pressure on householders with a mortgage, which has
led to them suffering from psychological illness and do not
have enoughmoney for treatment for COVID-19, thus leading
to an increased risk of COVID-19. Twelve per cent of counties
were most affected by unemployment. During the period of
COVID-19, the unemployment rate increased greatly, and
some unemployed people are more inclined to have negative
emotions, which in turn are more likely to suffer from depres-
sion. Moreover, depression is not conducive to the treatment
of COVID-19 patients, thus leading to an increased COVID-
19 death rate. Figures 4, 5 and 6 provide a detailed spatial
distribution of the local variable importance of the first six
factors with the highest value of average variable importance
on the COVID-19 death rate using the GW-RF.

From Figs. 4, 5 and 6, the distribution of the variable impor-
tance of each variable onCOVID-19 death rate inGW-RFmodel
was imbalanced in different counties even the counties in the
same state. For example, in the southern part of Arizona, the
COVID-19 death rate was mainly affected by the airborne ben-
zene concentration and unemployment, and the northern part was
mainly affected by going to work bywalking and airborne PM2.5

Fig. 2 The distribution of local R2

of the GW-RF
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concentration. The regions obviously affected by going to work
by walking were distributed in California, Arizona, the west of

Utah, South Carolina and Massachusetts. The areas influenced
by airborne benzene concentration were scattered throughout the
study area. New Mexico, Florida, Texas, Missouri, the south of
Nevada, the north of Arizona, Massachusetts and Connecticut
were sensitive to householder with a mortgage. The regions ob-
viously affected by airborne PM2.5 concentration and per cent of
the black or African American are similar, mainly located in the
north of Nevada, the north of Arizona, the southeast of Oregon,
the east ofWyoming and the central part of the continental USA.
In addition, the same area was affected by several risk factors.
For example, airborne benzene concentration, householder with
a mortgage, unemployment and the per cent of black of African
American were influential factors in the southeast of Arizona.

0 1 2 3 4 5 6 7

Airborne carbon tetrachloride concentration

Drought

Median household income

UV radiation exposure

Obese

Mean household cash public assistance income

Percent of males

Mean household retirement income

Go to work by private transportation

Hospital

Go to work by public transportation

Overweight

Mean household supplemental security income

Service occupations

Percent of the white race

Median age

Precipitation

Airborne formaldehyde concentration

Hospital beds

Land cover with forest

Percent of Asian

Airborne PM2.5 concentration

Householder with a mortgage

Go to work by walking

Average local variable importance

Fig. 3 The average local variable importance of 47 potential risk factors on COVID-19 death rate in the GW-RF model

Table 3 The proportion of counties with local primary risk factor (the
risk factor with the highest value of local variable importance) on
COVID-19 death rate at county level in the GW-RF

Local primary risk factor Proportion of counties

Go to work by walking 35%

Airborne benzene concentration 25%

Householder with a mortgage 13%

Unemployment 12%

Other risk factors 16%
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Discussion and conclusion

Identifying the risk factors that highly correlated with the
transmission will provide guidance in containing the spread
of the COVID-19 disease. In this study, we selected 47 poten-
tial risk factors from atmosphere, climate, land cover, disaster,
health status, commuting to work and socioeconomic and de-
mographic categories as independent variables to estimate
their impact on the distribution of the COVID-19 death rate
at county level across continental USA. Due to the imbalanced
distribution of COVID-19 death rate and the complex relation-
ship between the COVID-19 death rate and its risk factors, the
linear models could not accurately identify the key risk factors
in different locations. To solve this problem, we applied GW-
RF, a local regression model capable of identifying nonlinear

relationships between variables at various geographical loca-
tions and suitable for dealing with high-dimensional variables
even for correlated variables.

In this study, we used two nonlinear regression models
(RF, GW-RF) to identify the key risk factors to the COVID-
19 death rate. The result showed that the nonlinear models
effectively modelled the relationship between the risk factors
and the COVID-19 death rate both in global and local regres-
sions. The adjusted R2 of the GW-RF was 0.78, higher than
that of the RF, indicating the GW-RF is more suitable to
estimate the local risk factors of the COVID-19 death rate
compared with the global model RF. The average value of
local R2 of the GW-RF is 0.59. In GW-RF, the value of local
R2 is higher than 0.4 in 89.4% of the counties and higher than
0.6 in 50.5% of the counties, indicating that the GW-RF

Fig. 4 The spatial distribution of
the local variable importance of a
going to work by walking and b
airborne benzene concentration
on COVID-19 death rate in GW-
RF model
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performed well in most of the study area. This shows that that
the local nonlinear nonparametric model GW-RF can accu-
rately estimate the relationship between the risk factors and
COVID-19 death rate at various geographical locations.

Our result shows that several risk factors from environment,
socioeconomic, demographic and commuting to work are asso-
ciated with the COVID-19 death rate. Finding of the global mod-
el RF showed that householders with a mortgage had the highest
correlation with the number of COVID-19 death rate, followed
by going to work by walking, land cover with forest, hospital
beds and overweight. Findings of the geographical local model
GW-RF is similar to that of the RF, but a little different. The
GW-RF results show that going to work by walking, airborne
benzene concentration, householder with amortgage, unemploy-
ment, airborne PM2.5 concentration and per cent of the black or

African American played an important role in the distribution of
the COVID-19 death rate. Most of our findings are consistent
with previous research on COVID-19. Zheng et al. (2020) found
that the frequency of public transportation including flights, trains
and buses from the epicentre is an important determinant of
transmission risks of COVID-19. They suggested preventive
measures should be taken in public transportation in order to
contain the COVID-19 epidemic. Several studies found that air
pollution has a significant correlation with the COVID-19 con-
firmed cases (Xu et al. 2020; Bashir et al. 2020). Viruses are
usually not spread as independent individuals in air; they are
more likely to attach to other suspended particles (Yang et al.
2011). Therefore, the concentration of air pollutants may affect
the aerosol transmission of SARS-CoV-2. These studies encour-
aged the formulation of environmental policies to control

Fig. 5 The spatial distribution of
the local variable importance of a
householder with a mortgage and
b unemployment on COVID-19
death rate in GW-RF model
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pollution sources, which can reduce the harmful effects of air
pollutants. Studies from Li et al. (2020) and DiMaggio et al.
(2020) showed that compared with the general population of
the USA, black Americans were at apparently higher risk of
COVID-19 infection and mortality nationwide. It is probably
because black Americans suffer more from poverty, environ-
mental pollution, overcrowded housing and less access to health
care than do the general population of the USA. The prevalence
of smoking and chronic diseases such as cardiovascular disease,
diabetes, hypertension, obesity and chronic respiratory diseases
has increased among black Americans, all of which increase the
risk of COVID-19 (Fang et al. 2020; Zhou et al. 2020; Fouad
et al. 2020). Mollalo et al. (2020) found that the proportion of
black females and median household income had significant
influence on the spatial distribution of the COVID-19 incidence
rate.

By exploring the spatial distribution of risk factors of the
COVID-19 death rate, we found that COVID-19 death rate in
each region was affected by various factors, and the associa-
tion between each risk factor and the COVID-19 death rate
was not consistent in different spatial locations. The result
showed that going to work by walking, airborne benzene con-
centration, householder with a mortgage, unemployment, air-
borne PM2.5 concentration and per cent of the black or African
American had significant relation with the distribution of the
COVID-19 death rate. Other risk factors such as mean travel
time to work, hospital distribution and air temperature may
require more data to estimate their relationship with the distri-
bution of the COVID-19 death rate. About 35% of the
counties are most affected by going to work by walking, so
it is necessary to call on people to pay attention to social
distancing and to wear medical masks. The western and

Fig. 6 The spatial distribution of
the local variable importance of a
airborne PM2.5 concentration and
b per cent of the black or African
American on COVID-19 death
rate in GW-RF model
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central east regions were affected by the airborne benzene
concentration; toxic particles in the air affect the spread of
viruses. Therefore, these regions should pay attention to the
impact of air pollution on human health and take measures to
protect the environment. The southern part of the continental
USA was heavily affected by the proportion of the black or
African American and householder with a mortgage, so some
assistance probably can be taken in these regions to provide
people with financial help such as food and medical supplies.

The current research, despite showing the spatial variability
of the correlation between multiple risk factors and the
COVID-19 death rate at a county level, has the following
limitations. First, the current study only focused on the spatial
dimension of the data based on a period, but the data about the
COVID-19 death rate is constantly changing over time. Future
study can study its spatiotemporal distribution. Secondly, we
do not account for policy factors at local area. Policy factors
would be an interesting research contribution to the transmis-
sion of COVID-19. Thirdly, the GW-RF model only assesses
the goodness-of-fit test of the regression but does not assess
the significance of the single variable. The test method of this
model needs to be improved in the future study.

At present, few geographic local models study the non-
linear relationship between variables. The proposed GW-
RF model could accurately estimate the spatial variability
of nonlinear relationship between the risk factors and
COVID-19 death rate; thus, this method is applicable in
many use instances where this is an issue about selecting
significantly correlated variables at various geographical
locations. Our results confirmed the findings of existing
work on COVID-19 but extend it by using a nonlinear ap-
proach to quantify the impact of risk factors relevant in local
areas. We expect this study could provide a reference for the
geographical local nonlinear modelling in the future epide-
miological studies.
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