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Forecasting PM2.5-induced lung cancer mortality and morbidity
at county level in China using satellite-derived PM2.5 data from 1998
to 2016: a modeling study
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Abstract
The serious ambient fine particulate matter (PM2.5) is one of the key risk factors for lung cancer. However, existing studies on the
health effects of PM2.5 in China were less considered the regional transport of PM2.5 concentration. In this study, we aim to
explore the association between lung cancer and PM2.5 and then forecast the PM2.5-induced lung cancer morbidity and mortality
in China. Ridge regression (RR), partial least squares regression (PLSR), model tree-based (MT) regression, regression tree (RT)
approach, and the combined forecasting model (CFM) were alternative forecasting models. The result of the Pearson correlation
analysis showed that both local and regional scale PM2.5 concentration had a significant association with lung cancer mortality
and morbidity and compared with the local lag and regional lag exposure to ambient PM2.5; the regional lag effect (0.172~0.235
for mortality; 0.146~0.249 for morbidity) was not stronger than the local lag PM2.5 exposure (0.249~0.294 for mortality;
0.215~0.301 for morbidity). The overall forecasting lung cancer morbidity and mortality were 47.63, 47.86, 39.38, and 39.76
per 100,000 population. The spatial distributions of lung cancer morbidity and mortality share a similar spatial pattern in 2015
and 2016, with high lung cancer morbidity and mortality areas mainly located in the central to east coast areas in China. The
stakeholders would like to implement a cross-regional PM2.5 control strategy for the areas characterized as a high risk of lung
cancer.
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Introduction

Lung cancer is one of the most common causes of cancer
morbidity and mortality worldwide; it accounts for about
11.6% of the total diagnosed cases and 18.4% of the total

cancer deaths, with the age-standardized rate of 22.5 new in-
cidence cases per 100,000 and age-standardized rate of 18.6
new death cases per 100,000, based on the GLOBOCAN es-
timates of global cancer incidence, mortality, and prevalence
(Ferlay et al. 2019). China has one of the highest disease
burden levels of lung cancer in the world (Torre et al. 2015).
According to the latest Chinese cancer registration annual re-
port, the raw incidence rate of lung cancer in 2014 was 77.42
per 100,000 men and 40.10 per 100,000 women.

A growing body of epidemiological studies showed that
particulate matter (PM), especially fine particulate matter of
aerodynamic diameter < 2.5μm (PM2.5), has an adverse effect
on human health (Fajersztajn et al. 2013; Kampa and Castanas
2008), especially for lung cancer (Wang et al. 2019; Dehghani
et al. 2017) as well as cardiovascular diseases (Zhang et al.
2014a, b; Beelen et al. 2014). What’s more, the International
Agency for Research on Cancer (IARC) concluded that expo-
sure to PM from outdoor air pollution is carcinogenic to
humans (IARC group 1) and causes lung cancer (Loomis
et al. 2013). Similar findings were also obtained in cohort
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studies from Europe, North America, and Asia. For example,
in Europe, evidence from 17 cohorts suggested that a statisti-
cally significant association between risk for lung cancer in-
cidence and PM2.5, the hazard ratio (HR), was 1.18
(0.96–1.46) per 5 μg/m3 (Raaschou-Nielsen et al.
2013). In the USA, a large cohort study examined as-
sociations between long-term ambient PM2.5 concentra-
tions and lung cancer mortality in lifelong never smoke
and found a 15–27% increase in lung cancer mortality
for each > 10 μg/m3 increase in PM2.5 concentrations
(Turner et al. 2011). In China, a 12-year cohort study
conducted in northern China indicated that each 10 μg/
m3 increase in PM10 concentration was associated with
a 3.4–6.0% increase in lung cancer mortality, and the
association was various in men and women (Li et al.
2018).

In addition to epidemiological study of lung cancer
and PM2.5, the spatial distribution of PM2.5 also makes
a specific contribution to lung cancer mortality and
morbidity. As a consequence of reform and opening
up, China has been experiencing high concentrations
of air pollution (Brauer et al. 2012). The serious
PM2.5 pollution issue in China has attracted great atten-
tion in recent years, and the large quantities of air pol-
lutants indicate that PM2.5 pollution has expanded over
a large regional scale (Li et al. 2017; Hu et al. 2014).
Recent studies in some mega-cities of China have fo-
cused on the characteristics, chemical compositions,
sources, and formation mechanism of PM2.5 (Li et al.
2019; Gao et al. 2018; Zheng et al. 2015). Specifically,
densely populated mega-cities worsen the situation that
the transport of pollutants may cross over geographical
broader and contributes significantly to the formation of sec-
ondary aerosol (Huang et al. 2014). Moreover, due to a large
amount of anthropogenic emissions, the impact of long-range
transport of pollutants from China may affect the Pacific
Ocean, other countries in Asia, and even North America
(Wuebbles, Lei, and Lin 2007). Thus, these findings suggest
that the regional transport of air pollutants may play an impor-
tant role in the formation of PM2.5 pollution and spatial ineq-
uity of lung cancer.

To provide a reference to investigate the association be-
tween lung cancer mortality, morbidity, and long-term PM2.5

pollution, it is necessary to obtain detailed information about
the local and regional variation of lung cancer mortality and
morbidity and PM2.5 concentration. Therefore, in this study,
we first investigated the association between lung cancer mor-
tality and morbidity with local and regional PM2.5 concentra-
tions. Secondly, the concentration-response functions between
the annual lung cancer outcomes and long-term exposure to
PM2.5 concentrations by five forecasting models were
established. Finally, we obtained the forecasting spatial distri-
bution of lung cancer mortality and morbidity in China.

Materials and methods

Materials and data processing

Lung cancer mortality and morbidity data

Lung cancer mortality and morbidity (ICD-10, C33-C34)
were collected from the Chinese cancer registry annual report
from 2009 to 2017, released by the National Central Cancer
Registry (NCCR) and Disease Prevention and Control
Bureau, Ministry of Health. The NCCR evaluated the registry
data based on the criteria of quality control in the program
protocol. According to the results of quality control, only data
with good completeness and validity, according to the regis-
tries, were selected and analyzed for mortality and morbidity
of cancer in China. All data on lung cancer mortality and
morbidity are reported to population-based cancer registries
in the centers for disease control, cancer hospital, or institute
of cancer prevention and control.

A total of 1294 cancer registries were reported from 2006
to 2014; among those cancer registries, only few of the cancer
registries published continuous data from 2006 to 2014; many
new cancer registries reported cancer data during 2010–2014;
thus, the whole lung cancer dataset was an unbalanced panel
(see Table 1). By 2014, 339 cancer registries submitted data
and qualified, with data distributed in 31 provinces and mu-
nicipalities, including 129 urban areas and 210 rural areas.
The population covered by cancer registration areas in 2014
was 288,243,347 (146,203,891 males and 142,039,456 fe-
males), which accounted for 21.07% of the entire national
population. In the present study, cancer registries were not
selected wherein the lung cancer mortality or morbidity was
0. Similarly, cancer registries were selected wherein lung can-
cer mortality or morbidity was great than 0. Besides, due to the
small spatial scale of cancer registry areas, we grouped these
areas into a large scale and recalculated the mortality and
morbidity using their total combined population. Finally, a
total of 1194 cancer registries from 2006 to 2014 were obtain-
ed in the present study, and the annual lung cancer mortality
and morbidity were agreed, as the death and incidence of
newly increasing lung cancer cases occurred in a single year
for the covered population.

The classification of Eastern areas, Middle areas, and
Western areas is based on the standard of the National
Statistics Bureau. Eastern areas consist of Beijing, Tianjin,
Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian,
Shandong, Guangdong, and Hainan. Middle areas consist of
Heilongjiang, Jilin, Shanxi, Anhui, Jiangxi, Henan, Hubei,
and Hunan. Western areas consist of Inner Mongolia,
Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Tibet,
Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang. Figure 1
and Fig. S1 shows the spatial distribution of the cancer regis-
tries in this study.
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Satellite-derived annual PM2.5 concentration data

The annual means of global PM2.5 concentration at 0.01° ×
0.01° spatial resolution were collected from the Atmospheric
Composition Analysis Group website of Dalhousie
University. Van Donkelaar et al. estimated the global PM2.5

concentrations using multiple satellite products (MISR,
MODIS Dark Target, MODIS and SeaWiFS Deep Blue, and
MODIS MAIAC) (van Donkelaar et al. 2016; van Donkelaar
et al. 2015).

To avoid the bias of uninhabited areas, such as the
Taklimakan Desert, where few people live and the lung cancer
mortality and morbidity are almost zero. Therefore, the dust-
and sea salt-removed annual PM2.5 concentrations with 0.01° ×
0.01° spatial resolution dataset were used in this study. For each
cancer registry area, we first spatially matched the polygon
shapefile of the cancer registry area with global surface annual
PM2.5 concentration data and then calculated the annual mean
PM2.5 concentration using the data of the grid point that fall
within each cancer registry area from 1998 to 2016.

Fig. 1 Spatial distribution of the cancer registries in 2014 across China

Table 1 Descriptions for cancer
registration areas from 2006 to
2014

Year No. of registries No. of urban registries No. of rural registries Population (10 thousands)

2006 34 15 19 5956

2007 38 17 21 5980

2008 41 20 21 6613

2009 72 31 41 8447

2010 145 58 87 12,465

2011 177 77 100 14,575

2012 193 73 120 19,806

2013 255 88 167 22,649

2014 339 129 210 28,824
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Conceptual framework

Based on the abovementioned background, we developed our
conceptual framework and summarized it in Fig. 2. We pro-
posed that the mortality and morbidity of lung cancer were not
only under the influence of local PM2.5 pollution, but also the
regional PM2.5 pollution. Figure 2 displays the conceptual
framework of this study, with spatial influence representing
the PM2.5 concentration from the local area and surrounding
areas, temporal influence representing the lag effect in PM2.5

concentration, and lung cancer exposure-response
relationship.

In this study, a contiguity-based conceptualization was con-
structed, where the definition of the neighborhood is based on
sharing a common boundary or node for a specific area. Then,
the mean value of all surrounding PM2.5 concentrations rep-
resented the regional scale. The definition of regional scale
can be determined as follows:

reg ¼ ∑n
i¼1PM2:5i

n
ð1Þ

where PM2.5 is the area unit concentration, n is the total num-
ber of neighborhoods, and i is a certain neighbor. More im-
portantly, previous studies have revealed the relationship be-
tween time lag from the exposure of PM2.5 and the develop-
ment of lung cancer mortality and morbidity (Han et al. 2017;
Sloan et al. 2012; Biggeri et al. 2005). It is confirmed that
prolonged high exposure to PM2.5 adversely influences lung
cancer risk. Moreover, studies from the major cities of China
have shown that the time lag of PM2.5 exposure to lung cancer
morbidity and/or mortality is 7 to 8 years (Chen, Li, and Zhou
2003; Zhang 2014a, b). Therefore, in this study, two group
variables represent the regional effect and lag effect in PM2.5

concentration and lung cancer exposure-response relationship.
The definition of exposure-response relationship can be deter-
mined as follows:

Y t;i ¼ αþ β locð Þ þ λ regð Þ þ εt;i ð2Þ
where Yt, i is the mortality or morbidity of lung cancer on year t
at area i. α is the intercept, loc is the local PM2.5 concentration
in the current year and previous 8 years (termed loc-lag0, lag1,
lag2, lag3, lag4, lag5, lag6, lag7, and lag8, respectively), reg is
the regional PM2.5 concentration in the current year and pre-
vious 8 years (termed reg-lag0, lag1, lag2, lag3, lag4, lag5,
lag6, lag7, and lag8, respectively), and εt, i is the error term.
The Pearson correlation analysis was used to evaluate the

association between lung cancer outcomes (lung cancer mor-
tality and morbidity) and annual PM2.5 concentrations of local
lag and regional lag in the current year and the previous
8 years.

Methods

Spatial autocorrelation analysis

The Globe Moran’s I is a measure of spatial autocorrelation
developed by Moran (Moran 1950). The Globe Moran’s I has
beenwidely used in public health to investigate spatial clusters
of cancer (Zhang and Nitin 2018; Kulldorff et al. 2006). We
figured out the Globe Moran’s I statistics in ArcGIS 10.1 to
examine the spatial autocorrelation of lung cancer mortality
and morbidity and the PM2.5 concentration in China. The
equation for Moran’s I statistic is as follows:

I ¼ n
S0

∑n
i¼1∑

n
j¼1wij xi−xð Þ x j−x

� �
∑n

i¼1 xi−xð Þ2 ð3Þ

where n is the number of spatial units; xi or xj is the mortality
or morbidity of lung cancer; the PM2.5 concentration in area i,
j, and wij is a matrix of spatial weight between area i and j; and
S0 is the sum of all wij: S0 ¼ ∑n

i¼1∑
n
j¼1wij. The value of

Moran’s I usually ranges from − 1 to 1. Z-statistics is used to
test the significance of Moran’s I: Z = I − E[I]/STD[I], where
E[I] = − 1/(n − 1), STD = E[I2] − E[I]2.

The spatial relationships among counties or cities were
characterized by the spatial weight matrix (Anselin 2013). In
our study, an inverse distance matrix, which defines the im-
pact of one feature on another feature and decreases with
distance, was used for spatial weights. An inverse distance
weights matrix was constructed in ArcGIS by using the
county-level point-shape file. To our knowledge, there is no
consistent evidence showing a fixed distance to characterize
the impact of PM2.5, and the variation that distance may have
an influence on Moran’s I. Thus, we prefer a default distance
to construct the weight matrix.

Forecasting models

As aforementioned, due to the influence of regional transpor-
tation of PM2.5 pollutant, two group variables were used to
establish the five alternative forecasting models, including the
ridge regression model, the partial least squares regression
model, the model tree-based regression model, the regression

Fig. 2 The conceptual framework
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tree approach, and the combination forecasting model. Text
S1 provided detailed information about five forecasting
models. To evaluate the performance of alternative models,
the error analysis was conducted to measure the accuracy be-
tween the observed and predicted lung cancer mortality and
morbidity. Mean square error (MSE), mean absolute error
(MAE), mean absolute percentage error (MAPE), Theil in-
equality coefficient (Theil IC), bias proportion (BP), variance
proportion (VP), and covariance proportion (CP) are model
evaluation indices which were used to measure the error of the
lung cancer mortality and morbidity. These evaluation indices
are expressed as

MSE ¼ 1

n
∑n

i¼1 yi−byi� �2
; MAE ¼ 1

n
∑n

i¼1 yi−byi��� ���; MAPE

¼ 1

n
∑n

i¼1

yi−byi
yi

�����
����� � 100%; Theil IC

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑n

i¼1 yi−byi� �2
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑n

i¼1yi
2

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑n

i¼1byi2
r ;BP

¼
byi−yi

� 	2

∑n
i¼1 byi−yi� �2

=n
; VP

¼
σbyi−σyi

� 	2

∑n
i¼1 byi−yi� �2

=n
; and CP ¼ 1−BP−CP

where yi is the observed value, byi is the predicted value, yi is

the mean value of yi,byi is the mean value ofbyi, and σyi and σbyi
are the standard deviation of predicted and observed lung
cancer mortality and morbidity. The smaller value of MSE,
MAE, MAPE, Theil IC, BP, and CP indicates the lower error
for predicted value and the larger value of CP means better
consistency between the forecast and observed lung cancer
mortality and morbidity.

To avoid selection bias, first, we randomly divided lung
cancer data into a training set and a testing set (90% training
and 10% testing), and 10% of the lung cancer data was used to
verify the alternative forecasting models. Then, we conducted
the aforementioned forecasting process for 1000 loops as
cross-validation. Thus, the mean value and standard deviation
of the result of error analysis were given in this study, besides
various proportion of training and testing sets for further ver-
ification (85%, 80%, 75%, and 70% for the training set; 15%,
20%, 25%, and 30% for the testing set). Then, the best
performing model was used to construct the forecasting mod-
el, based on lung cancer mortality and morbidity from 2006 to

2014. Finally, annual lung cancer mortality and morbidity for
2408 counties across China from 2015 to 2016 were obtained
by the forecasting model, and the gridded spatial distributions
of lung cancer mortality and morbidity in 2015 to 2016 were
obtained by using the Kriging interpolation in ArcGIS 10.2.

Results

Lung cancer mortality and morbidity in China

There were a total of 720,563 and 595,002 lung cancer mor-
bidity and mortality cases reported in China from 2006 and
2014, of which 481,413 (66.8%) were male and 239,277
(33.2%) were female morbidity, and 404,679 (68.01%) were
male and 190,323 (31.99%) were female mortality. Within
both male and female groups, it was shown that urban areas
have higher rates of lung cancer morbidity and mortality.
Table S1 shows the morbidity and mortality of lung cancer
from 2006 to 2014. The crude rate of lung cancer morbidity
and mortality showed an increasing trend in this period.
Figure S2 presents the spatial distribution of morbidity and
mortality of lung cancer in 2014 in 307 registries.
Figures S3-S4 show the spatial distribution of morbidity and
mortality of lung cancer in China from 2006 to 2013. There
were obvious spatial variations in the rate of lung cancer mor-
bidity and mortality. The highest rates of lung cancer morbid-
ity and mortality mainly located in the provinces of Liaoning,
Shandong, Hebei, and Jiangsu, which are located in the east-
ern area of China.

Spatial distribution of PM2.5

The spatial distribution of the multi-year (1998–2016) average
PM2.5 concentration in China is shown in Fig. 3. Most of the
high PM2.5 concentration appeared in densely populated areas
east of the Hei-Tengchong Line, which was proposed by Hu
Huanyong in 1935 to illustrate China’s demographic distribu-
tion. There was a significant difference in the spatial patterns
of the annual mean PM2.5 for eastern and western China. The
overall average PM2.5 concentration for eastern China was
two times higher than that for western China. For 1194 cancer
registry areas, 1192 areas had annual mean PM2.5 concentra-
tions greater than 10 μg/m3, the WHO air quality guidelines
(AQG) recommendation for PM2.5 annual mean concentra-
tions. There were 1167 cancer registry areas with annual mean
PM2.5 concentrations greater than 15 μg/m3 (WHO Interim
target-3 (IT-3)), 1033 cancer registry areas with annual mean
PM2.5 concentrations greater than 25 μg/m3 (WHO Interim
target-2 (IT-2)), and 859 cancer registry areas with annual
mean PM2.5 concentrations greater than 35 μg/m3 (WHO
Interim target-1 (IT-1)), that means more population were ex-
posed to high levels of PM2.5 concentration.

Environ Sci Pollut Res (2020) 27:22946–2295522950



Pearson correlation analysis

The results from the Pearson correlation analysis showed a
positive and significant association between lung cancer out-
comes (mortality and morbidity) and the two group variables
at the 0.01 level. As seen in Table 2, the correlation of the
current year PM2.5 concentration was slightly lower than the
lag correlations. Compared with the local lag and regional lag
exposure to ambient PM2.5, the regional lag effect was not
stronger than the local lag PM2.5 exposure, which may depend
on the apportionment of surrounding PM2.5 concentration.
Generally, both local and regional lag had long and positive
effects on lung cancer mortality and morbidity.

Globe spatial autocorrelation

The Globe Moran’s I statistics showed that the mortality and
morbidity of lung cancer exhibited significant spatial autocor-
relation for each year in China. The mortality and morbidity of
lung cancer showed positive spatial autocorrelation of less
than a 1% significance level, according to the results of

Global Moran’s I statistics (as presented in Table S2). On the
other hand, the annual PM2.5 concentration also had signifi-
cant and positive spatial autocorrelation for each year (see
Table S3). As shown, an increasing trend was found in the
Z-score of Globe Moran’s I statistics, which indicates that it is
less possible for PM2.5 in a region to follow the random dis-
tribution. Higher Moran’s I statistics of PM2.5 concentration,
which were observed in 2009–2014, ranged from 0.525 to
0.708.

Forecasting PM2.5-induced lung cancer mortality
and morbidity

As shown in Table 3, the lung cancer mortality and morbidity
prediction by the combination forecasting model had the low-
est MSE, MAE, MAPE mean value, and higher CP value
among the five forecasting models, which indicates that the
combination forecasting model was performed better than the
other models. The results of the sensitivity analysis (see
Table S4 and S5), where various proportion for training and
testing data sets was used to test the validation of five

Fig. 3 The spatial distribution of
the multi-year (1998–2016) aver-
age PM2.5 concentration in China

Table 2 The Pearson correlation
degree between lung cancer
outcomes (mortality and
morbidity) and PM2.5
concentration in China from 2006
to 2014

Lag Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8

Mortality 0.249 0.251 0.247 0.272 0.286 0.291 0.299 0.287 0.294

Morbidity 0.215 0.225 0.217 0.244 0.265 0.280 0.299 0.289 0.301

Spatial lag Slag 0 slag 1 slag 2 Slag 3 Slag 4 Slag 5 Slag 6 Slag 7 Slag 8

Mortality 0.172 0.185 0.187 0.217 0.220 0.224 0.233 0.221 0.235

Morbidity 0.146 0.164 0.161 0.194 0.204 0.221 0.238 0.231 0.249

Correlation is significant at the 0.01 level
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alternative forecasting models, further confirmed that the
combination forecasting model was the best performed.

Figure 4 illustrates the combination forecasting model for
lung cancer mortality and morbidity, due to exposure to
PM2.5, where the red color represents high lung cancer mor-
tality and morbidity and the blue color indicates low lung
cancer mortality and morbidity. The overall forecasting lung
cancer morbidity and mortality were 47.63, 47.86, 39.38, and
39.76 per 100,000 population. In general, the mortality and
morbidity of lung cancer show distinct spatial patterns and
strong variations across China. High lung cancer mortality
and morbidity rates were observed in the north China plain,
central China, the Sichuan Basin, and the Guangdong-
Guangxi regions. In addition, the spatial distribution of lung
cancer mortality and morbidity shows similar patterns for
PM2.5 concentration.

Discussions

In this study, we aim to forecast the spatial distribution of lung
cancer morbidity and mortality in China in 2015 and 2016 due
to exposure to PM2.5 concentration. We found that the current
and previous 8-year PM2.5 concentration of local area and
surrounding areas was significantly associated with lung can-
cer mortality and morbidity across China. This enables us to
establish several statistical forecast models using both local
and surrounding PM2.5 concentrations to predict the spatial
distribution of lung cancer mortality and morbidity in China.
Results showed that the combined forecasting model identi-
fied the best performance among five alternative models,

besides a similar spatial distribution in morbidity and mortal-
ity of lung cancer in 2015 and 2016, with high lung cancer
morbidity and mortality areas mainly located in the central to
east coast districts.

In recent years, the occurrence of PM2.5 pollution has caught
much attention and it is recognized that severe PM2.5 pollution
is not a phenomenon specifically localized to a county or city
(Li et al. 2014). Rather, previous studies have illustrated that
PM2.5 pollution is the result of local pollutants superposed on
background regional pollution, which has now expanded into a
larger problem of a regional scale (Hu et al. 2014; Fu et al.
2008). Additionally, when meteorological conditions are favor-
able for the regional transportation of PM pollutants, this leads
to a regional scale of PM pollution. In China, PM pollution is
strongly affected by anthropogenic activities, including power
generation, industrial processes, fossil and biomass fuel or ag-
ricultural waste combustion, and vehicle exhaust emissions (Li
et al. 2014). Massive amounts of primary PM and high emis-
sions of gas pollutants in densely distributed mega-cities have
worsened PM pollution, which has contributed to regional air
pollution (Zheng et al. 2015). Moreover, once regional pollu-
tion is formed, areas within the region cannot mitigate their
pollution solely by reducing local emissions.

Given that the PM2.5 has been demonstrated to be a contrib-
utor to lung cancer, it can be concluded that the impact of PM2.5

regional transport on lung cancer should also be considered. In
the present study, we found a significant association between
lung cancer outcomes (mortality and morbidity) and PM2.5

from regional areas. Furthermore, compared with the local lag
exposure to ambient PM2.5, the regional lag effect was not
stronger than the local PM2.5 exposure. One of themain reasons

Table 3 Model evaluation of five
alternative forecasting models RR PLSR RT MT CFM

Mortality

MAE 11.08 (0.75) 11.16 (0.78) 11.38 (0.79) 11.08 (0.83) 10.89 (0.76)

MSE 195.96 (25.42) 199.28 (26.38) 207.67 (27.95) 201.32 (30.45) 190.54 (25.86)

MAPE 0.27 (0.02) 0.28 (0.02) 0.28 (0.02) 0.29 (0.04) 0.27 (0.02)

THEIL 1.11 (0.28) 1.03 (0.29) 0.68 (0.21) 0.78 (0.22) 1.08 (0.26)

BP 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) 0.01 (0.02) 0.01 (0.01)

VP 0.45 (0.05) 0.53 (0.06) 0.30 (0.07) 0.31 (0.0982) 0.48 (0.07)

CP 0.45 (0.05) 0.46 (0.06) 0.69 (0.07) 0.68 (0.0986) 0.69 (0.07)

Morbidity

MAE 12.78 (0.90) 12.79 (0.91) 13.09 (0.92) 13.12 (1.03) 12.5 (0.90)

MSE 268.26 (39.43) 268.86 (39.51) 282.71 (42.13) 288.41 (45.92) 260.34 (39.32)

MAPE 0.26 (0.02) 0.26 (0.02) 0.26 (0.02) 0.28 (0.04) 0.25 (0.02)

THEIL 1.12 (0.28) 1.02 (0.26) 0.71 (0.21) 0.67 (0.22) 1.09 (0.25)

BP 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) 0.03 (0.04) 0.01 (0.02)

VP 0.45 (0.06) 0.50 (0.06) 0.3 (0.08) 0.28 (0.08) 0.48 (0.07)

CP 0.45 (0.06) 0.49 (0.06) 0.7 (0.08) 0.69 (0.09) 0.51 (0.07)

Values in parentheses are standard deviation
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we have taken the regional lag effect of PM2.5 pollutant into
consideration was internal migration. According to the census
in 2010 and national population sampling surveys of 2005 and
2015, nearly 66.64% of internal migrants traveling within prov-
inces and most of them migrate to BTH, the Yangtze River
delta, and the Pearl River Delta. Thus, the surrounding areas
PM2.5 pollutant would like to exert influence on local lung
cancer mortality and morbidity indirectly. Importantly, with
the reform of the household register system (hukou system),
there has been massive internal migration from rural to pros-
perous economic regions, as people seek higher income and
better lifestyle opportunities in China (Mou et al. 2013). As a
result, the regional transport of PM2.5 pollution appeared to be a
factor leading to growing lung cancer mortality and morbidity.

In the present study, the short- and long-term exposure to
PM2.5 concentration was used to establish five forecasting
models. However, it is noteworthy that there would exist
multi-collinearity problem when two or more predictor vari-
ables in a statistical model are linearly related. Furthermore,
due to the changed patterns of collinearity, statistical inference

using various geographic scales of sampled data leads to serious
errors (Dormann et al. 2013). Based on the results of five fore-
casting models, the combined forecasting model identified the
best performance in the lung cancer mortality and morbidity
forecast. Consistent with the previous research, the combined
forecasting model could improve forecast accuracy that the
component forecasts contain useful and independent informa-
tion (Armstrong 2001). Generally, the combined forecasts re-
quire deciding which forecasting model to include. Due to a
lack of good knowledge on which forecasting method should
be included and in order to generate independent forecasting
combinations, we combined two types of forecasting methods:
linear regression models and machine learning methods.
Existing works on the multi-collinearity problem found that
penalized methods such as ridge and lasso were performed well
(Vigneau et al. 1997; Tibshirani 1996). Thus, we used the co-
efficient of the variation method rather than equal weight to
establish the combined forecasting model.

One interesting founding is that the ridge regression and partial
least squares regression were outperformed model tree and

Fig. 4 Forecasted lung cancer mortality and morbidity in China from 2015 to 2016
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regression tree. When modeling the PM-lung cancer relationship,
one important issue that needs to be considered is how to interpret
the PM exposure accurately and precisely. However, those ma-
chine learning methods where the parameter estimation methods
are quite different and do not provide interpretable parameter es-
timates and standard errors (Hastie 2008).More importantly, com-
pared with linear regression methods, machine learning methods
also have the same problems that the model is sensitive to slight
changes in data set, due to multi-collinear among variables; it is
difficult to interpret the parameter estimation and to separate the
effects of multi-collinearity (Shan, Paull, and McKay 2006).

There are some limitations. Firstly, in the present study, the
mean values of the PM2.5 concentration of neighborhoods
were used to characterize the impact of regional transportation
of PM2.5 over a short distance. However, it is noted that the
PM2.5 were either from nearby cities, towns, and villages or
from remote areas through long-range transport. Meanwhile,
the regional transportation of PM2.5 was also influenced by
wind directions. Therefore, under the different distances and
wind directions, we could hardly quantify the impact of re-
gional transportation of PM2.5 by the mean value. Secondly, to
obtain a more realistic spatial distribution of lung cancer mor-
bidity and mortality, the dust- and sea salt-removed annual
PM2.5 concentration datasets were used to establish the fore-
casting models. Thus, we might underestimate the predicted
lung cancer morbidity and mortality. Finally, we did not con-
trol the smoking population, as smoking data at the county or
city level were not available.

Conclusions

In summary, the present study demonstrated that the short- and
long-term exposure to PM2.5 concentrations of the local area and
regional areas were significantly associated with lung cancer
mortality and morbidity across China, and compared with the
local lag and regional lag exposure to ambient PM2.5, the regional
lag effect (0.172~0.235 formortality; 0.146~0.249 formorbidity)
was not stronger than the local lag PM2.5 exposure (0.249~0.294
for mortality; 0.215~0.301 for morbidity). Results from spatial
autocorrelation showed that the mortality and morbidity of lung
cancer and PM2.5 concentration were significantly and spatially
correlated for each year in China. Meanwhile, we also found a
spatial association between lung cancer morbidity and mortality
and satellite-derived PM2.5 concentration. Additionally, the sen-
sitivity analysis and forecasting model in the present study pro-
vide a useful tool in the risk assessment of PM2.5. The spatial-
temporal distribution of lung cancer morbidity and mortality and
PM2.5 concentration will provide scientific support to govern-
ment agencies and stakeholders. Furthermore, due to the impact
of regional transportation on M2.5 and internal migration, it is
necessary to strengthen regional collaborative pollution manage-
ment among the high PM2.5 concentration regions.
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