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White rot fungi can be a promising tool for removal of bisphenol A,
bisphenol S, and nonylphenol from wastewater
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Abstract
Endocrine-disrupting chemicals (EDC) are a wide group of chemicals that interfere with the endocrine system. Their similarity to
natural steroid hormones makes them able to attach to hormone receptors, thereby causing unfavorable health effects. Among
EDC, bisphenol A (BPA), bisphenol S (BPS), and nonylphenol (NP) seem to be particularly harmful. As the industry is
experiencing rapid expansion, BPA, BPS, and NP are being produced in growing amounts, generating considerable environ-
mental pollution. White rot fungi (WRF) are an economical, ecologically friendly, and socially acceptable way to remove EDC
contamination from ecosystems. WRF secrete extracellular ligninolytic enzymes such as laccase, manganese peroxidase, lignin
peroxidase, and versatile peroxidase, involved in lignin deterioration. Owing to the broad substrate specificity of these enzymes,
they are able to remove numerous xenobiotics, including EDC. Therefore, WRF seem to be a promising tool in the
abovementioned EDC elimination during wastewater treatment processes. Here, we review WRF application for this EDC
removal from wastewater and indicate several strengths and limitations of such methods.
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Introduction

The past two decades have seen growing awareness of the
possible adverse effects on human and animal health
resulting from exposure to endocrine-disrupting chemicals
(EDC). This group includes xenoestrogens, i.e., exogenous
substances with estrogen activity, to which bisphenol A
(BPA), bisphenol S (BPS), and nonylphenol (NP) belong
(Pothitou and Voutsa 2008; Michałowicz 2014; Pookpoosa
et al. 2014; Garcia-Morales et al. 2015; Guo et al. 2016;
Catanese and Vandenberg 2017; Yan et al. 2017; Diao
et al. 2017; Urriola-Muñoz et al. 2017; Česen et al. 2018;
Wu et al. 2018b; Noszczyńska and Piotrowska-Seget
2018). EDC are associated with a wide variety of disorders
(Ben-Jonathan 2004; Kandaraki et al. 2011; Schug et al.

2011; De Coster and Van Larebeke 2012). Despite the
negative effects of EDC, they are widely used in industry
(Noszczyńska and Piotrowska-Seget 2018; Rodríguez-
Peña et al. 2019). As a result of the extensive production,
processing, and transport of EDC-containing products and
EDC themselves, these compounds often contaminate
aquatic environments, as shown in Table 1 (Pothitou and
Voutsa 2008; Terzić et al. 2008; Janex-Habibi et al. 2009;
Kasprzyk-Hordern et al. 2009; Martin Ruel et al. 2010;
Rosal et al. 2010; Yu et al. 2013; Yang et al. 2014a, b;
Jin and Zhu 2016; Lu et al. 2019; Radwan et al. 2020;
Singh and Thakur 2020). Currently, wastewater treatment
systems are not able to cope with EDC removal, which are
present in wastewater in trace amounts even at ng L−1

(Niemuth and Klaper 2015; Bai and Acharya 2019; Lv
et al. 2019). In response to this problem, various tech-
niques of degradation, transformation, and/or removal of
EDC from wastewater have been applied. Among them,
white rot fungi (WRF) seem to be an efficient and ecolog-
ically friendly method with the potential to transform most
of the xenobiotics. The majority of prior research has been
conducted on EDC removal by WRF. Our aim is to sum-
marize the existing knowledge and indicate gaps in the
research that need to be filled.
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Endocrine-disrupting chemicals

EDC are nonpersistent or persistent chemicals (Cajthaml
2015; Corrales et al. 2015). Nonpersistent EDC include
chemicals that are rapidly degraded in the environment and
are quickly metabolized in and eliminated from the human
body (Nelson et al. 2020). Persistent EDC are stable in both
the environment and the human body and undergo significant
biomagnification for a short or long period (Song et al. 2014;
de Voogt 2018). EDC are described as chemically synthesized
or naturally existing compounds, absent within living organ-
isms, that interfere with the endocrine system by imitating or
inhibiting endogenous hormones, thus consecutively inducing
hormonal dysfunctions, having a negative impact on living
organisms (S. Environ. Prot. Agency 1997; Gore et al. 2015;
Björnsdotter et al. 2017; Lauretta et al. 2019). On the one
hand, EDC may show an affinity to specific nuclear receptors
known as peroxisome proliferator-activated receptors
(PPARs) (Cocci et al. 2013; Agarwal et al. 2017; Sharma
et al. 2018). PPARs are normally involved in the binding of
certain ligands such as steroid hormone molecules or fatty
acids, acting as transcription factors, thus regulating the ex-
pression of genes associated with lipid metabolism in the or-
ganism (Urriola-Muñoz et al. 2014; Catanese and Vandenberg
2017; Gupta and Pushkala 2019). Therefore, the influence of
EDC on PPARs contributes to an elevated adipocyte level in
the body and the risk of obesity (Heindel et al. 2015; Ahn et al.
2020). On the other hand, the main targets of EDC are estro-
genic receptors (ERα and ERβ), which can be stimulated or
inactivated by appropriate conjunction of the ligand. Thus,
EDC work either as antagonists or agonists of ERs, disrupting
the estrogenic balance in organisms (Rogers et al. 2013;

Sifakis et al. 2017). BPA and NP are among the best known
xenoestrogens. However, due to the increasing use of BPS in
industry and its widely demonstrated negative impact on hu-
man hormonal system, in the scientific literature, more and
more attention is devoted to this compound (Viñas and
Watson 2013; Catanese and Vandenberg 2017; Urriola-
Muñoz et al. 2017; Qiu et al. 2018; Gupta and Pushkala 2019).

Bisphenol A has become one of the most intensively
manufactured chemicals in the world due to demonstrating
the finest properties for plastic production (Noszczyńska and
Piotrowska-Seget 2018). Numerous studies have investigated
BPA effects on the human body and animals (Zhu et al. 2015;
Quesada et al. 2002; Braun et al. 2009; Izzotti et al. 2009;
Pfeifer et al. 2015; Leung et al. 2017; Maćczak et al. 2017;
Pinney et al. 2017; Tian et al. 2018; Grandin et al. 2019; Özel
et al. 2019; Gao et al. 2020; Rasdi et al. 2020; Tassinari et al.
2020; Wu and Seebacher 2020; Wu et al. 2020a; Pan et al.
2020). Since BPA has a comparable structure to that of natural
estrogen 17β-estradiol, it can bind to ERα and ERβ, though
with 1000-fold less affiliation than estradiol (Gray et al. 2004;
vom Saal and Hughes 2005; Takayanagi et al. 2006; Gray
et al. 2004; vom Saal and Hughes 2005; Takayanagi et al.
2006). Despite this, BPA, even at low doses measured in ng
L−1, is capable of disrupting human cell function by
interacting with extranuclear receptors (Michałowicz 2014).
For instance, BPA binds to membrane estrogen receptors
and GPR30 protein-coupled receptors and, hence, participates
in nongenomic pathways (Rubin 2011; Cygankiewicz et al.
2015). The literature review shows that BPA is not only an
endocrine-disrupting chemical, but it also causes damage to
hepatocytes through oxidative stress (Kourouma et al. 2015;
Elswefy et al. 2016; Li et al. 2017). BPA can modulate the

Table 1 An overview showing detectable EDC concentrations at various aquatic environments

EDC Type of water reservoir Concentration [ng L−1] Location References

Bisphenol S Surface water 8.9 Liaohe River, China Jin and Zhu (2016)

Surface water 6.4 Taihu Lake, China Liu et al. (2017)

Surface water 0.29–18.99 Hangzhou Bay, China Yang et al. (2014a)

Wastewater 23.6–31.2 Albany, New York Xue and Kannan (2019)

Surface water 15–3640 Cooum River, India Yamazaki et al. (2015)

Bisphenol A Surface water 29 Liaohe River, China Jin and Zhu (2016)

Surface water 23 Taihu Lake, China Liu et al. (2017)

Wastewater 70–1680 Quebec, Canada Mohapatra et al. (2011)

Surface water 55–162 Aisonas River, Greece Stasinakis et al. (2012)

Groundwater 79 Europe Loos et al. (2010)

Nonylphenol Surface water 34.4–86.6 Beijing, China Wang et al. (2015)

Groundwater 3.4–41.5 Beijing, China Wang et al. (2015)

Wastewater 24–70.4 Beijing, China Wang et al. (2015)

Surface water 558–2704 Aisonas river, Greece Stasinakis et al. (2012)

Groundwater 83 Europe Loos et al. (2010)
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immune response, has mutagenic activity toward eukaryotic
cells, and leads to obesity (Michałowicz 2014; Wu et al.
2020b). Moreover, BPA disrupts microtubule organization
and centrosome function, hence showing the vast spectrum
of cancer-promoting effects, including induction of prostate
and mammary cancer formation (Seachrist et al. 2016; Ho
et al. 2017; Mesnage et al. 2017). In addition, since fetuses,
infants, and young children do not possess feedback to regu-
late the synthesis, activity, and elimination of hormones, BPA
is particularly harmful to them (Rykowska and Wasiak 2006;
Braun et al. 2009). Exposing children to BPA may result in
higher levels of inattention, anxiety, hyperactivity, depression,
and behavioral problems (Ejaredar et al. 2017;Wiersielis et al.
2020). In the European Union and the USA, the use of BPA-
based polycarbonate bottles for feeding babies was banned. In
France, the use of BPA in all packaging containers and dishes
planned to come into direct contact with food was prohibited
(Euroactiv 2015). In Denmark and Belgium, BPA was not
allowed for the production of food contact materials and arti-
cles for children under 3 years (Services-Global MT 2013).

Due to the deleterious effects of BPA on human health
result ing in t ightened provisions on BPA in the
abovementioned regions, alternative bisphenol compounds
have been used for industrial applications (Héliès-Toussaint
et al. 2014; Chen et al. 2016). Among them, bisphenol S is
increasingly applied as a substitute for BPA (Wu et al. 2018a).
Presently, BPS is delivered worldwide at the level of 10,000–
100,000 t annually (ECHA 2020). As a result of intensive
manufacturing and poor biodegradability, BPS presence was
discovered in surface water in the amount of 0.22–52 ng L−1

in 2013, which by 2016 had already reached 16–410 ng L−1

(Lake Taihu in China) (Jin and Zhu 2016; Liu et al. 2017).
Although the affinity of BPS to ERs is 100,000-fold lower
than that of 17β-estradiol and 37 times weaker than BPA,
BPS is able to bind to these receptors, thus causing their acti-
vation, changing the hormone levels and the expression of
genes controlled by ERα and ERβ (Klopman and
Chakravarti 2003; Grignard et al. 2012). Additionally, BPS
functions as a weak androgen receptor (AR) agonist (Molina-
Molina et al. 2013; Zenata et al. 2017). A number of authors
have demonstrated in laboratory studies that BPS beyond en-
docrine disruptive activity is cytotoxic, immunotoxic, neuro-
toxic, and genotoxic (Peyre et al. 2014; Rochester and Bolden
2015; Feng et al. 2016; Zhang et al. 2016; Dong et al. 2018;
Qiu et al. 2018; Mas et al. 2020). Due to the disruption of
centrosome function and microtubule organization, BPS such
as BPA exerts a vast spectrum of cancer-promoting effects,
but it incites a stronger reproductive and DNA damage re-
sponse than BPA (Ho et al. 2017; Deng et al. 2018; Lin
et al. 2019; Song et al. 2019).

Nonylphenol is a chemical member of the alkylphenol
group (Chokwe et al. 2017). NP is composed of a phenyl
group joined to a nine-carbon lipophilic chain. The varied

structure provides it both hydrophilic and hydrophobic char-
acter; hence, it acts as an effective uncharged surfactant (John
et al. 2000; Soares et al. 2008). Therefore, NP is a suitable raw
material in the production of paints, cosmetics, detergents,
hair dyes, and pesticides. In addition, the presence of NP is
observed in vinyl chloride (PVC), which can contaminate wa-
ter passing through PVC plumbing (EPA 2005). Due to its
high hydrophobicity, resistance to biodegradation, and low
solubility, it is prone to accumulate in various environmental
matrices (Krupiński and Długoński 2011). Consequently, NP
was detected in water averaging 0.805 μg L−1 in China;
12.61 μg L−1, 12.2 μg L−1, and 6.08 μg L−1 in recreational
water, wastewater discharges, and drinking water, respective-
ly, inMexico; 1.6 μg L−1 in Japan; and 0.22μg L−1 in Ukraine
(Hoai et al. 2003; Zhang et al. 2017; Vystavna et al. 2018;
Vargas-Berrones et al. 2020). However, as evaluated by the
Water Framework Directive of the European Union, the max-
imum NP concentration in water in Europe is 2 μg L−1 (EU,
Directive 2013/39/EU 2013), while in the USA, the
Environmental Protection Agency (EPA U 2010) establishes
this dose as 6.6 μg L−1 (EPA 2005). Owing to NP’s lipophilic
properties, it can be deposited in adipose tissue (Yu et al.
2020). Also, NP is capable of binding to ER receptors by
competing with natural estrogen (E2), although with lower
affinity than the natural hormone (Noorimotlagh et al. 2017).
As a result of the above mechanism, NP induces disorders in
men, including a reduction in the level of circulating testos-
terone in the blood, decreased activity of antioxidant enzymes
in sperm, and disturbed testicular structure as well as en-
hanced apoptosis of Sertoli cells (Cardinali et al. 2004;
Gong et al. 2009; Aly et al. 2012; Hu et al. 2014; Urriola-
Muñoz et al. 2014). On the other hand, a study showed that
high exposure to NP of women in the second trimester of
pregnancy led to reduced birth weight of the child and short-
ened the gestational age (Chang et al. 2013).

White rot fungi

In the forest ecosystem, wood decomposition is a key process
in the carbon and nutrient cycle (Purahong et al. 2016). The
rate of wood decay is determined by external factors such as
substrate quality and climate as well as the diversity and ac-
tivity of the organisms that contribute to degradation
(Brischke et al. 2006). Moreover, wood contains a high lignin
content, which significantly hinders the breakdown process
(Purahong et al. 2016). WRF are among the best lignin
degradants. Their name derives from a specific process of
bleaching which occurs during the degradation of wood by
fungi (Ten Have and Teunissen 2001). Interestingly, it was
demonstrated that Fe3O4 nanomaterials combined with the
WRF Phanerochaete chrysosporium have promising poten-
tial for application in lignocellulose degradation (Huang et al.
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2019). WRF are primarily classified as Basidiomycota type;
however, also a limited number represent Ascomycota (Patel
et al. 2014). These fungi are common in nature, usually found
in forest ecosystems, more often in deciduous than coniferous
forests (Singh and Singh 2014). Besides a capacity for lignin
degradation, WRF have remarkable versatility in breaking
down a wide variety of complex and resistant environmental
contaminants that pollute aquatic ecosystems, posing a poten-
tial threat to human and animal health. It is quite well proven
that WRF have a biochemical ability to degrade sulfonamide
antibiotics and important categories of toxic, organic xenobi-
otics such as polycyclic aromatic hydrocarbons (PAH), 1,1,1-
trichloro-2,2-bis(4-chlorophenyl) ethane (DDT), synthetic
textile dyes, polychlorinated biphenyls (PCB), pentachloro-
phenols (PCP), and trinitrotoluene (TNT). Furthermore, these
organisms are capable of heavy metal immobilization via
unique extracellular oxidative enzyme systems, extracellular
chelation with organic acids, cell wall cation exchange, and
intracellular bioaccumulation (Ellouze and Sayadi 2016;
Kachlishvili et al. 2016; Stella et al. 2017; Guo et al. 2018;
Vršanská et al. 2018; Lee et al. 2020; Xiao and Kondo 2020).
In addition to these xenobiotics, more and more publications
demonstrate the significant potential of WRF to break down
EDC, especially BPA and NP (Hirano et al. 2000; Saito et al.
2004; Lee et al. 2005; Soares et al. 2005; Cabana et al. 2007a;
Shin et al. 2007; Cajthaml et al. 2009; Hofmann and Schlosser
2016; Llorca et al. 2017; Pezzella et al. 2017; Křesinová et al.
2018; Zdarta et al. 2018). Knowledge about the decomposi-
tion of BPS by WRF is sparse (Zdarta et al. 2018). However,
due to the increasing usage of BPS and its harmful influence
on human beings, this gap should be filled.

WRF, especially water-adapted ones, should be considered
for the removal of EDC such as in specifically designed treat-
ment modules for wastewater. WRF for the degradation of
organic EDC use the same mechanisms that are involved in
ligninolysis (Pointing 2001). These mechanisms involve a
number of extracellular, broad-acting lignin-modifying en-
zymes (LMEs). LMEs, besides intracellular and mycelium-
related enzymes, might also catalyze biosorption of EDC to
whole-cell WRF which may be the first biodegradation stage
of these chemicals (Harms et al. 2011).

Lignin-modifying enzymes

WRF produce lignin-modifying enzymes, which, apart from
their ability to degrade lignin, are active against xenobiotics,
including EDC (Hashim et al. 2018). There are four main
classes of LMEs: laccases, manganese peroxidases, lignin per-
oxidases, and versatile peroxidases (Cabana et al. 2007b;
Cajthaml 2015). Although WRF are capable of producing all
classes of enzymes, particular strains may not release all of
them together (Yang et al. 2013a). LMEs are synthesized by

fungi undergoing secondary metabolism, as lignin oxidation
does not supply energy to them. The limited nutrient quantity
in the medium, such as carbon or nitrogen, as well as hypoxia
stimulates the synthesis of these enzymes (Niku-Paavola et al.
1990; Pointing 2001; Marco-Urrea et al. 2010; Mattila et al.
2020). Mixing of liquid fungi cultures generates laccase pro-
duction but inhibits the synthesis of lignin and manganese
peroxidase. On the other hand, high oxygen molecular pres-
sure leads to increased secretion of lignin and manganese per-
oxidase. Frequently, several LME isoforms are produced by
fungi depending on the fungus strain and culture conditions
(Torres et al. 2003; Wesenberg et al. 2003; Levin et al. 2004;
Yang et al. 2013b; Kinnunen et al. 2016). Temperature, pH,
agitation, or the presence of inorganic salts or heavy metals
affects the breakdown of endocrine-disrupting chemicals by
LMEs. These parameters influence the activity of enzymes,
their stability, and substrate specificity (Kim and Nicell 2006;
Soares et al. 2006; Auriol et al. 2007; Kinnunen et al. 2016).
The advantage of fungi over bacteria in lignin mineralization
results from the production and secretion of LMEs outside the
cell. In addition, fungi can operate in a wide range of temper-
atures and pH values, while enzymes are synthesized during
nutrient deficiency (Robinson et al. 2001; Arora and Gill
2005; Urek and Pazarlioglu 2007; Dhakar and Pandey 2013;
Hariharan and Nambisan 2013). Expanding fungal hyphae
also make it possible to reach contaminants inaccessible to
bacteria (Cabana et al. 2007b). Moreover, WRF enzymes are
nonspecific so that the fungi can transform compounds resem-
bling lignin in their chemical structure. Such compounds may
include pesticides, alkanes, aromatic hydrocarbons, or
bisphenol A (Harms et al. 2011). The secretion of LMEs out-
side the cell gives fungi access to nonpolar and insoluble sub-
stances (Llorca et al. 2017). Meanwhile, the presence of func-
tional groups such as amine, hydroxyl, or alkyl groups in
chemical compounds, acting as electron donors, makes these
compounds more susceptible to electrophilic oxygenase at-
tack. Therefore, WRF effectively remove phenolic com-
pounds such as BPA and NP (Tadkaew et al. 2011; Yang
et al. 2013b).

Manganese peroxidase

The peroxidase most frequently produced by WRF is man-
ganese peroxidase (MnP). MnP is a glycoprotein contain-
ing a prosthetic group in the form of a heme molecule (an
iron complex with protoporphyrin IX). There are existing
multiple MnP isoforms with a molecular weight between
32 and 62.5 kDa (Qiu et al. 2019). This enzyme was dis-
covered for the first time in P. chrysosporium almost
30 years ago, and it is the only heme peroxidase with a
single-electron mechanism of Mn2+ oxidation reaction
(Pollegioni et al. 2015). MnP catalyzes the oxidation of
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Mn2+ to Mn3+ via hydrogen peroxide (H2O2) required as
an electron acceptor (Dashtban et al. 2010).

2Mn2þ þ 2Hþ þ H2O2→2Mn3þ þ 2H2O

The reaction catalyzed by MnP begins with the conver-
sion of the native enzyme through hydrogen peroxide to the
first transitional compound [Cpd-I], which constitutes the
Fe4+ radical complex (Fig. 1) (Manavalan et al. 2015). At
the same time, the Mn2+ ion is oxidized to Mn3+, and a
second transitional compound [Cpd-II] is formed. Mn3+

ion is then separated from the surface of the enzyme and is
linked to carboxylic acids, in particular, oxalate and malate.
The chelated Mn3+ complex acts as an oxidant of phenolic
rings, reducing to the Mn2+ ion and producing a transitional
phenoxyl radical, resulting in the formation of various
breakdown products (Pollegioni et al. 2015). The native
enzyme is created from the Cpd-II, through electron release
and oxidation of Mn2+ to the Mn3+ complex. The chelated
Mn+3 can restore the phenoxyl radical, which oxidizes se-
quential phenolic rings (Manavalan et al. 2015). The Mn3+

complex is restricted exclusively to the oxidation of pheno-
lic compounds such as simple phenols, amines, dyes, and
lignin phenolic compounds. In relation to nonphenolic com-
pounds, the complex remains inactive due to deficient redox
potential (Manavalan et al. 2015; Żygo and Prochoń 2017).
Besides, the action of MnP is entirely inhibited by inhibitors
such as Hg2+, Pb2+, Ag+, NaN3, lactate, or ascorbic acid
(Manavalan et al. 2015).

Lignin peroxidase

Lignin peroxidase (LiP) is a glycoprotein with a molecular
weight between 38 and 46 kDa, which contains heme as a
prosthetic group, whereas the entire enzyme is stabilized via
4 disulfide bridges. The LiP structure is very akin to MnP
since it is a globular protein composed of 11–12 α-helixes
containing the central cavity with a heme group (Manavalan
et al. 2015; Pollegioni et al. 2015). Such a considerable anal-
ogy of both enzymes may point to divergent selection
(Pollegioni et al. 2015). Despite the structural resemblance,
LiP exhibits significantly greater redox potential [E0′ ~
1.2 V] in comparison with MnP [~ 0.8 V], due to a higher
deficit of ferrous atom electrons in the porphyrin ring
(Abdel-Hamid et al. 2013; Pollegioni et al. 2015). This advan-
tage allows LiP to oxidize, along with phenolic compounds,
even nonphenolic xenobiotics and lignin components, regard-
less of the presence of a mediator. Nevertheless, an elevated
concentration of hydrogen peroxide or compounds such as
acetone and diethyl ether as well as dioxane functions as LiP
inactivators in many fungi (Manavalan et al. 2015).

LiP disintegrates lignin and xenobiotics in three stages,
involving hydrogen peroxide (Fig. 2) (Pollegioni et al.
2015). The catalytic reaction is initiated by oxidation of the
native LiP enzyme to the transient compound [Cpd-I], which
forms the radical complex Fe4+. Crucial in this reaction is
H2O2, serving as an electron acceptor. In a further stage, the
transitional compound [Cpd-I] is reduced by a xenobiotic such
as EDC to a second transitional compound [Cpd-II] (Abdel-
Hamid et al. 2013; Falade et al. 2017). Simultaneously, the
xenobiotic molecule converts into a radical form through elec-
tron depletion, followed by nonenzymatic reactions leading to
the formation of the final degradation product (Dashtban et al.
2010). In order to complete the enzymatic cycle and regain the
native form, LiP must be reduced anew, with the consequent
occurrence of the subsequent xenobiotic radical (Abdel-
Hamid et al. 2013). Concerning lignin decomposition, LiP
favors veratryl alcohol (VA) as a nonphenolic substrate pro-
viding electrons for redox reactions. As a natural metabolite of

Fig. 2 LiP catalytic cycle during degradation of xenobiotics (Abdel-
Hamid et al. 2013, modified)Fig. 1 MnP catalytic cycle (Pollegioni et al. 2015, modified)
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fungi in contact with lignin, VP increases the catalytic prop-
erties of the enzyme and the velocity of lignin breakdown
(Muszyńska et al. 2017). As a result of VA oxidation, a radical
cation of this compound is formed and acts as a direct lignin
oxidant (Fig. 3) (Abdel-Hamid et al. 2013).

Versatile peroxidase

Similar to previous peroxidases, versatile peroxidase (VP) al-
so presents a glycoprotein structure with a molecular weight
varying between 38 and 45 kDa, with heme in the central
region, functioning as an enzyme cofactor. VP has been orig-
inally reported in the Pleurotus eryngii species, whereas at this
point, the presence of VP has been only confirmed in the
species of Pleurotus and Bjerkandera fungi (Abdel-Hamid
et al. 2013). The versatility of this peroxidase is achieved by
combining the catalytic properties of MnP and LiP, through
the ability to oxidize Mn+2 and due to high redox potential
(Abdel-Hamid et al. 2013). Hence, VP is able to degrade both
nonphenolic and phenolic components of lignin and xenobi-
otics, as well as numerous dyes (e.g., Reactive Black 5—used
for dyeing wool, cotton, and viscose) (Pollegioni et al. 2015).
Moreover, a hybrid VP provides multiple binding sites for
substrates. The catalytic efficiency of VP in the oxidation of
Mn+2 ions is comparable to MnP. However, in the case of
oxidation of phenolic and nonphenolic components of lignin,
this enzyme is ten times less productive than LiP (Pollegioni
et al. 2015).

The mechanism of phenolic compound breakdown by VP
is analogous to MnP. At the first stage, the cofactor Fe4+

complex of the native enzyme is oxidized to the transient
compound [Cpd-I] radical in the presence of H2O2 (Fig. 4).
Simultaneously, Mn2+ is converted into Mn3+, and then the
oxidized ion combines with carboxylic acids to maintain its
stability (Pollegioni et al. 2015). The Mn3+ complex functions
as an oxidant of phenolic compounds leading to the formation
of a transient phenoxyl radical and, consequently, to the gen-
eration of final breakdown products (Manavalan et al. 2015).

As a result of manganese ion oxidation, a second transient
compound [Cpd-II] is formed, which can revert to the initial
enzyme form by gaining an electron. Electron loss allows the
Mn3+ to oxidize subsequent phenolic rings (Manavalan et al.
2015).

On the other hand, VP employs an identical mechanism as
LiP for the elimination of both nonphenolic compounds and
lignin polymer. The native enzyme is oxidized to a transient
compound (Cpd-I) radical involving hydrogen peroxide. Cpd-
I is further reduced by a single electron delivered from a
nonphenolic compound (xenobiotic, VA) to a second transi-
tion compound (Cpd-II) (Fig. 5) (Abdel-Hamid et al. 2013;
Falade et al. 2017). Hence, a radical form of xenobiotic mol-
ecule is created, which is exposed to nonenzymatic reactions
(coupling, polymerization, side-chain splitting, demethyla-
tion, regrouping) (Dashtban et al. 2010). Termination of a
cycle by VP is possible by continued reduction of the Cpd-II
compound, as well as the simultaneous generation of a new
nonphenolic radical molecule (Abdel-Hamid et al. 2013).

Laccase

Laccase (Lac) is the most commonly occurring enzyme in the
environment among LMEs. Lac has been primarily detected
in the Asian tree Toxicodendron vernicifluum species.
Currently, this enzyme is identified in numerous species of
plants and microorganisms such as bacteria and fungi, includ-
ing a majority of WRF (e.g., P. eryngii, Trametes versicolor,
P. chrysosporium). Lac, together with the rest of LMEs, be-
longs to glycoproteins, although it has a greater molecular
weight, reaching even up to 150 kDa, as well as a distinctive
blue color. In the central region of the enzyme, 4 copper cat-
ions are located, divided into 3 types (Manavalan et al. 2015;
Pollegioni et al. 2015). Type 1 (T1) exhibits a high level of
absorption at 600 nm, which is responsible for the unique
pigmentation of an enzyme. Copper type 2 (T2) is deprived
of color, though it possesses paramagnetic properties, whereas
type 3 (T3) is composed of two interconnected diamagnetic
cations exhibiting peak absorbance equal to 330 nm (Strong
and Claus 2011). Lac belongs to the oxidases group; therefore,
it participates in the 4 electron transition from distinct sub-
strate molecules to O2, which is subsequently reduced to
H2O2 (Fig. 6) (Muszyńska et al. 2017).

The catalytic cycle of this enzyme is initiated by the pro-
gressive oxidation process of 4 separate substrate particles and
simultaneously the passage of 4 subsequent electrons to the
copper cations in the active center, resulting in a state of full
Lac reduction (Pollegioni et al. 2015). In the second stage, a
single O2molecule joins the T3 and T4 copper cations, rapidly
transforming into a transition peroxide by obtaining two indi-
vidual electrons from both T3 ions. However, this condition
does not persist long since oxygen falls apart into an

Fig. 3 LiP catalytic cycle during lignin degradation using VA as an
electron donor (Abdel-Hamid et al. 2013, modified)
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oxyradical, engaging 2 additional electrons from copper mol-
ecules, which split the oxygen bonds. This is accompanied by
the release of the first water particle. Completion of a Lac
catalytic cycle is achieved by total oxidation of each of the
four copper ions and release of a second water molecule
(Pollegioni et al. 2015). The above reactionmechanism allows
Lac to degrade phenols and phenolic components of lignin, as
well as nonphenolic compounds, but only in the presence of
redox mediators (Abdel-Hamid et al. 2013).

Potential of WRF to remove BPA, BPS, and NP
from wastewater

Due to the increasing urbanization, EDC are increasingly pro-
duced by many branches of industry. As a consequence, these
substances penetrate the soil and water, which causes signifi-
cant pollution affecting these ecosystems. Despite EDC being
present in the environment mainly at low concentrations in the
order of ng L−1, they can be a serious threat both for aquatic
animals and humans (Solé and Schlosser 2015). Therefore,
such recalcitrant compounds have to be removed from waste-
water. Since traditional sewage treatment plants using activat-
ed sludge processes eliminate EDC only to a limited extent,
there is a need to look for other effective methods for their

removal (Ahmed et al. 2017; Cecconet et al. 2017). Numerous
attempts, including adsorption, filtration, chlorination, coagu-
lation/flocculation, Fenton/photo-Fenton degradation,
sonochemical degradation, photochemical/photocatalytic oxi-
dation, ozonation, and hybrid processes with physical and
thermal approaches, have been made to remove EDC from
water (Yoon et al. 2007; Sharma et al. 2009; Zhang and Li
2014; Ahmed et al. 2017). However, these procedures are
costly and often result in equally toxic secondary impurities.
Alternatively, the use of WRF for remediation of contaminat-
ed water is cost-effective and sustainable. WRF compared to
other potential bioremediation bacteria are not adversely af-
fected by the antibiotics commonly found in wastewater (Boer
2018). On the other hand, WRF need a second source of
carbon, as the abovementioned EDC degradation takes place
as part of the secondary metabolism. Despite that, in contrast
to bacteria, WRF are able to decompose EDC even at low
concentrations (Mir-Tutusaus et al. 2018). Many different
studies have been conducted on the effectiveness of removing
EDC from the environment (Kim et al. 2007; Toyama et al.
2009; Huang et al. 2014; Zhang and Li 2014; Zielińska et al.
2016; Csuros et al. 2018; Li et al. 2020; Oh et al. 2020;
Stenholm et al. 2020; Suyamud et al. 2020; Zhang et al.
2020). Much of this research has been devoted to the use of
both whole WRF cells and extracted enzymes in EDC degra-
dation, although tests on the former were more repeatedly
reported. As this review focused on BPA, BPS, and NP re-
moval using WRF, therefore, in the description below, partic-
ular emphasis has been placed on the use of these organisms in
the removal of the abovementioned compounds.

For research applications, WRF systems are constructed in
the form of bioreactors, providing a constant substrate supply,
thus maintaining controlled environmental conditions
(Tadkaew et al. 2011; Ahmed et al. 2017). Examples of the
efficiency of EDC removal by whole-cell WRF cultures are
shown in Table 2. The results vary among studies since the
degradation capacity depends on multiple factors such as the
molecular structure of the xenobiotic, the species of the ap-
plied fungus, and the type of secreted enzymes.

Fig. 4 VP catalytic cycle during
oxidation of phenolic compounds
(Ravichandran and Sridhar 2016,
modified)

Fig. 5 VP catalytic cycle during oxidation of VA and nonphenolic
compounds (Abdel-Hamid et al. 2013, modified)
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Several authors have shown that the first step of organic
pollutant biodegradation by WRF may be sorption of these
compounds to the fungal mycelium caused by the high surface
to volume ratio of WRF (Zafar et al. 2007; He et al. 2010;
Ding et al. 2013; Nguyen et al. 2014). On the other hand, it
was revealed that crude or purified LME solutions were able
to catalyze EDC biodegradation in the absence of sorption to

fungal mycelium (Yang 2012). It results from the hydropho-
bic character of these compounds (logkow ≥ 3.2), which deter-
mines the adsorption behavior of EDCs (Krupadam et al.
2011).Most of the studies havemainly revealed EDC removal
from the aqueous phase without monitoring the extent of
biosorption (Pezzella et al. 2017; Mtibaà et al. 2018;
Brazkova 2019). It creates difficulties in assessing the relative

Fig. 6 Lac catalytic cycle
(Pollegioni et al. 2015, modified)

Table 2 Removal efficiency (%) of various EDC achieved by different whole-cell WRF species under distinct culture conditions

WRF species Culture conditions EDC Initial
concentration (mg/L)

Incubation
time

Removal
efficiency (%)

References

T. versicolor Bubble column/internal
loop airlift bioreactor

Temp 28 °C

Bisphenol A 22.83 8 days 100 Pezzella et al. (2017)
Nonylphenol 22.04 8 days 84

Temp 28 °C Bisphenol A 500 6 h 98.7 Brazkova (2019)

Batch bioreactor
Temp 25 °C
pH = 4.5

Nonylphenol 0.0017 2 days 52.9 Llorca et al. (2017)

P. ostreatus Continuous flow trickle-bed bioreactor
Temp 28 °C

Bisphenol A 2 12 days > 90 Křesinová et al. (2018)
Nonylphenol 2 12 days > 90

P. chrysosporium Bubble column/internal
loop airlift bioreactor

Temp 28 °C

Nonylphenol 22.04 8 days 65 Pezzella et al. (2017)
Bisphenol A 22.83 8 days 60
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contribution of biosorption and biodegradation to the general
removal of the highly hydrophobic EDC. Only a few studies
on biosorption effects alone on EDC treatment have been
performed. Among them are the studies performed by
Nguyen et al. (2014) who observed not higher than 30% effi-
ciency of BPA sorption to inactivated T. versicolor biomass,
and Yonten et al. (2016) who gained up to 90% of BPA
removal by adsorption to Pleurotus eryngii immobilized on
polymeric resin. Immobilization greatly facilitates biosorption
by increasing the mechanical strength of the biosorbent and
reusability (Wu and Yu 2007). Additionally, factors such as
pH or volume of the sample solution can influence the course
of the sorption treatment. Increasing biosorption of BPA was
observed in the pH range of 7–11, with maximum adsorption
at pH 11, while a decreasing trend was noted at the lower pH
of 2–7 (Yonten et al. 2016). The same authors also revealed
that BPA is removed from the solution exponentially only up
to a specific moment, followed by a constant value, due to the
complete saturation of absorbent by BPA. Besides
biosorption, the participation of intracellular and/or
mycelium-associated enzymes in EDC biodegradation cannot
be excluded. Therefore, more comprehensive studies answer-
ing the contribution of these enzymes should be performed.
Until now, the main role as an alternative oxyreductase to
LMEs has been assigned to intracellular cytochrome P450
(Marco-Urrea et al. 2006). This was confirmed by Wang
et al. (2013), who analyzed loss of BPA in nonligninolytic
conditions with Phanerochaete sordida. Weekly treatment
showed 80% BPA reduction, while the use of cytochrome
P450 inhibitor decreased the degradation efficiency to under
40%. On the other hand, the interplay of intracellular cyto-
chrome P450 and LMEs may strongly influence EDC elimi-
nation, although the entire mechanism still remains undiscov-
ered (Haroune et al. 2017). Therefore, LMEs are considered as
a main mechanism for EDC elimination by WRF.

Each WRF can secrete a distinct type of LME depending
on the species or even strain (Torres et al. 2003; Wesenberg
et al. 2003; Levin et al. 2004; Yang et al. 2013b; Kinnunen
et al. 2016). The enzymatic pathways of living WRF undergo
the control of gene promoters, which are stimulated by an
appropriate environmental factor (Suetomi et al. 2015;
Toyokawa et al. 2016; Daly et al. 2020). The triggering factor
for LMEs is primarily the balance of nitrogen and carbon in
the medium. A high carbon/nitrogen ratio in the environment
enhances the expression of enzymatic genes similar to the
presence of phenolic compounds, improving WRF efficiency
in the removal of contaminants (Keyser et al. 1978; Soares
et al. 2005). On the other hand, the lack of sufficient trigger
affects the activity of LME synthesis pathways, significantly
lowering the EDC elimination rate (Janusz et al. 2013).
T. versicolor has been the object of most studies, due to its
proven high efficiency in EDC removal. The vast majority of
these fungal strains secrete up to three extracellular enzymes

involved in EDC decomposition (Bending et al. 2002;
Takamiya et al. 2008). It can be noted from Table 2 that
T. versicolor reached a substantial reduction (> 80%) for most
tested EDC (Llorca et al. 2017; Pezzella et al. 2017; Brazkova
2019) and up to 100% for BPA (Pezzella et al. 2017).
However, the remaining Pleurotus ostreatus and
P. chrysosporium species, despite having a different combi-
nation of LMEs, also achieved high removal rates from 60 to
over 90% (Pezzella et al. 2017; Křesinová et al. 2018).
Unfortunately, due to different culture conditions and various
incubation times, the presented data is hard to compare.

Despite the high productivity of the WRF on a laboratory
scale under sterile and controlled conditions, such results do
not provide much knowledge about fungal activity and their
capacity for mycoremediation in highly variable wastewater
conditions (Accinelli et al. 2010; Strong 2010; Anastasi et al.
2011; Ntougias et al. 2012; Zhang and Geißen 2012; Cruz-
Morató et al. 2014). Fungi have to confront autochthonous
organisms as well as multiple microcontaminants at low con-
centrations. Therefore, intensified research in nonsterile con-
ditions has recently been conducted, with a view to their future
industrial application (Blánquez et al. 2008; Lu et al. 2009;
Cruz-Morató et al. 2013, 2014; Badia-Fabregat et al. 2015).
Nonetheless, this approach faces several limitations. It has
been found that the microflora naturally existing in wastewa-
ter interfere to some extent with the decomposition processes
undertaken by WRF (Svobodová and Novotný 2018).
Bacteria compete with fungi for nutrients and carbon sources,
influencing fungal growth and synthesis of extracellular en-
zymes. On the other hand, bacteria decompose substances
harmful to the WRF and enhance the level of nitrogen re-
quired for fungal growth (Válková et al. 2017; Mir-Tutusaus
et al. 2018). In order to reduce the competition between bac-
teria and fungi, various strategies are applied to ensure that the
culture conditions are favorable for fungi. One method is to
adjust the acidic pH, optimal for fungi (Libra et al. 2003). Low
pH will suppress the growth of bacteria that prefer a neutral
environment, thus increasingWRF activity. However, such an
approach of supporting fungal growth does not work for a
long period because the bacteria are capable of adapting to
acidic conditions (Mir-Tutusaus et al. 2018). Moreover, too
acidic pH could result in a decrease of enzyme secretion by the
WRF. Another solution implies the replacement of existing
fungal biomass during degradation, due to its aging over time.
The access of young mycelium allows the degradation time to
be extended, also increasing the activity of the WRF
(Blánquez et al. 2006; Dhouib et al. 2006; Badia-fabregat
et al. 2017). Attempts have also been made to restrict the
access of nitrogen to the medium, causing limited bacterial
growth, though it is effective just at the beginning of the deg-
radation since during the process, the bacteria start to absorb
nitrogen from the fungi (Libra et al. 2003; Asif et al. 2017;
Svobodová and Novotný 2018). This problem may be
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overcome by the application of extracted LMEs. Compared to
the wholeWRF cell, isolated enzymes are more specific to the
degraded xenobiotic as well as capable of operating across a
wide range of environmental conditions, thus simplifying the
control of the entire process (Gassara et al. 2013; Becker et al.
2017; Falade et al. 2017). Nevertheless, the enzymes remain
less efficient in degradation than the WRF due to the synergic
interactions between the extracellular enzymes and mycelium
(Yang et al. 2013a). In addition, fungi can secrete low molec-
ular weight redox mediators, which can expand the range of
degradable compounds (Abdel-Hamid et al. 2013; Asif et al.
2017). The next issue related to the application of enzymes
includes high production and purification costs, as well as
instability and no possibility of reuse (Gassara et al. 2013;
Bilal et al. 2017a; Pezzella et al. 2017; Voběrková et al.
2018). Therefore, it is becoming increasingly common to im-
plement methods of enzyme immobilization. They are based
on linking the catalyst with the carrier in order to keep it in
limited space and maintain its structure (Voběrková et al.
2018). The carrier should feature no toxicity, easy accessibil-
ity, and strong biological integrity with the enzyme. As the
particle creates bonding with the enzyme, its structure and
properties have a significant influence on the enzymatic activ-
ity of the immobilized catalyst. Both organic polymers (cellu-
lose, starch, chitin, chitosan, silica alginate) and chemically
synthesized inorganic molecules are used in the immobiliza-
tion process (Al-Adhami et al. 2002; Wang et al. 2011;
Kampmann et al. 2014; Verma et al. 2020). The organic ones,
owing to their natural source, exhibit enhanced biological
compatibility toward the enzyme. However, nowadays, non-
organic particles are gaining increasing interest (Acevedo
et al. 2010; Hou et al. 2014; Ji et al. 2017). The advantage
of synthetic materials is their great stiffness and highly specif-
ic surface zone, which can be easily modified through suitable
functional groups according to the requirements of the situa-
tion (Barcelos et al. 2016). The catalyst can also be stabilized
without supporting carrier through the construction of cross-
linked enzyme conglomerates (Asgher et al. 2014).
Immobilization significantly increases the stability of the en-
zyme thereby improving resistance to chemical and thermal
denaturation. As a result, production costs are reduced due to
the regenerative potential of the enzyme and the possibility of
reuse (Boer 2018; Voběrková et al. 2018). Moreover, reac-
tions involving immobilized enzymes take place in a broad
spectrum of environmental conditions (Asgher et al. 2014).
Since the late nineteenth century, as research on enzyme im-
mobilization has progressed, multiple diverse methods have
been developed. A distinction can be made between physical
(adsorption, entrapment) and chemical (covalent bonding,
cross-linking) methods (Li et al. 2012; Kim et al. 2016; Wu
et al. 2018a). Physical methods do not require additional re-
agents and show simplicity, though the link between the car-
rier and the enzyme remains weak. These are mainly hydrogen Ta
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bonds, hydrophobic interactions, or van der Waals forces. By
contrast, in chemical methods, a stronger covalent bond is
formed between the molecules. Unfortunately, the strength
of the connection creates the risk of interfering with the en-
zyme activity (Voběrková et al. 2018; Bilal et al. 2019).
Among the well-known methods of immobilization, frequent-
ly used are cross-linking, encapsulation, entrapment, or cova-
lent bonding (Voběrková et al. 2018). So far, it is considered
that the most effective technique is covalent linking, in which
the enzyme is strongly attached to the carrier by covalent
bonds (Gasser et al. 2014; Zhu et al. 2020). Due to the possi-
bility of forming multiple solid connections, the stability and
activity of the immobilized enzyme increases significantly.
Cross-linking appears to be an equally efficient solution ow-
ing to the high stability and restoration capacity of the catalyst,
as well as the economic advantage of industrial use.
Additionally, this method enables two or more proteins to be
immobilized in one aggregate, allowing many independent
degradation processes to be conducted (Guisan 2013;
Asgher et al. 2014; Bilal et al. 2017b; Voběrková et al.
2018). The choice of a suitable method is essential for the
immobilization process as it determines the subsequent activ-
ity of the enzyme along with the properties of the aggregate,
whereas there is no universal solution for each protein
(Mohamad et al. 2015; Voběrková et al. 2018). Table 3 pre-
sents the results of the degradation efficiency of various EDCs
by selected immobilized enzymes obtained by differing tech-
niques. The majority of performed studies are focused on
immobilized laccase due to its prevalence among WRF, as
well as its versatility enabling numerous technological appli-
cations (Asgher et al. 2014). Research on immobilized laccase
has shown a very high degree of EDC reduction (> 85%)
(Gamallo et al. 2018; Zdarta et al. 2018; Bilal et al. 2019;
Maryskova et al. 2019), which reached even 100% in the case
of laccase from P. ostreatus (Brugnari et al. 2018).
Nevertheless, in single studies using universal and manganese
peroxidase, a sufficient degradation rate, exceeding 95%, has
also been achieved (Taboada-Puig et al. 2011; Bilal et al.
2017b). In addition, an experiment involving several LMEs
proved to be equally productive, with a 90% decrease in BPA
(Gassara et al. 2013). Promisingly, in all mentioned studies
involving immobilized enzymes (Table 3), there were ob-
served comparable or improved degradation results as
whole-cellWRF (Table 2) in a significantly shorter incubation
time not exceeding 24 h. Thus, the immobilized enzymes
exhibit the potential for future industrial use upon improved
optimization and reduced production costs.

Conclusions

EDC are a global problem in the environmental and health
field. These compounds are constantly used in many

production processes, hence negatively affecting human and
animal health. Research carried out so far has shown that
usage of WRF is a promising alternative for traditional waste-
water treatment plants (WWTP) using activated sludge
allowing for EDC removal from water. Despite the many ad-
vantages of WRF application, some challenges before using
this technique on an industrial scale need to be solved. Actual
WWTP are not designed for the new technology, while the
adaptation is very expensive. Furthermore, regulation of the
enzyme pathway in EDC degradation by WRF requires better
understanding. Additionally, more comprehensive experi-
ments should be performed on real wastewater aimed at
gaining better insight into possible use of WRF in natural
conditions, while prior studies have explored the degradation
effectiveness of xenobiotics by specific LMEs on the labora-
tory scale. These studies recognized immobilized enzymes as
having the greatest potential for industrial-scale use, so further
tests should be undertaken in this direction.
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