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Abstract
Due to excessive application of essential oils and scented products in spa salons during aromatherapy and massage sessions, the
elevated concentration of total volatile organic compounds (TVOCs), particularly terpenes, which are known as secondary
organic aerosol (SOA) precursors, is expected there. This study was aimed at determination of VOCs with a particular regard
to terpenes in air samples collected in selected spa salons located in Northern Poland. Active air sampling was conducted before
and after treatments. Samples were analyzed with the use of thermal desorption gas chromatography coupled with flame-
ionization detector (TD-GC-FID) and mass spectrometer (TD-GC-MS). Obtained results allowed to characterize chemical
composition of indoor air of spa salons and also to relate the dependence between applied essential oil and indoor air chemical
composition. It has been proved that (i) spa salons are characterized by TVOC concentrations exceeding recommended values of
300–400 μg m−3 in most of examined cases, reaching up to several thousand of micrograms per cubic meter, (ii) TVOC
concentration is strictly related to salon characteristics and carried out treatments, (iii) terpenes constitute a significant part of
TVOCs present in spa indoor air, from 22 up to 86%, (iv) most commonly investigated terpenes in the literature (D-limonene, α-
pinene, camphene, and linalool) were also determined at the highest concentration levels in this study and (v) VOC chemical
composition is strictly dependent on the type of applied essential oils. On the basis of obtained results, it may be stated that
extensive application of essential oils rich in terpenes can significantly alter indoor air chemistry of spa salons, thereby influenc-
ing health and well-being of employees working there.
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Introduction

For several decades, indoor air quality has been a matter of
interest of both scientists and politicians. This was triggered
by the fact that people may spend up to even 90% of their time
indoors, and therefore, chemical and physical transformations
which occur indoors (sometimes referred as “indoor chemis-
try”) appeared as greatly important to human health and well-
being (Samet 1993; Weschler and Carslaw 2018). Intensified
interest in studying indoor air was triggered by proving that

referring already gained knowledge of atmospheric air to in-
door air may lead to inconsistencies, since mechanisms which
govern indoor air chemistry are different from those charac-
teristic to atmospheric air. Also, there are significant differ-
ences between these two environments in abundance of de-
fined components and direct sunlight, temperature, and hu-
midity fluctuations etc. (Weschler and Carslaw 2018; Abbatt
and Chen 2020).

Indoor air chemistry is greatly affected by primary emis-
sion of volatile organic compounds (VOCs) from awide range
of sources present indoors, i.e., furnishing, building materials,
everyday use products, human activities, and humans them-
selves (e.g., squalene, acetone) (Haghighat and De Bellis
1998; Klein et al. 2016; Lakey et al. 2017). Elevated VOC
concentrations in indoor air pose a threat to human health,
since a lot of VOCs (e.g., aldehydes, aromatics) (Liu et al.
2019) are documented to cause adverse health effects such
as asthma and allergic reactions (Sofuoglu et al. 2011), as well
as damage of the liver, kidneys, and nervous system.
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Moreover, some VOCs may exhibit a carcinogenic activity
resulting in lung, brain, liver, blood, and kidney cancer
(Rumchev et al. 2007).

Among VOCs, terpenes are a group of significant impor-
tance, since terpene-rich essential oils are components of used
indoor furnishing, cleaning, fragrance, cosmetic, and cooking
products. In addition, terpenesmay be emitted also from natural
sources such as plants and citrus fruits; however, it is believed
that anthropogenic sources are those mostly responsible for
elevated concentration of terpenes indoors (Wolkoff et al.
2000; Nazaroff and Weschler 2004; Tsigonia et al. 2010).
Terpenes with one or more double bonding in their structure
are highly reactive; hence, they instantly and easily undergo
oxidation processes in indoor air such as ozonolysis
(Weschler 2000; Atkinson and Arey 2003). Terpene ozonolysis
initiates a number of chemical transformations, which lead to
the formation of secondary organic aerosol (SOA) composition,
especially in the first phase of rising, of nanosized (submicron)
particles. These particles have been proved to pose a threat for
human health (Rösch et al. 2017) since they are able to enter
respiratory track and deposit along it by few mechanisms: dif-
fusion, sedimentation, and impaction (Dockery et al. 1993;
Spengler et al. 1996; Yeh et al. 1996; Pope and Dockery
2006). It has been proved that inhalation of SOA can cause
some serious health effects such as inflammatory response in
body tissues (Anderson et al. 2013), changes in lung cells,
breath frequency decrease (Clausen et al. 2001; Sunil et al.
2007; Wolkoff et al. 2008, 2012), eye-blink frequency increase
(Klenø and Wolkoff 2004; Nøjgaard et al. 2005), and even
cancer (Pope and Dockery 2006).

There is a wide range of research carried out to determine
VOC concentration with emphasis on terpenes in various in-
door environments, e.g., homes (Król et al. 2014; Mickaël
et al. 2014; Schlink et al. 2016), offices (Su et al. 2007;
Dudzinska et al. 2012; Katsoyiannis et al. 2014), and schools
(Larroque et al. 2006; Pegas et al. 2011; Markowicz and
Larsson 2015). However, there is a limited number of research
focusing on specific kind of indoor environments, where
terpinene concentration is expected to be elevated, such as
wineries (Sanjuán-Herráez et al. 2014), treatment plants
(Gallego et al. 2012), elderly homes (Walgraeve et al. 2011),
and beauty salons (Tsigonia et al. 2010).

Terpene-rich essential oils are widely applied as therapeu-
tic agents during aromatherapy sessions known as alternative
method of treatment. There are three main models of aroma-
therapy treatment: medical, where essential oils are most com-
monly delivered inside the body (oral, rectal, vaginal way);
subtle aromatherapy, where essential oils are most commonly
inhaled; and traditional aromatherapy, which is based on mas-
sage with essential oils (Dunning 2013). Aromatherapy is an
area of growing interest, which becomes popular for example
in psychiatry and oncology (da Silva Domingos and Braga
2014). Aromatherapy massages are very willingly used for

relaxation; therefore, more and more people are inclined to
undergo it (Grand View Research 2019).

Since terpenes are the main components of essential oils
(Bakkali et al. 2008), a significant quantities of them are ex-
pected to be emitted into indoor air of spa salons during aro-
matherapy sessions. Since customers of spa salons usually
spent there ca. 1 h, it can be assumed that exposition to ele-
vated total volatile organic compounds (TVOCs) and terpene
oxidation product concentration would not strongly affect cli-
ents’ health and well-being. Therefore, visiting spa for relax-
ation or taking physio- or aromatherapy session may actually
be beneficial. However, employees of spa salons, by spending
whole working day—usually 8 h—in spa indoor air may be
exposed to elevated TVOCs and terpene oxidation product
concentration, which may affect their health and well-being.

Worldwide, studies in this research area are focused most
commonly on the determination of the composition either of
the essential oil or the volatile fraction emitted from essential
oil (or scented candles) that are usually applied in aromather-
apy. Such studies are typically carried out with the application
of a reaction chamber that mimics indoor air conditions, by
direct GC analysis of essential oil solutions or with the use of
SPME-based methodologies (Chiu et al. 2009; Huang et al.
2011; Cheng and Lai 2014; Ahn et al. 2015; Nematollahi et al.
2018). The aim of this research was to expand the knowledge
and awareness related to temporary and permanent residence
in indoor environments of specific types. Investigating indoor
air quality in spa salons, where traditional aromatherapy ses-
sion took place and, therefore, enhanced terpene evaporation
into indoor air is expected, delivers valuable data useful for
better understanding of indoor air chemistry. The main goal of
this study was to determine the concentration of terpenes de-
tected in indoor air samples in spa salons and to correlate
carried out treatments and applied essential oils and cosmetic
products with the chemical composition of indoor air. In the
available literature, there are very few reported studies, in
which sampling was carried out in real spa indoor environ-
ments, e.g., located in Taiwan (Hsu et al. 2012; Huang et al.
2012); however, a major emphasis has been put on SOA for-
mation. To the best of our knowledge, this is the first study
focused on VOC (with particular emphasis on terpenes) deter-
mination in such specific environments carried out in Poland.

Materials and methods

Sampling sites

Four spa salons located in Gdynia (Poland) City center were
chosen as sampling sites. Sampling campaign lasted from
January 2019 to April 2019, and the sum of 60 samples was
collected during campaign. Forty-four of them were analyzed
with an application of thermal desorption and gas
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chromatography with flame-ionization detector (TD-GC-FID),
and 16 of them were analyzed by thermal desorption and gas
chromatography with mass spectrometry (TD-GC-MS). The
brief characteristics of sampling sites together with schematic
representation of their space arrangement (see Fig. 1) are pre-
sented below.

& Spa salon 1—typical spa salon, in which main treatments
are aromatherapy massages with an application of large
amounts of essential oils and body butters. Salons offers
also esthetic medicine treatments and manicure, but those
services are done in other rooms. Usually, clients are
served during all day, which results in over a dozen of
clients per day. For sampling, 4 and 13 samples were
collected before and after treatment, respectively;

& Spa salon 2—massage center, in which relaxing aroma-
therapy massages and physiotherapy massages are carried
out. This salon mostly serves regular customers, and visits
are planned for whole day; therefore, over a dozen of
clients is served daily. For sampling, 2 and 16 samples
were collected before and after treatment, respectively;

& Spa salon 3—city spa which proposes few relaxing treat-
ments: sensory deprivation, ganbanyouku, and ayurvedic
massages. Massage room is equipped with two heated
beds dedicated for ayurvedic massages. Spa 3 offers other
treatments than massages; therefore, amount of daily per-
formed massages is not regular and hard to define. It is
common that number of massage clients rises due to peri-
odic circumstances, e.g., Valentine’s day. For sampling, 5

and 14 samples were collected before and after treatment,
respectively;

& Spa salon 4—health and beauty studio which is special-
ized in physiotherapy massages, which do not require ap-
plication of fragrance compounds. Relaxing massages
with essential oils are performed rarely. For sampling, 2
and 4 samples were collected before and after treatment,
respectively. Limited number of samples is due to salon
characteristics.

Sampling

Air samples were collected before and after massage sessions
(each session lasted 1 h). As sampling sorbent, Tenax TA®
(Tenax TA 35/60®, 100 g, hydrophobic) was selected
(Arrhenius and Engelbrektsson 2016; Petr and Soukupová
2017; Ramos et al. 2018; SIS 2019). Before sampling and
after each analysis, sorbent tubes were conditioned for 6 h,
at temperature of 300 °C in inert gas atmosphere using thermal
desorption unit (Markes® Unity, Markes International, Great
Britain). Conditioning was followed by a blank gas chroma-
tography run (Agilent 7820A, Agilent Technologies Inc.,
USA with FID detector) to ensure no carry over effect. After
conditioning, sorbent tubes were sealed with two-piece brass
storage caps filled with one-piece PTFE ferrules (6 mm i.d.)
and additionally closed in a screw cap glass vials for storage
and transport. Samples were actively sampled via gas-tight

Fig. 1 Schematic representation
of room space arrangement of
each of chosen spa salon
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syringe or automatic pump (constructed at Gdańsk University
of Technology especially for the purpose of this study with
constant air flow of 120 ml min−1). During sampling, 1 l or 2 l
of air (depending on the carried out treatment) was actively
passed through the sorbent tubes. During each sampling, there
was one blank sorbent tube, which was sealed and placed near
the sampling spot. Blank tube was maintained and handled the
same way as sorbent tubes used for sampling. After sampling,
sorbent tubes were sealed in the same way as described above.
All samples were stored in a temperature not exceeding 20 °C,
hidden from the sunlight, and were analyzed during max. of
48 h since sampling.

Analytes of interest

The main goal of this work was to focus on determination of
terpenes present in spa indoor air at high concentration levels;
therefore, the main emphasis has been put on α-pinene, D-
limonene, camphene, and linalool. Other VOC characteristics
for each spa indoor environment, determined in this study
qualitatively and quantitatively, are listed in Appendix
Tables 2, 3, 4, 5, and 6. They represent such groups of chem-
ical compounds as follows: alcohols, organic acids, esters,
aldehydes, alkenes, alkanes, siloxanes, ketones, and terpene
oxides.

Chromatographic analysis and calibration

To carry out qualitative analysis, samples were subjected to
thermal desorption (Markes® Unity, Markes International,
Great Britain) and further to gas chromatography (Agilent
6890, Agilent Technologies Inc., USA) coupled with mass
spectrometry (Agilent 5973 Mass Selective Detector,
Agilent Technologies Inc., USA) (TD-GC-MS). Analytes
were separated on DB-1 capillary column (Agilent
Technologies; 60 m × 0.25 mm× 1 μm; 100% polydimethyl-
siloxane). To carry out quantitative analysis, samples were
subjected to thermal desorption (Markes® Unity 2, Markes
International, Great Britain) and further to gas chromatogra-
phy (Agilent 7820A, Agilent Technologies Inc., USA)
equipped with flame-ionization detector (TD-GC-FID).
Analytes were separated on DB-1 capillary column (Agilent
Technologies; 30 m × 0.32 mm× 5 μm; 100% polydimethyl-
siloxane). In both cases, chromatographic analysis was pre-
ceded with 10-min thermal desorption under 290 °C which
was followed by transportation of desorbed analytes in the He
stream (45 mL min−1) to the microtrap cooled down to 0 °C
and subsequent heating of the microtrap to 300 °C for 5 min in
order to release the analytes and direct them to chromato-
graphic column. Temperature program of the GC-MS analysis
was as follows: 50 °C, 10 °C/min to 280 °C. Temperature of
ion source was 250 °C, while temperature of quadrupole was
150 °C. Temperature program of the GC-FID analysis was as

follows: 40 °C for 10 min, 10 °C/min to 125 °C, 15 °C/min to
240 °C held for 5 min. Detector temperature was 250 °C.

For monoterpene concentration determination, five-point
calibration curve was created using limonene ((R)-(+)-limo-
nene standard, 97% purity, (Sigma-Aldrich, Poland) dissolved
in methanol (gradient grade for liquid chromatography 99.9%
purity, Merck) calibration solutions of following concentra-
tions: 2.0; 4.0; 6.0; 8.0; and 10.0 ng μL−1. For each concen-
tration 1 μl of calibration solution was introduced on previ-
ously conditioned sorbent tube, which was then flushed by a
stream of nitrogen (99.999% purity) for 4 min. Afterwards,
sorbent tube was sealed with two-piece brass storage caps,
closed in a screw cap glass vials and quickly (up to 1 min)
analyzed by TD-GC-FID. Each calibration solution was ana-
lyzed by TD-GC-FID in at least 3 repetitions. In order to
obtain the best possible match, first two points of calibration
curve were used to calculate LOD and LOQ values. For lim-
onene LOD = 0.7 ng, LOQ = 2 ng which after recounting per
2-l air samples resulted in LOD = 0.35 μg m−3 (0.063 ppbv)
and LOQ = 1 μg m−3 (0.18 ppbv). Percentage standard uncer-
tainty associated with application of determined calibration
relationship was calculated using Formula (1), (2), and (3).
For limonene, percentage uncertainty is equal to 5.5%.

u xpr
� �

% ¼ u xpr
� �

xpr
ð1Þ

where:
xpr—analyte content (half of calibration curve)
u(xpr)—standard uncertainty

u xpr
� � ¼ Sx;y

b
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

p
þ 1

n
þ

xpr−x
� �2

Qxx

vuut ð2Þ

where:
Sx, y—standard deviation
b—slope
p—number of repetitions
n—number of repetitions for whole calibration curve
x —x mean value

Qxx ¼ ∑ x−x
� �2

ð3Þ

Concentration of other determined analytes (determined
separately and as TVOCs) was calculated as toluene equiva-
lents. Toluene (CHROMASOLV Plus, for HPLC, 99.9% pu-
rity, Honeywell) calibration solutions were prepared in the
same way like limonene standard solutions. The five-point
calibration curve was created using the following concentra-
tions of toluene standard solutions: 2.0; 4.0; 6.0; 8.0; and
10.0 ng/μl. All of the calculations were performed similarly
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as in the case of limonene calibration. Therefore, the following
values of metrological parameters were obtained: LOD =
1.9 ng, LOQ = 5.8 ng; for 2-l air samples MLOD =
0.95 μg m−3 (0.25 ppbv), MLOQ= 2.9 μg m−3 (0.77 ppbv).
Percentage standard uncertainty was equal to 8.1%.

Results and discussion

In 1992, ECA (European Collaborative Action) released Report
11 “Guidelines for Ventilation Requirements in Buildings,”
according to which there are 4 comfort ranges of TVOCs in-
doors, proposing 300 μg m−3 as target guideline concentration
for TVOCs indoors (European Collaborative Action 1992):

& < 200 μg m−3—comfort range
& 200–3000 μg m−3—multifactorial exposure range
& 3000–25,000 μg m−3—discomfort range
& > 25,000 μg m−3—toxic range

Unfortunately, only few countries have guidelines for in-
door TVOC concentrations: Germany 300 μg m−3 (Seifert
1990), the USA 200 μg m−3 (USA-EPA 1996), Australia

500 μg m−3 (NHMRC 1993), Finland 200–600 μg m−3

(FISIAQ et al. 1955). In Poland, there is no regulation for
TVOC concentrations; there are several but only for some
specific VOCs. However, taking into consideration the values
from other countries, one may state that TVOC concentration
of 300–400 μg m−3 indicates that indoor air quality requires
deeper investigation. Moreover, in Report 19, released by the
ECA in 1997, it is mentioned that TVOC concentration above
25 mg m−3 increases the likelihood of sensory effects such as:
dryness, sensory irritation, weak inflammatory irritation of
eyes, nose, airways, and skin (ECA 1997).

The first step of this research was to determine, as recom-
mended by the ECA (ECA 1997), as many volatile com-
pounds as possible in collected air samples, at least those
which are the most abundant. Qualitative analysis was done
by TD-GC-MS. MS NIST 2.0 library was used to identify
detected VOCs. On this basis, the list of most commonly
occurring VOCs was created, which concerned compounds
that were identified by NIST 2.0 library with probability
higher than 70% (see Appendix Table 6).

TVOC concentration variations determined during all
sampling days in all investigated spa salons are depicted
in Fig. 2.

Fig. 2 Variations in TVOC concentrations determined during sampling campaign in all investigated spa salons
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Determined instantaneous concentrations of TVOCs in all
spa salons exceeded proposed target concentration of
300 μg m−3, even before the beginning of the massage. Most
commonly, TVOC concentrations determined before treatment
were lower than concentrations determined after the treatment,
with two exceptions in spa 1 on the following sampling days:
30 January 2019 and 05 March 2019. High concentration of
TVOCsmeasured before the beginning of treatments was prob-
ably related to high TVOC concentration in indoor air on the
previous day. Most of the results are within the multifactorial
exposure range. One exception is TVOC concentration mea-
sured in spa 4 after the massage—23,694 μg m−3, which was
almost in the toxic range. However, because measured concen-
trations were instantaneous, it cannot be clearly stated whether
they pose a serious threat to human health, as the effect depends
on how long the exposition to high concentrations lasts. This
particular spa salon (spa 4) is not specialized in very scented
and relaxing massages. Usually, physiotherapeutic massages
are carried out there. Moreover, the number of carried out treat-
ments per day is not so high like in case of, e.g., spa 1, in which
all three massage rooms are simultaneously occupied for most
of the time.

Interesting fact is that in case of spa 2, concentration of
TVOCs on 27 February 2019 was higher than on most of
the other days when sampling was carried out after treatment.
This was probably due to the smoldering of Palo Santo branch
that day. According to the literature, Palo Santo (Bursera
graveolens) essential oil is mostly composed of terpenes.
Sotelo Mendez and co-workers (Sotelo Mendez et al. 2017)
investigated the chemical composition of Palo Santo essential
oil from Peru and determined that α-terpinene is a dominating
component. It has been proved that the country of origin plays
an important role in Palo Santo essential oil composition,
since Fon-Fay et al. (2019) indicated that limonene constitutes
34.9% of the composition of Bursera graveolens essential oil
from Ecuador, whereas according to the results obtained for
essential oil from Peru (Sotelo Mendez et al. 2017), limonene
constituted only 0.19% of its composition. In spa 2 on 27
February 2019, Palo Santo began to smolder approximately
an hour before the official opening of the salon and more than
one branch was used that day; therefore, it is highly probable
that this activity was responsible for such high TVOC concen-
tration measured, despite the fact that sampling was done be-
fore any massage started.

Generally observable trend was that TVOC concentration
increased after each treatment in all spa salons. The greatest
impact of the carried out treatment on the indoor air chemical
composition was observable in the case of spa 4 on 08
March 2019. The TVOC concentration in sample collected
after the massage was 55 times higher than that in the one
collected before it started. During this treatment, a mixture
of the following essential oils was applied: orange, lilac petals,
Scots pine, and synthetic orange fragrance; whereas on the

chimneys, there was lemongrass oil with wild rose and orange
oils, which made this massage exceptionally aromatic. Taking
into consideration the sharp increase of TVOC concentration
after the massages with the application of essential oils, it may
be stated that increased temperature inside the massage room,
warm human skin and its large area contribute to intensified
exposure of both workers and clients of spa salons to in-
creased concentration of TVOCs, including terpenes (espe-
cially those of high volatility), in indoor air. This has been
also proved by the results obtained by Huang et al. (2012)
and Hsu et al. (2012) within their investigations on aromather-
apy environments. In that studies, TVOC concentrations be-
fore massages was in the range 400–600 μg m−3 and 250–
500 μg m−3 correspondingly, which is consistent with mea-
surement in this research’s “initial” concentrations in the
range 450–600 μg m−3. Huang et al. (2012) determined the
highest TVOC concentration in 125–175 min of the measure-
ment (during first aromatherapy session), and it reached
1200 μg/m3, while in Hsu et al. (2012) research, the highest
noted TVOC concentration was equal to 3250 μg m−3 (for the
details, see References). Determined in our study, TVOC con-
centration range of 600–1200 μg m−3 (with the exception of
measured in spa 4 exceptionally high value of TVOC concen-
tration) is close to the discussed above cases.

To get closer to the main purpose of this research, a per-
centage share of terpene concentration in relation to all deter-
mined TVOCs was calculated and presented in Fig. 3.

Applied during the treatment in spa 1, coconut and tea tree
oils did not contribute significantly to percentage share of
terpene concentration in relation to determined TVOCs.
Relatively low (22%) content of terpenes in collected air sam-
ple was caused by the fact that coconut oil is not an essential
oil and it is mainly composed of fatty acids (Marina et al.
2009); hence, the only source of terpenes in this case was
tea tree oil heated on the chimney. In spa 2, a massage with
an application of geranium and orchid oils resulted in elevated
terpene percentage share in comparison to spa 1, which can be
explained by the application of two essential oils during treat-
ment. After the massage in spa 3, during which sesame and
orange oils were applied, percentage content of terpenes in
collected sample was equal to 60%, probably due to the fact
that orange oil is mainly composed of limonene (77–95%)
(Verzera et al. 2004; Tao et al. 2009). Application of large
amounts of different essential oils during treatment in spa 4
(orange, lilac petals, Scots pine, lemongrass, wild rose) result-
ed in very large percentage share of terpenes in air sample
composition equal to 86%. These results indicate that terpene
content in spa indoor air depends on the type (chemical com-
position) and amount of applied oils and cosmetics during
aromatherapy.

According to the ECA, it is possible that specific VOCs
may influence indoor air quality and may be solely responsi-
ble for or partially contribute to the development of health
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effects in greater extent than other VOCs. If such circum-
stances are suspected to occur, these specific VOCs (or one
specific VOC) should be listed and determined separately
(ECA 1997). Therefore, full list of 21 quantitatively deter-
mined chemical compounds is available in Appendix
Tables 2, 3, 4, and 5, whereas four terpene compounds that
were determined at highest concentration levels (α-pinene,
limonene, camphene, and linalool) are discussed in detail be-
low. According to the literature, these compounds are com-
monly investigated in terms of indoor air quality because of
high abundance of their emission sources indoors. α-Pinene
and limonene are the most commonly occurring terpenes in
indoor environments. Camphene is also frequently deter-
mined terpene, but it is present in indoor air at concentrations
lower than limonene and α-pinene (Tanaka-Kagawa et al.
2005; de Gennaro et al. 2013). Linalool is not so frequently
determined in indoor air quality research as aforementioned
terpenes, but it was proved that the application of essential oils
is responsible for high emission of this compound (Su et al.
2007). Concentration variations of these selected compounds,
determined by TD-GC-FID before and after massage treat-
ment, are presented in Fig. 4. To date, terpene emission
sources were the same as discussed above.

According to the results presented in Fig. 4, limonene was
the most abundant monoterpene in all investigated spa salons
and its background concentration (before treatment) varied

from 25 to 60 μg m−3, which is similar to limonene concen-
tration measured in studies on indoor air quality of shopping
malls (Amodio et al. 2014) or homes (Villanueva et al. 2015).
Concentrations of α-pinene, camphene, and linalool before
treatments did not exceed 100 μg m−3. Concentrations of
monoterpenes after massage treatment are visibly higher than
before treatment, which indicates the presence of strong emis-
sion sources. Extremely high increase of limonene concentra-
tion up to 18,947 μg m−3 was probably caused by the use of
complex essential oil mixture applied in huge amounts, which
resulted also in increased TVOC concentration. Hsu et al.
(2012) indicated in their research that limonene has very sim-
ilar increasing concentration trend as TVOCs and its concen-
tration in samples collected after massage was 16 to 60 times
higher than in those collected before the treatment started. In
our study, this range was even greater, since limonene con-
centration in indoor air after massage was from 2.5 to almost
740 times greater than before.

Since limonene is one of the most commonly occurring
monoterpenes in indoor air and, as it was already men-
tioned, it was the most abundant monoterpene in all stud-
ied salons, we investigated particularly limonene concen-
tration variations along all sampling days. Results of this
investigation are presented in Table 1 as percentage share
of limonene concentration in the sum of terpene concen-
trations. Such divergent results prove that each salon is a

Fig. 3 Percentage share of sum of
terpenes and other VOCs in
relation to TVOC content in air
samples collected in investigated
spa salons on exemplary
sampling days
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specific and characteristic environment with dynamically
changing indoor air chemistry. All activities and applied
cosmetic products have an influence on indoor environ-
ment of each of the salons; therefore, chemistry of spa
salons cannot be unified and has to be specified for each
of the salon separately.

In order to better describe the air quality of investigated
salons, obtained qualitative results were combined to create
charts showing percentage content of specific groups of chem-
ical compounds in collected air samples. These results are
presented in Fig. 5.

On the basis of collected data presented in Fig. 5, it may be
stated that the type of the oil applied during the session highly
influences the chemical composition of air inside the room
where it took place. The presence of compounds of other than
monoterpene groups of chemicals is probably related to the
fact that commercially available essential oils (applied during
investigated aromatherapy sessions) are rarely composed of
100% pure essential oil. It is very common that they contain
additives such as alcohols, some other terpenes, and/or other
fragrance compounds. However, the use of monoterpene-rich
essential oils or cosmetic products with such essential oils,
e.g., fir needle oil mainly composed of β-pinene (35–48%)

(Régimbal and Collin 1994), orange oil mainly composed of
limonene (77–95%) (Verzera et al. 2004; Tao et al. 2009),
geranium oil rich in citronellol (37.5%) (Sharopov et al.
2014), or sage oil rich in 8-cineole (71.6%) (Borek et al.
2006), results in the dominant percentage share of terpenes
in the investigated air samples. Geranium oil additionally con-
tains a large fraction of alcohols in its composition (50–60%)
(Babu and Kaul 2005), which also significantly influences
collected air sample composition (see Fig. 5, spa 2 sampling
day 07March 2019). “Indian flower” is a commercial name of
mixture of essential oils, which is unfortunately unavailable to
check; therefore, it is impossible to speculate on its
composition.

The high impact of the type (and composition) of essential
oil during the treatment on the percentage content of limonene
among all chemical compounds determined in air samples
may be indicated with the example of spa 3 indoor air sample
composition. Amounts of alcohols, organic acids, esters,
ethers, aldehydes, alkenes, alkanes, siloxanes, ketones, and
other compounds are very alike between two sampling days.
A significant difference concerns limonene content. Rose oil
applied on 26 March 2019 does not contain limonene; how-
ever, it contains significant amounts of other terpenes and

Fig. 4 Variations of four
representative terpenes
determined before and after
massage treatments in all
investigated spa salons
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scented terpene derivatives (geraniol 22%, nerol 10%, and
citronellol 35%) (Ulusoy et al. 2009). Mixture of essential oils
(ylang ylang, lavender, pink grapefruit oils) applied on 25
March 2019 changed limonene percentage share in sample
chemical composition significantly. Ylang ylang and lavender
oils contain trace amounts of limonene (Stashenko et al. 1996;
Baratta et al. 1998; Hui et al. 2010); however, this terpene is a
main component of pink grapefruit oil (88–91%) (Njoroge
et al. 2005; Uysal et al. 2011); therefore, limonene was an
abundant component of air sample collected that day.

Huang et al. (2012) and Hsu et al. (2012) in their studies
determined that aromatherapy treatment causes submicron (<
100 nm) SOA particles growth at a level from 10,000 to
100,000 particles/cm3, indicating that high terpene concentra-
tion in such environments, even at low-level ozone concentra-
tion, produces large amounts of nanosized SOA. Additionally,
terpene oxidation reactions in terpene-rich environments
caused formation of formaldehyde up to 0.025 ppm, while
background concentration was equal up to 0.005 ppm and I/
O (indoor to outdoor ratio) indicated that formaldehyde emis-
sion sources were mainly indoors. Taking above into consid-
eration together with obtained results within this study, it may
be stated that indoor air quality in spa salonsmay pose a risk to
human health and well-being.

Summary and conclusions

This study, aimed at investigation of indoor air quality with
particular emphasis on terpene presence in specific kind of
environments such as spa salons, is, to the best of our knowl-
edge, the first research of this type carried out in Poland.
Results obtained within this study allowed to characterize in-
door air quality and composition in selected spa salons. It has
been proved that spa salons are characterized by TVOC con-
centrations exceeding recommended values of 300–
400 μg m−3 and that TVOC concentration is strictly related
to salon characteristics and carried out treatments. The evalu-
ation of data gathered during this study indicates that terpenes
constitute a significant part of TVOCs present in spa indoor
air. Elevated terpene concentration is strongly related to the
application of essential oils during treatments; however, con-
stant emission sources such as candle chimneys filled with
essential oils also contribute to increased terpene (and there-
fore TVOCs) concentration in indoor air. Indoor air quality in
small spaces of spa salons can be easily altered by application
of even small amounts of essential oils or cosmetics contain-
ing terpenes. It is known now that even small indoor concen-
tration of ozone may trigger the reaction of SOA formation, as
long as there is enough of second substrate—terpenes.
Employees, by spending 8 h daily in such environment, may
be at the risk of high exposure to harmful VOCs and terpeneTa
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oxidation products, e.g., acetone, formaldehyde, and submi-
cron SOA particles.

Indoor air monitoring in spa salons would be highly advised,
as well as checking ventilation/air exchange performance.

Further research in this area supported by toxicological studies
would allow for obtaining results required for establishing and
introducing of law regulations regarding maximum allowable
concentrations of VOCs in these specific indoor environments.
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Appendix 3

Table 4 Determined concentrations of selected analytes in samples collected in SPA 3

SPA 3 date

22.01.2019 22.01.2019 22.01.2019 01.02.2019 01.02.2019 04.02.2019 04.02.2019 16.02.2019
Reception Before After Before After Before After Before

Determined compounds Concentration (ppbv)

Isopropyl alcohol 2.56 31.43 8.00 21.47 23.94 35.15 28.93 21.61
Toluene 1.44 2.21 2.23 2.28 2.62 1.72 2.12 2.87
α-Pinene 13.19 20.34 18.90 17.55 24.70 17.97 23.51 12.40
Camphene 1.34 1.12 1.79 1.17 1.89 1.18 1.56 0.95
β-Pinene < LOQ < LOQ 0.78 0.84 0.93 1.07 1.39 2.97
α-Phellandrene < LOQ < LOQ 2.02 < LOQ < LOQ < LOQ 1.98 0.83
3-Carene 4.44 4.90 4.82 4.90 5.03 5.38 5.74 6.54
D-Limonene 4.02 4.59 25.23 6.45 36.43 5.80 14.48 4.40
β-Phellandrene < LOQ < LOQ n.d. n.d. n.d. n.d. n.d. < LOQ
Eucalyptol < LOQ < LOQ 0.94 < LOQ < LOQ < LOQ < LOQ < LOQ
Linalool 2.43 1.79 0.93 2.60 6.49 1.63 5.70 1.14
Undecan n.d. n.d. n.d. n.d. n.d. n.d. 2.28 2.01
4-Methoxy benzyl alcohol 1.77 < LOQ < LOQ 2.84 n.d. < LOQ n.d. n.d.
Geraniol n.d. n.d. n.d. n.d. n.d. n.d. n.d. < LOQ
Cireonellal n.d. n.d. n.d. n.d. n.d. n.d. n.d. < LOQ

SPA 3 date

16.02.2019 03.03.2019 25.03.2019 28.03.2019 29.03.2019 16.04.2019 18.04.2019
After After After After After After After

Determined compounds Concentration (ppbv)

Isopropyl alcohol n.d. n.d. n.d. n.d. n.d. n.d. n.d.

Toluene 1.82 n.d. n.d. 5.67 n.d. n.d. 5.15

α-Pinene 0.96 24.34 87.96 74.65 120.36 26.56 29.87

Camphene < LOQ 7.20 15.51 10.52 46.55 9.86 5.85

β-Pinene < LOQ 24.30 5.20 5.07 299.46 3.02 2.18

α-Phellandrene 0.82 n.d. 6.99 3.54 n.d. 4.12 1.46

3-Carene 3.88 389.20 20.11 16.97 114.74 8.73 6.97

D-Limonene 4.81 1.51 327.11 288.41 305.04 185.69 91.99

β-Phellandrene 8.34 n.d. n.d. n.d. 71.55 n.d. n.d.

Eucalyptol n.d. < LOQ 6.18 n.d. n.d. < LOQ 1.43

Linalool 93.00 2.98 30.69 4.97 117.50 23.85 19.10

Undecan n.d. n.d. n.d. n.d. n.d. n.d. 13.27

4-Methoxy benzyl alcohol n.d. n.d. n.d. n.d. n.d. n.d. n.d.

Geraniol n.d. n.d. n.d. 24.74 n.d. n.d. n.d.

Cireonellal n.d. n.d. 1.2 n.d. 1.61 < LOD < LOD
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Appendix 4

Table 5 Determined concentrations of selected analytes in samples collected in SPA 4

SPA 4 date

30.01.2019 30.01.2019 06.02.2019 08.03.2019
Determined compounds Before After Before After

Concentration (ppbv)

Isopropyl alcohol n.d. n.d. n.d. 3.25

Acetic acid n.d. n.d. n.d. n.d.

Toluene n.d. < LOD 0.82 n.d.

Cycli3siloxane n.d. n.d. n.d. 1.25

2-Propanol n.d. n.d. n.d. n.d.

α-Pinene n.d. 26.14 1.96 121.95

Camphene n.d. 2.71 < LOQ 89.17

β-Pinene n.d. 3.57 < LOQ 16.40

α-Phellandrene n.d. < LOQ < LOQ 4.32

3-Carene n.d. 2.16 < LOQ 17.84

D-Limonene n.d. 52.08 4.61 3408.67

β-Phellandrene n.d. n.d. n.d. n.d.

Eucalyptol n.d. 1.37 < LOQ 5.57

Linalool n.d. 3.72 1.49 10.73

Undecan n.d. 20.11 3.31 n.d.

Borneol n.d. n.d. n.d. 2.12

Cedrene/cryophyllene n.d. n.d. 5.30 2.36

Lilial n.d. n.d. n.d. n.d.

Geraniol n.d. n.d. < LOQ 2.68

α-Amyl cinnamyl aldehyde n.d. n.d. < LOQ n.d.
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