Skip to main content

Advertisement

Log in

Environmental safety and mode of action of a novel curcumin-based photolarvicide

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Aedes aegypti is the vector of important diseases like dengue, zika, chikungunya, and yellow fever. Vector control is pivotal in combating the spread of these mosquito-borne illnesses. Photoactivable larvicide curcumin obtained from Curcuma longa Linnaeus has shown high potential for Ae. aegypti larvae control. However, the toxicity of this photosensitizer (PS) might jeopardize non-target aquatic organisms. The aim of this study was to evaluate the toxicity of this PS to Daphnia magna and Danio rerio, besides assessing its mode of action through larvae biochemical and histological studies. Three PS formulations were tested: PS in ethanol+DMSO, PS in sucrose, and PS in D-mannitol. The LC50 of PS in ethanol+DMSO to D. rerio was 5.9 mg L−1, while in D. magna the solvents were extremely toxic, and LC50 was not estimated. The PS formulations in sugars were not toxic to neither of the organisms. Reactive oxygen species (ROS) were generated in D. magna exposed to 50 mg L−1 of PS in D-mannitol, and D. rerio did not elicit this kind of response. D. magna feeding rates were not affected by the PS in D-mannitol. Concerning Ae. aegypti larvae, there were changes in reduced glutathione and protein levels, while catalase activity remained stable after exposure to PS in D-mannitol and sunlight. Histological changes were observed in larvae exposed to PS in sucrose and D-mannitol, most of them irreversible and deleterious. Our results show the feasibility of this photolarvicide use in Ae. aegypti larvae control and its safety to non-target organisms. These data are crucial to this original vector control approach implementation in public health policies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe FR, Coleone AC, Machado AA, Machado-Neto JG (2014) Ecotoxicity and environmental risk assessment of larvicides used in the control of Aedes aegypti to Daphnia magna (Crustacea, Cladocera). J Toxicol Environ Health A 77:37–45. https://doi.org/10.1080/15287394.2014.865581

    Article  CAS  Google Scholar 

  • Abe FR, Machado AA, Coleone AC, Cruz C, Machado-Neto JG (2019) Toxicity of diflubenzuron and temephos on freshwater fishes: ecotoxicological assays with Oreochromis niloticus and Hyphessobrycon eques. Water Air Soil Pollut 230:77. https://doi.org/10.1007/s11270-019-4128-7

    Article  CAS  Google Scholar 

  • Ak T, Gülçin I (2008) Antioxidant and radical scavenging properties of curcumin. Chem-Biol Interac 174:27–37

    CAS  Google Scholar 

  • Akinyemi AJ, Oboh G, Ogunsuyi O, Abolaj AO, Udofia A (2018) Curcumin-supplemented diets improve antioxidant enzymes and alter acetylcholinesterase genes expression level in Drosophila melanogaster model. Metab Brain Dis 33:369–375

    CAS  Google Scholar 

  • Al-Mekhlafi FA (2018) Larvicidal, ovicidal activities and histopathological alterations induced by Carum copticum (Apiacea) extract against Culex pipiens (Diptera: Culicidae). Saudi J Biol Sci 25:52–56

    Google Scholar 

  • Ali A, Wang Y, Khan IA (2015) Larvicidal and biting deterrent activity of essential oils of Curcuma longa, Ar-turmerone and curcuminoids against Aedes aegypti and Anopheles quadrimaculatus (Culicidae: Diptera). J Med Entomol 52:979–986

    CAS  Google Scholar 

  • Allen Y, Calow P, Baird DJ (1995) A mechanistic model of contaminant-induced feeding inhibition in Daphnia magna. Environ Toxicol Chem 14:1625–1630

    CAS  Google Scholar 

  • Antwi FB, Reddy GVP (2015) Toxicological effects of pyrethroids on non-target aquatic insects. Environ Toxicol Pharmacol 40:915–923

    CAS  Google Scholar 

  • Arruda W, Oliveira GMC, Silva IG (2003) Toxicity of the ethanol extract of Magonia pubescens on larvae Aedes aegypti. Rev Soc Bras Med Trop 36:17–25 (in Portuguese)

    Google Scholar 

  • Bae E, Samanta P, Yoo J, Jung J (2016) Effects of multigenerational exposure to elevated temperature on reproduction, oxidative stress, and Cu toxicity in Daphnia magna. Ecotoxicol Environ Saf 132:366–371

    CAS  Google Scholar 

  • Barbazuk WB, Korf I, Kadavi C, Heyen J, Tate S, Wun E, Bedell JA, McPherson JD, Johnson SL (2000) The syntenic relationship of the zebrafish and human genomes. Genome Res 10:1351–1358

    CAS  Google Scholar 

  • Barata C, Varo I, Navarro JC, Arun S, Porte C (2005) Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds. Comp Biochem Physiol C: Toxicol Pharmacol 140:175–186

    Google Scholar 

  • Barreto CF, Cavasin GM, Silva HHG, Silva IG (2006) Study of the morphohistological modification in larvae of Aedes aegypti (Diptera, Culicidae) submitted to the pure ethanolic extract of Sapindus saponaria Lin (Sapindaceae). Rev Patol Trop 35:37–57 (in Portuguese)

    Google Scholar 

  • Benelli G, Pavela R, Petrelli R, Nzekoue FK, Cappellacci L, Lupidi G, Quassinti L, Bramucci M, Sut S, Dall’Acqua S, Canale A, Maggi F (2019) Carlina oxide from Carlina acaulis root essential oil acts as a potent mosquito larvicide. Ind Crop Prod 137:356–366

    CAS  Google Scholar 

  • Beutler E (1984) Red cell metabolism: a manual of biochemical methods, 3rd edn. Grune & Straton, Michigan, p 187

    Google Scholar 

  • Beers RF, SIZER JW (1952) A spectrophotometric method of measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    CAS  Google Scholar 

  • Carmona-Vargas CC, Alves LC, Brocksom TJ, Oliveira KT (2017) Combining batch and continuous flow setups in the end-to-end synthesis of naturally occurring curcuminoids. React Chem Eng 2:366–374

    CAS  Google Scholar 

  • Castro DSB, Silva DB, Tiburcio JD, Sobral MEG, Ferraz V, Taranto AG, Serrao JE, Siqueira JM, Alves SN (2016) Larvicidal activity of essential oil of Pneumus boldus Molina and its ascaridole-enriched fraction against Culex quinquefasciatus. Exp Parasitol 171:84–90

    Google Scholar 

  • Cheng D, Li W, Wang L, Lin T, Poiani G, Wassef A, Hudlikar R, Ondar P, Brunetti L, Kong A (2019) Pharmacokinetics, pharmacodynamics, and PKPD modeling of curcumin in regulating antioxidant and epigenetic gene expression in healthy human volunteers. Mol Pharm 16(5):1881–1889

    CAS  Google Scholar 

  • Conti B, Flamini G, Cioni PL, Ceccarini L, Leonardi MM, Benelli G (2014) Mosquitocidal essential oils: are they safe against non-target organisms? Parasitol Res 113:251–259

    Google Scholar 

  • Couling JD, Bernot RJ, Docherty KM, Dixon JK, Maginn EJ (2006) Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure- property relationship modeling. Green Chem 8:82–90

    CAS  Google Scholar 

  • Dadd RH, Kleinjan JE, Merrill LD (1982) Phagostimulant effects of simple nutrients on larval Culex pipiens (Diptera: Culicidae). Ann Entomol Soc Am 75:605–612

    Google Scholar 

  • David JP, Rey D, Pautou MP, Meyran JC (2000) Differential toxicity of leaf litter to dipteran larvae of mosquito developmental sites. J Invertebr Pathol 75:9–18

    CAS  Google Scholar 

  • Di Giulio RT, Meyer JN (2008) Reactive oxygen species and oxidative stress. In: Di Giulio RT, Hinton DE (eds) The toxicology of fishes. Taylor Francis Group/CRC Press, Florida, pp 273–326

    Google Scholar 

  • Dondji B, Duchon S, Diabate A, Herve JP, Corbel V, Hougard J, Santus R, Schrevel J (2005) Assessment of laboratory and field assays of sunlight-induced killing of mosquito larvae by photosensitizers. J Med Entomol 42(4):652–656

    CAS  Google Scholar 

  • Duguma D, Ortiz SL, Lin Y, Wilson PC, Walton WE (2017) Effects of a larval mosquito biopesticide and Culex larvae on a freshwater nanophytoplankton (Selenastrum capricornatum) under anexic conditions. J Vector Ecol 42(1):51–59

    Google Scholar 

  • Ernst W, Jackman P, Doe K, Page F, Julien G, MacKay K, Sutherland T (2001) Dispersion and toxicity to non-target aquatic organisms of pesticides used to treat sea lice on salmon in net pen enclosures. Marin Poll Bull 42:432–443

    Google Scholar 

  • Fabris C, Soncin M, Jori G, Habluetzel A, Lucantoni L, Sawadogo S, Guidolin L, Coppellotti O (2012) Effects of a new photoactivatable cationic porphyrin on ciliated protozoa and branchiopod crustaceans, potential components of freshwater ecosystems polluted by pathogenic agents and their vectors. Photochem Photobiol Sci 11:294–301

    CAS  Google Scholar 

  • Fujiwara GM, Annies V, Oliveira CF, Lara RA, Gabriel MM, Betim FCM, Nadal JM, Farago PV, Dias JFG, Miguel OG, Miguel MD, Marques FA, Zanin SMW (2017) Evaluation of larvicidal activity and ecotoxicity of linalool, methyl cinnamate and methyl cinnamate/linalool in combination against Aedes aegypti. Ecotoxicol Environ Saf 139:238–244

    CAS  Google Scholar 

  • Fulcher A, Scott JM, Qualls WA, Müller GC, Xue R (2014) Attractive toxic sugar baits mixed with pyriproxyfen sprayed on plants against adult and larval Aedes albopictus (Diptera: Culicidae). J Med Entomol 51:896–899

    CAS  Google Scholar 

  • Geis SW, Fleming KL, Korthal ET, Searle G, Reynolds L, Karner DA (2000) Modifications to the algal growth inhibition test for use as a regulatory assay. Environ Toxicol Chem 19:36–41

    CAS  Google Scholar 

  • Govidarajan M, Benelli G (2016) Eco-friendly larvicides from Indian plants: effectiveness of lavandulyl acetate and bicyclogermacrene on malaria, dengue and Japanese encephalitis mosquito vectors. Ecotoxicol Environ Saf 133:395–402

    Google Scholar 

  • Haap T, Triebskorn R, Köhler HR (2008) Acute effects of diclofenac and DMSO to Daphnia magna: immobilisation and hsp-70 induction. Chemosphere 73:353–359

    CAS  Google Scholar 

  • Hasnain SE, Taneja TK, Sah NK, Mohan M, Pathak N, Sahdev S, Athar M, Totey SM, Begum R (1999) In vitro cultured Spodoptera frugiperda insect cells: model for oxidative stress-induced apoptosis. J Biosci 24:13–19

    CAS  Google Scholar 

  • Huang YY, Aaron C, Chen H, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose-Response. https://doi.org/10.2203/dose-response.09-027.Hamblin

  • Inoue LAKA, Neto CS, Moraes G (2003) Clove oil as anaesthetic for juveniles of matrinxã Brycon cephalus (Gunther. 1896). Cienc Rural 33:943–947

    Google Scholar 

  • Ishwarya R, Vaseeharan B, Anuradha R, Rehka R, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2017) Eco-friendly fabrication of Ag nanostructures using the seed extract of Pedalium murex, an ancient Indian medicinal plant: Histopathological effects on the Zika vírus vector Aedes aegypti and inhibition of biofilm-forming pathogenic bacteria. J Photochem Photobiol Biol 174:133–143

    CAS  Google Scholar 

  • Kelly SA, Havrilla CM, Brady TC, Abramo KH, Levin ED (1998) Oxidative stress in toxicology: established mammalian and emerging piscine model systems. Environ Health Perspect 106:375–385

    CAS  Google Scholar 

  • Koskella J, Stotzky G (2002) Larvicidal toxins from Bacillus thuringiensissubspp. kurstaki, morrisoni (strain tenebrionis), and israelensis have no microbicidal or microbiostatic activity against selected bacteria, fungi, and algae in vitro. Can J Microbiol 48:262–267

    CAS  Google Scholar 

  • Kosower NS, Kosower EM (1976) Glutathione: metabolism and function. Arias IM and Jakoby WB (ed) Raven Press, New York, 159-172

  • Kruger NJ (1994) The Bradford method for protein quantification. In: Walker JM (ed) Methods in molecular biology, basic protein and peptide protocols, 32nd edn. Humana Press Inc, Totowa, pp 15–21

    Google Scholar 

  • Lammer E, Carr GJ, Wendler K, Rawlings JM, Belanger SE, Braunbeck T (2009) Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test? Comp Biochem Physiol C: Toxicol Pharmacol 149:196–209

    CAS  Google Scholar 

  • LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

    CAS  Google Scholar 

  • Le Goff G, Hilliou BD, Siegfried BD, Boundy S, Wajnberg E, Sofer L, Audant P, Ffrench-Constant RH, Feyereisen R (2006) Xenobiotic response in Drosopjila melanogaster: sex dependence of P450 and GST gene induction. Insect Biochem Mol Biol 36:674–682

    Google Scholar 

  • Lekamge S, Miranda AF, Ball AS, Shukla R, Nugegoda D (2019) The toxicity of coated silver nanoparticles to Daphnia carinata and trophic transfer from alga Raphidocelis subcapitata. PLoS One. https://doi.org/10.1371/journal.pone.0214398

  • Lima AR, Silva CM, Caires CSA, Prado ED, Rocha LRP, Cabrini I, Arruda EJ, Oliveira SL, Caires ARL (2018) Evaluation of eosin-methylene blue as a photosensitizer for larval control of Aedes aegypti by photodynamic process. Insects 9:109–117

    Google Scholar 

  • Luschak VI (2014) Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 224:164–175

    Google Scholar 

  • Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101:13–30

    CAS  Google Scholar 

  • Magro M, Bramuzzo S, Baratella D, Ugolotti J, Zoppelaro G, Chemello I, Olivotto I, Ballarin C, Radaelli G, Arcaro B, Liguoro M, Coppellotti O, Guidolin J, Almeida R, Bonaiuto E, Zboril R, Vianello F (2019) Self-assembly of chlorin-e6 on gamma-Fe2O3 nanoparticles: application for larvicidal activity against Aedes aegypti. J Photochem Photobiol B 194:21–31

    CAS  Google Scholar 

  • Maharajan K, Muthulakshmi S, Nataraj B, Ramesh M, Kadirvelu K (2018) Toxicity assessment of pyriproxyfen in vertebrate model zebrafish embryos (Danio rerio): a multi biomarker study. Aquat Toxicol 196:132–145

    CAS  Google Scholar 

  • Maheshwari RK, Singh AK, Gaddipati J, Srimal RC (2006) Multiple biological activities of curcumin: a short review. Life Sci 78:2081–2087

    CAS  Google Scholar 

  • Michaelakis A, Papachristos D, Kimbaris A, Koliopoulos G, Giatropoulos A, Polissiou MG (2009) Citrus essential oils and four enantiomeric pinenes against Culex pipiens (Diptera: Culicidae). Parasitol Res 105:769–773

    Google Scholar 

  • Morrison AC, Zielinski-Gutierrez E, Scott TW, Rosenberg R (2008) Defining challenges and proposing solutions for control of the virus vector Aedes aegypti. PLoS Med. https://doi.org/10.1371/journal.pmed.0050068

  • Mukherjee SN, Rawal SK, Ghumare SS, Sharma RN (1993) Hormetic concentrations of azadirachtin and isoesterase profiles in Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Experientia 49:557–560

    CAS  Google Scholar 

  • Odajima T, Yamazaki I (1972) Myeloperoxidase of the leukocyte of normal blood. III. The reaction of ferric myeloperoxidase with superoxide anion. Biochim Biophys Acta 284:355–359

    CAS  Google Scholar 

  • OECD 203 (1992) Guideline for the testing of chemicals, Fish. Acute Toxicity Test; Organization for Economic Cooperation and Development (OECD), Paris

    Google Scholar 

  • OECD 202 (2004) Guideline for the testing of chemicals, Daphnia sp. Acute Immobilization Test; Organisation for Economic Cooperation and Development (OECD), Paris

    Google Scholar 

  • Paiva MHS, Lovin DD, Mori A, Melo-Santos MAV, Severson DW, Ayres CFJ (2016) Identification of a major quantitative trait locus determining resistance to the organophosphate temephos in the dengue vector mosquito Aedes aegypti. Genomics 107:40–48

    CAS  Google Scholar 

  • Parthiban E, Arokiyaraj C, Ramanibai R (2020) Annona muricata: an alternate mosquito control agent with special reference to inhibition of detoxifying enzymes in Aedes aegypti. Ecotoxicol Environ Saf. https://doi.org/10.1016/j.ecoenv.2019.110050

  • Pavela R (2014) Insecticidal properties of Pimpinella anisum essential oils against Culex quinquefasciatus and the non-target organism Daphnia magna. J Asia-Pacific Entomol 17:287–293

    CAS  Google Scholar 

  • Pavela R, Kaffkova K, Kumsta M (2014) Chemical composition and larvicidal activity of essential oils from different Mentha L. and Pulegium species against Culex quinquefasciatus Say (Diptera: Culicidae). Plant Prot Sci 50:36–42

    CAS  Google Scholar 

  • Pavela R, Govindarajan M (2017) The essential oil from Zanthoxylum monophyllum a potential mosquito larvicide with low toxicity to the non-target fish Gambusia affinis. J Pest Sci 90:369–378

    Google Scholar 

  • Pavela R, Maggi F, Iannarelli R, Benelli G (2019) Plant extracts for developing mosquito larvicides: from laboratory to the field, with insights on the modes of action. Acta Trop 193:236–271

    CAS  Google Scholar 

  • Pereira JL, Antunes SC, Castro BB, Marques CR, Gonçalves AMM, Gonçalves F, Pereira R (2009) Toxicity evaluation of three pesticides on non-target aquatic and soil organisms: commercial formulation versus active ingredient. Ecotoxicol 18:455–463

    CAS  Google Scholar 

  • Pfleeger T, McFarlane JC, Sherman R, Volk G (1991) A short-term bioassay for whole plant toxicity. In: Gorsuch JW, Lower WR, Wang W, Lewis MA (eds) Plants for toxicity assessment. American Society for Testing and Materials, Philadelphia, pp 355–364

    Google Scholar 

  • Pisa LW, Amaral-Rogers W, Belzunces LP, Bonmatin JM, Downs CA, Goulson D, Kreutzweiser DP, Krupke C, Liess M, McField M, Morrissey CA, Noome DA, Settele J, Simon-Delso N, Stark JD et al (2015) Effects of neonicotinoids and fipronil on non-target invertebrates. Environ Sci Pollut Res 22:68–102

    CAS  Google Scholar 

  • Procopio TF, Fernandes KM, Pontual EV, Ximenes RM, Oliveira ARC, Souza CS, Melo AMMA, Navarro DMA, Paiva PMG, Martins GF, Napoleao TH (2015) Schinus terebinthifolius leaf extract causes midgut damage, interfering with survival and development of Aedes aegypti larvae. PLoS One. https://doi.org/10.1371/journal.pone.0126612

  • Promsiri S, Naksathit A, Kruatrachue M, Thavara U (2006) Evaluations of larvicidal activity of medicinal plant extracts to Aedes aegypti (Diptera: Culicidae) and other effects on a non target fish. Insect Sci 13:179–188

    Google Scholar 

  • Rey D, Cuany A, Pautou M, Meyran J (1999) Differential sensitivity of mosquito taxa to vegetable tannins. J Chem Ecol 25:537–548

    CAS  Google Scholar 

  • Riaz MA, Poupardin R, Reynayd S, Strode C, Ranson H, David JP (2009) Impact of glyphosate and benzo[a]pyrene on the tolerance of mosquito larvae to chemical insecticides. Role of detoxification genes in response to xenobiotics. Aquat Toxicol 93:61–69

    CAS  Google Scholar 

  • Rossi R, Cardaioli E, Scaloni A, Amiconi G, Simplicio P (1995) Thiol groups in proteins as endogenous reductants to determine glutathione-protein mixed disulphides in biological systems. Biochim Biophys Acta 1243:230–238

    Google Scholar 

  • Ruiz ML, Segura C, Trujillo J, Orduz S (2004) In vivo binding of the Cry11bB toxin of Bacillus thuringiensis subsp. medellin to the midgut of mosquito larvae (Diptera: Culicidae). Mem Inst Oswaldo Cruz 99:73–79

    CAS  Google Scholar 

  • Sagnou M, Mitsopoulou KP, Koliopoulos G, Pelecanou M, Couladouros EA, Michaelakis A (2012) Evaluation of naturally occurring curcuminoids and related compounds against mosquito larvae. Acta Trop 123:190–195

    CAS  Google Scholar 

  • Santos VSV, Caixeta ES, Junior EOC, Pereira BB (2017) Ecotoxicological effects of larvicide used in the control of Aedes aegypti on nontarget organisms: redefining the use of pyriproxyfen. J. Toxicol Environ Health A 80:155–170

    CAS  Google Scholar 

  • Shaalan EA, Canyon D, Younes MWF, Abdel-Wahab H, Mansour A (2005) A review of botanical phytochemicals with mosquitocidal potential. Environ Int 31:1149–1166

    CAS  Google Scholar 

  • Shanmugam MK, Arfuso F, Sng JC, Bishayee A, Kumar AP, Sethi G (2019). Epigenetic effects of curcumin in cancer prevention. In: Anupam B, Deepak B (eds) Epigenetics of cancer prevention, Academic Press pp.107–128

  • Shiao SH, Weng SC, Luan L, Vicente MGH, Jiang XJ, Ng DKP, Kolli BK, Chang KP (2019) Novel phthalocyanines activated by dim light for mosquito larva- and cell-inactivation with inference for their potential as broad-spectrum photodynamic insecticides. PLoS One 14(5):e0217355. https://doi.org/10.1371/journal.pone.0217355

    Article  CAS  Google Scholar 

  • Singh NS, Sharma R, Parween T, Patanjali PK (2018) Pesticide contamination and human health risk factor. In: Oves M, Zain KM, Ismail MI (eds) Modern age environmental problems and their remediation. Springer, Cham, pp 49–68

    Google Scholar 

  • Sivagnaname N, Kalyanasundaram M (2004) Laboratory evaluation of methanolic extract of Atlantia monophylla (family: Rutaceae) against immature stages of mosquitoes and non-target organisms. Mem Inst Oswaldo Cruz 99:115–118

    CAS  Google Scholar 

  • Souza LM, Inada NM, Venturini FP, Carmona-Vargas CC, Pratavieira S, Oliveira KT, Kurachi C, Bagnato VS (2019) Photolarvicidal effect of curcuminoids from Curcuma longa Linn. against Aedes aegypti larvae. J. Asia-Pacific Entomol 22:151–158

    Google Scholar 

  • Sukari MA, Rashid NY, Neoh BK, Bakar NHA, Riyanto S, Ee GCL (2010) Larvicidal activity of some Curcuma and Kaempferia rhizome extracts against dengue fever mosquito Aedes aegypti Linnaeus (Diptera: Culicidae). Asian J Chem 22:7915–7919

    CAS  Google Scholar 

  • Sulukan E, Köktürk M, Ceylan H, Beydemir S, Isik M, Atamanalp M, Cyhun SB (2017) An approach to clarify the effect mechanism of glyphosate on body malformations during embryonic development of zebrafish (Danio rerio). Chemosphere 180:77–85

    CAS  Google Scholar 

  • Takahashi IT, Cowgill UM, Murphy PG (1987) Comparison of ethanol toxicity to Daphnia magna and Ceriodaphnia dubia tested at two different temperatures: static acute toxicity test results. Bull Environ Contam Toxicol 39:229–236

    Google Scholar 

  • Truong L, Gonnerman G, Simonich MT, Tanguay RL (2016) Assessment of the developmental and neurotoxicity of the mosquito control larvicide, pyriproxyfen, using embryonic zebrafish. Environ Pollut 218:1089–1093

    CAS  Google Scholar 

  • Tyagi P, Singh M, Kumari H, Kumari A, Mukhopadhyay K (2015) Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS One. https://doi.org/10.1371/journal.pone.0121313

  • Urban DJ, Cook NJ (1986) Standard evaluation procedure ecological risk assessment. Hazard Evaluation Division of USEPA, (Publication 540/9-86-001), Washington

    Google Scholar 

  • Vivekanandhan P, Usha-Raja-Nanthini A, Valli G, Shivakumar MS (2019) Comparative efficacy of Eucalyptus globulus (Labill) hydrodistilled essential oil and temephos as mosquito larvicide. Nat Prod Res. https://doi.org/10.1080/14786419.2018.1547290

  • Zhang L, Gibble R, Baer KN (2003) The effects of 4-nonylphenol and ethanol on acute toxicity, embryo development, and reproduction in Daphnia magna. Ecotoxicol Environ Saf 55:330–337

    CAS  Google Scholar 

  • Zucker E (1985) Standard evaluation procedure acute toxicity test for freshwater fish. Hazard Evaluation Division of USEPA (Publication 540/9-85-006), Washington

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to Prof. Valtencir Zucolotto for the facilities used at GNano Lab and Merieux team for making available the Ae. aegypti Rockefeller strain used in this study. We also thank two anonymous reviewers for their considerations greatly enriched the manuscript.

Funding

This research was funded by Coordination for the Improvement of Higher Education Personnel, National Council for Scientific and Technological Development/Ministry of Science and Technology and Department of Science and Technology (Grant No. 44058520163; 1538187), São Paulo Research Foundation—FAPESP (Grant No. 2013/07276-1, Optics and Photonics Research Center—CePOF, 2018/00106-7), and National Science and Technology Institutes (INCT)—Basic Optics and Applied to Life Sciences (Grant No. 465360/2014-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francine Perri Venturini.

Additional information

Responsible Editor: Giovanni Benelli

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venturini, F.P., de Souza, L.M., Garbuio, M. et al. Environmental safety and mode of action of a novel curcumin-based photolarvicide. Environ Sci Pollut Res 27, 29204–29217 (2020). https://doi.org/10.1007/s11356-020-09210-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-09210-4

Keywords

Navigation