Skip to main content

Advertisement

Log in

Mobility of mercury in soil and its transport into the sea

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Mercury (Hg) is deposited temporarily in soil and can be remobilised into rivers and seas. Given that rivers are a significant part of the mercury budget in the southern Baltic region (inland sea located in northern Europe) and meteorological changes (e.g. intense rain, drought) are observed more frequently, it is important to recognize the factors affecting the cycling of bioavailable Hg forms. The aim of this study was to identify the processes influencing the changes of labile and stabile mercury proportion in soil and the potential impact on the outflow of labile Hg into fluvial systems. For this purpose, soil samples, river sediments, and river water were collected from the Reda River (southern Baltic Sea catchment area) during the 2015 hydrologic year. The material was analysed for total and particulate mercury content and Hg forms, by a thermo-desorption method. The analysis showed that due to changes of meteorological and hydrological conditions Hg can enter rivers and then be introduced into the marine environment in various forms. On the one hand due to high precipitation events washing out of labile (i.e. bond with halogenides, MeHg, HgSO4), Hg forms into the river can be enhanced which affects increasing of availability of the most dangerous Hg form in the water systems. On the other hand the same event can cause the limitation of bioavailable mercury forms by a conversion of labile Hg into the most stable one (HgSO4 ➔ HgS) under anaerobic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • ARMAAG (Agency of Regional Air Quality Monitoring in the Gdańsk metropolitan area) (2016) Stan Zanieczyszczenia powietrza atmosferycznego w aglomeracji Gdańskiej iTczewie w roku 2016 i informacja i działalności fundacji ARMAAG. (In Polish)

  • Babiarz CL, Hurley JP, Benoit JM, Shafer MM, Andren AW, Webb DA, Armstrong DE (1998) Seasonal influences on partitioning and transport of total and methylmercury in rivers from contrasting watershed. Biogeochemistry 41:237–257

    Article  CAS  Google Scholar 

  • Barringer JL, Riskin ML, Szabo Z, Reilly PA, Rosman R, Bonin JL, Fischer JM, Heckathorn HA (2010) Mercury and methylmercury dynamics in a coastal plain watershed, New Jersey, USA. Water Air Soil Pollut 212:251–273. https://doi.org/10.1007/s11270-010-0340-1

    Article  CAS  Google Scholar 

  • Beldowska M, Saniewska D, Falkowska L, Lewandowska A (2012) Mercury in particulate matter over Polish zone of the southern Baltic Sea. Atmospheric Environment 46:397-404

  • Bełdowska M, Saniewska D, Falkowska L (2014) Factors influencing variability of mercury input to the southern Baltic Sea. Mar Pollut Bull 86:283–290. https://doi.org/10.1016/j.marpolbul.2014.07.004

  • Bełdowska M, Jędruch A, Słupkowska J, Saniewska D, Saniewski M (2015) Macrophyta as a vector of contemporary and historical mercury from the marine environment to the trophic web. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-014-4003-4

  • Bełdowska M, Jędruch A, Łęczyński L, Saniewska D, Kwasigroch U (2016) Coastal erosion as a source of mercury into the marine environment along the Polish Baltic shore. Environ Sci Pollut Res 23:16372–16382. https://doi.org/10.1007/s11356-016-6753-7

    Article  CAS  Google Scholar 

  • Bełdowska M, Saniewska S, Gębka K, Kwasigroch U, Korejwo E, Kobos J (2018) Simple screening technique for detemination of adsorbed and absorbed mercury in particulate matter in atmospheric and aquatic environment. Talanta 182:340–347. https://doi.org/10.1016/j.talanta.2018.01.082

    Article  CAS  Google Scholar 

  • Bełdowski J, Bełdowska M (2008) Mercury partitioning between solid and suspended phases in the southern Baltic Sea. Rocznik Ochrony Środowska 10:123–133

    Google Scholar 

  • Bełdowski J, Pempkowiak J (2003) Horizontal and vertical variabilities of mercury concentration and speciation in sediments of the Gdańsk Basin, Southern Baltic Sea. Chemosphere 52:645–654. https://doi.org/10.1016/S0045-6535(03)00246-7

    Article  CAS  Google Scholar 

  • Bełdowski J, Miotk M, Pempkowiak J (2009) Mercury fluxes through the sediment water interface and bioavailability of mercury in southern Baltic Sea sediments. Oceanologia 51:263–285

    Article  Google Scholar 

  • Bigham GN, Murray KJ, Masue-Slowey Y, Henry EA (2016) Biogeochemical controls on methylmercury in soils and sediments: implications for site management. Integrated Environmental assessment and Management 13:249–263. https://doi.org/10.1002/ieam.1822

    Article  CAS  Google Scholar 

  • Bloom NS, Katon J (2000) Application of selective extractions to the determination of mercury speciation in mine tailing and adjacent soils, In: Proceeding of assessing and managing mercury from historic and current mining activities conferences, San Francisco, 28-30.

  • Bloom NS, Preus E, Katon J, Hiltner M (2003) Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Anal Chim Acta 479:233–248

    Article  CAS  Google Scholar 

  • Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40 (12):1335-1351

  • Bose-O’Reilly S, McCarty KM, Steckling N, Lettmeier B (2010) Mercury exposure and children’s heath. Curr Probl Pediatr Adolesc Health Care 40:186–215. https://doi.org/10.1016/j.cppeds.2010.07.002

    Article  Google Scholar 

  • Boszke L, Kowalski A (2008) Mercury fractionation in floodplain soils of Warta River, Poland. Oceanol Hydrobiol St 37:21–33

  • Boszke L, Kowalski A, Astel A, Barański A, Gworek B, Siepak J (2008) Mercury mobility and bioavailability in soil from contaminated area. Environmental 55:1075–1087. https://doi.org/10.1007/s00254-007-1056-4

    Article  CAS  Google Scholar 

  • Bradley MA, Barst BD, Basu N (2017) A review of mercury bioavailability in humans and fish. Int J Environ Res Public Health 14:169. https://doi.org/10.3390/ijerph14020169

    Article  CAS  Google Scholar 

  • Branfireun BA, Heyes A, Roulet NT (1996) The hydrology and methylmercury dynamics of a Precambrian Shield headwater peatland. Water Resour Res 32:1785–1794. https://doi.org/10.1029/96WR00790

    Article  CAS  Google Scholar 

  • Driscoll CT, Han YJ, Chen CY, Evers DC, Lambert KF, Holsen TM, Kamman NC, Munson RK (2007) Mercury contamination in forest and freshwater ecosystems in the northeastern United States. BioScience 57:1–15

    Article  Google Scholar 

  • Eckley CS, Branfireun B (2008) Mercury mobilization in urban storm water runoff. Sci Total Environ 403:164–177

    Article  CAS  Google Scholar 

  • Filipek T (2003) Toxic elements (Cd, Pb, Hg, As) in soils and plants in relation to their acceptable concentrations in fertilizers and acidifiers. Chemik 11:334–352 (In Polish)

    Google Scholar 

  • Fostier AH, Forti MC, Guimaraes JRD, Melfi AJ, Boulet R, Espirito Santo CM, Krug FJ (2000) Mercury fluxes in a natural forested Amazonian catchment (Serra do Navio, Amapa State, Brazil). Sci Total Environ 260:201–211

    Article  CAS  Google Scholar 

  • Gamby RL, Hammerschmidt CR, Costello DM, Lamborg CH, Runkle JR (2015) Deforestation and cultivation mobilize mercury from topsoil. Sci Total Environ 532:467–473. https://doi.org/10.1016/j.scitotenv.2015.06.025

    Article  CAS  Google Scholar 

  • Gębka K, Bełdowska M, Saniewska D, Kuliński K, Bełdowski J (2018) Watershed characteristics and climate factors effects on the temporal variability of mercury in the southern Baltic Sea rivers. J Environ Sci 68:55–64. https://doi.org/10.1016/j.jes.2017.11.030

    Article  Google Scholar 

  • Gębka K., Bełdowska M., Szymczak E., Saniewska D (2019) Temporal changes in the content of labile and stabile mercury forms in soil and their inflow to the southern Baltic Sea. Ecotox Environ Safe (In Press)

  • Gerson JR, Driscoll CT, Demers JD, Sauer AK, Blackwell BD, Montesdeoca MR, Shanley JB, Ross DS (2017) Deposition of mercury in forests across a montane elevation gradient: elevational and seasonal patterns in methylmercury inputs and production. J Geophys Res Biogeosci 122. https://doi.org/10.1002/2016JG003721

  • Grigal DF (2002) Inputs and outputs of mercury from terrestrial watersheds: a review. Environmental Reviews 10:1–39. https://doi.org/10.1139/a01-013

    Article  CAS  Google Scholar 

  • Haygrath PM, Jones KC (1992) Atmospheric deposition of metals to agricultural surfaces. In Biogeochemistry of trace metals; Adriano DC, Eds.; Lewis Publishers: Boca Raton, pp 249-276.

  • Haynes KM, Kane ES, Potvin L, Lilleskov EA, Kolka RK, Mitchell CPJ (2017) Mobility and transport of mercury and methylmercury in peat as a function of changes in water table regime and plant functional groups. Global Biogeochem. Cycles 31:1–12. https://doi.org/10.1002/2016GB005471

    Article  CAS  Google Scholar 

  • HELCOM (2003) Climate change in the Baltic Sea Area: HELCOM thematic assessment in 2013. Baltic Sea Environmental Proceedings 137.

  • Hesterberg D, Chou JW, Hutchison KJ, Sayers DE (2001) Bonding of Hg (II) to reduced organic sulfur in humic acid as affected by S/Hg ratio. Environ Sci Technol 35:2741–2745. https://doi.org/10.1021/es001960o

    Article  CAS  Google Scholar 

  • IMGW-PIB (Institute of Meteorology and Water Management-Polish National Institute), 2017. Polish climate monitoring Bulletin. (In Polish).

  • Inglett PW, Reddy KR, & Corstanje R (2005). Anaerobic Soils. In: Encyclopaedia of Soils in the Environment. Gainesville, FL, USA: Elsevier, pp. 72-78.

  • Iverfeldt A (1991) Occurence and turnover of atmospheric mercury over the Nordic countries. Water Air Soil Poll 56:251–266

    Article  CAS  Google Scholar 

  • Jaguś A, Kozak J, Skrzypiec M (2013) Occurrence of trace metals in mountain soils: A study in the Magurka Wilkowicka range. Proceedings of ECOpole 7:601–607 (In Polish)

    Google Scholar 

  • Jędruch A, Kwasigroch U, Bełdowska M, Kuliński K (2017) Mercury in suspended matter of the Gulf of Gdańsk: Origin, distribution and transport at the land-sea interface. Mar Pollut Bull 118:354–367. https://doi.org/10.1016/j.marpolbul.2017.03.019

    Article  CAS  Google Scholar 

  • Jędruch A, Bełdowska M, Graca B (2018) Seasonal variation in accumulation of mercury in the benthic macrofauna in a temperate coastal zone (Gulf of Gdańsk). Ecotox Environ Safe 164:305–316. https://doi.org/10.1016/j.ecoenv.2018.08.040

    Article  CAS  Google Scholar 

  • Jew AD, Behrens SF, Rytuba JJ, Kappler A, Spormann AM, Brown GE (2014) Microbially enhanced dissolution of HgS in an acid mine drainage system in the California Coast Range. Geobiology 12:20–33. https://doi.org/10.1111/gbi.12066

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human; Springer-Verlag: Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32714-1

  • Knuuttila S (2009) Waterborne inputs of heavy metals to the Baltic Sea. In: HELCOM. Indicator Fact Sheet

  • Korzeniewski L (1998) Ochrona środowiska morskiego. Wydawnictwo Uniwersytetu Gdańskiego, Gdańsk (In Polish)

    Google Scholar 

  • Poulin BA, Aiken GR, Nagy KL, Manceau A, Krabbenhoft DP, Ryan JN (2016) Mercury transformation and release differs with depth and time in a contaminated riparian soil during simulated flooding. Geochimica et Cosmochimica Acta 176:118-138

  • Krabbenholf DP, Cleckner LB, Olson ML, Aiken GR, Rawlik PS (1998) Systems controls on the aqueous distribution of mercury in the northen Florida Everglades. Biogeochemistry 40:293–310

    Article  Google Scholar 

  • Kwasigroch U, Bełdowska M, Jędruch A, Saniewska D (2018) Coastal erosion- a “new” land-based source of labile mercury to the marine environment. Environ Sci Pollut R 25:28. https://doi.org/10.1007/s11356-018-2856-7

  • Kyllönen K, Karlsson V, Ruoho-Airola T (2009) Trace element deposition and trends during a ten year period in Finland. Sci Total Environ 407:2260–2269. https://doi.org/10.1016/j.scitotenv.2008.11.045

    Article  CAS  Google Scholar 

  • Lacerda LD, Salomons W (1998) Mercury from gold and silver mining: a chemical time Bomb. Springer Verlag, Berlin

    Book  Google Scholar 

  • Lacerda LD, Bastos WR, Almeida MD (2012) The impacts of land use changes in the mercury flux in the Madeira River. Western Amazon. Earth Sciences. https://doi.org/10.1590/S0001-37652012000100007

  • Lechler PJ, Miller JR, Hsu LC, Desilets MO (1997) Mercury mobility at the Carson River superfund site, west-central Nevada, USA- interpretation of mercury speciation data in mill tailing, soils, and sediments. J Geoch Explor 58:259–267. https://doi.org/10.1016/S0375-6742(96)00071-4

    Article  CAS  Google Scholar 

  • Lis J, Pasieczna A (1995) Atlas geochemiczny Polski 1:2 500 000; Mapy Państwowego Instytutu Geologicznego: Kraków. (In Polish)

  • Lu J, Cheng JP, Hu XF, Xie HY, Wang WH (2006) The research of mercury-polluted soil and leaves around Shanghai Wujing industrial zone. Environ Chem 25:101–103 (In Chinese)

    CAS  Google Scholar 

  • Mason RP, Fitzgerald WF, Morel FMM (1994) The biogeochemical cycling of elemental mercury: anthropogenic influences. Geochim Cosmochim Ac 58:3191–3198. https://doi.org/10.1016/0016-7037(94)90046-9

    Article  CAS  Google Scholar 

  • Mason RP, Lawson NM, Sullivan KA (1997) The concentration, speciation and sources of mercury in Chesapeake Bay precipitation. Atmos Environ 31:3541–3550

    Article  CAS  Google Scholar 

  • Mioduszewski W, Querner EP, Kowalewski Z (2014) The analysis of the impact of small retention on water resources in the catchment. Journal of Water and Land Development 23:41–51

    Article  Google Scholar 

  • Munthe J, Hellsten S, Zetterberg T (2007) Mobilization of Mercury and Methylmercury from forest soils after a severe storm – fell event. Ambio 36:111–113

    Article  CAS  Google Scholar 

  • Pasieczna A (2014) Zawartość rtęci w glebach oraz osadach rzecznych i strumieniowych w regionie śląsko-krakowskim. Biul Państw Inst Geol:69–86 (In Polish)

  • Pempkowiak J (1997) Zarys Geochemii morskiej. Gdańsk, Wydawnictwo Uniwersytetu Gdańskiego

    Google Scholar 

  • Różański SŁ, Castejón JMP, Fernández GG (2016) Bioavailability and mobility of mercury in selected soil profiles. Environ Earth Sci 75:1065. https://doi.org/10.1007/s12665-016-5863-3

    Article  CAS  Google Scholar 

  • Saniewska D (2013) Input pathways of mercury to the coastal zone of the Gulf of Gdansk 616 (Baltic Sea). Gdynia: PhD Thesis. University of Gdańsk. (In Polish)

  • Saniewska D, Bełdowska M (2017) Mercury fractionation in soil and sediment samples using thermo-desorption method. Talanta 168:152–161. https://doi.org/10.1016/j.talanta.2017.03.026

    Article  CAS  Google Scholar 

  • Saniewska D, Bełdowska M, Bełdowski J, Saniewski M, Kwaśniak J, Falkowska L (2010) Distribution of mercury in different environmental compartments in the aquatic ecosystem of the coastal zone of the Southern Baltic Sea. J Environ Sci 22:1144–1150. https://doi.org/10.1016/S1001-0742(09)60230-8

    Article  CAS  Google Scholar 

  • Saniewska D, Bełdowska M, Bełdowski J, Saniewski M, Szubska M, Romanowski A, Falkowska L (2014a) The impact of land use and season on the riverine transport of mercury into the marine coastal zone. Environ Monit Assess 186:7593–7604. https://doi.org/10.1007/s10661-014-3950-z

    Article  CAS  Google Scholar 

  • Saniewska D, Bełdowska M, Bełdowski J, Jędruch A, Saniewski M, Falkowska L (2014b) Mercury loads into the sea associated with extreme flood. Environ Pollut 191:93–100

    Article  CAS  Google Scholar 

  • Saniewska D, Bełdowska M, Bełdowski J, Saniewski M, Gębka K, Szubska M, Wochna A (2018) Impact of intense rains and flooding on mercury riverine input to the coastal zone. Mar Pollut Bull 127:593–602. https://doi.org/10.1016/j.marpolbul.2017.12.058

    Article  CAS  Google Scholar 

  • Saniewska D, Gębka K, Bełdowska M, Siedlewicz G, Bełdowski J, Wilman B (2019) Impact of hydrotechnical works on outflow of mercury from the riparian zone to a river and input to the sea. Mar Pollut Bull 142:361–376. https://doi.org/10.1016/j.marpolbul.2019.03.059

    Article  CAS  Google Scholar 

  • Scheuhammer AM, Meyer MW, Sandheinrich MB, Murray MW (2007) Effects of environmental methylmercury on the health of wild birds, mammals and fish. Ambio 36:12–13

    Article  CAS  Google Scholar 

  • Selvendiran P, Driscoll CT, Bushey JT, Montesdeoca MR (2008) Wetlands influence on mercury fate and transport in a temperate forested watershed. Environ Pollut 154:46–55

    Article  CAS  Google Scholar 

  • Shanley JB, Kamman NC, Clair TA, Chalmers A (2005) Physical controls on total and methylmercury concentrations in streams and lakes of the Northeastern USA. Ecotoxicology 14:125–134

    Article  CAS  Google Scholar 

  • Shanley JB, Mast MA, Campbell DH, Aiken GR, Krabbenhoft DP et al., (2008) Comparison of total mercury and methylmercury cycling at five sites using the small watershed approach. USGS Staff – Published Research, US Geology Survey

  • Shuster PF, Shanley JB, Reddy MM, Aiken GR, Marvin-DiPasquale M, Roth DA, Taylor HE, Krabbenhoft DP, Dewild JF (2008) Mercury and organic carbon dynamics during runoff episodes from a northeastern USA watershed. Water Air Soil Pollut 187:89–108

    Article  Google Scholar 

  • Smith-Downey NV, Sunderland EM, Jacobs DJ (2010) Anthropogenic impacts on global storage and emissions of mercury from terrestrial soils: insight from a new global model. J Geophys Res: Bogeosciences 115. https://doi.org/10.1029/2009jg001124

  • Svoray T, Ben-Said S (2010) Soil loss, water ponding and sediment deposition variations as a consequence of rainfall intensity and land use: a multi-criteria analysis. Earth Surf Proc Land 35:202–216. https://doi.org/10.1002/esp.1901

    Article  Google Scholar 

  • Szpadt R (1994) Zanieczyszczenia środowiska rtęcią i jej związkami. Warszawa, Biblioteka Monitoringu Środowiska PIOŚ

    Google Scholar 

  • Tjerngren I, Meili M, Bjorn E, Skyllberg U (2012) Eight boreal wetlands as sources and sinks for methyl mercury in relation to soil acidity, C/N ratio, and small-scale flooding. Environ Sci Technol 46:8052–8060

    Article  CAS  Google Scholar 

  • Tomiyasu T, Matsuyama A, Imura R, Kodamanati H, Miyamoto J, Kono Y, Kockman D, Kotnik J, Fajon V, Horvat M (2012) The distribution of total and methylmercury concentrations in soils near the Idrija mercury mine, Slovenia, and the dependence of the mercury concentrations on the chemical composition and organic carbon levels of the soil. Environ Earth Sci 65:1309–1322. https://doi.org/10.1007/s12665-011-1379

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency (US EPA) (1992) Water quality standards; establishment of numeric criteria for priority toxic pollutants, states compliance; final rule. Federal Registration 40 CFR Part 131, 57/246.

  • U.S. Environmental Protection Agency (US EPA) (1996) Method 1669. Sampling ambient water for determinations of metals at EPA water quality criteria levels. Washington

  • U.S. Environmental Protection Agency (US EPA) (2002) Method 1631. Revision E: mercury in water by oxidation purge and trap, and cold vapor atomic fluorescence spectrometry. Washington.

  • Wallschlager D, Desai MVM, Spengler M, Wilken RD (1998) Mercury speciation in floodplain soils and sediments along a contaminated river transect. J Environ Qual 27:1034–1044. https://doi.org/10.2134/jeg1998.00472425002700050008x

    Article  CAS  Google Scholar 

  • Wang D, Shi X, Wei S (2003) Accumulation and transformation of atmospheric mercury in soil. Sci Total Environ 304:209–214

    Article  CAS  Google Scholar 

  • Warner KA, Bonzongo JC, Roden EE, Ward GM, Green AC, Chaubey L, Lyons WB, Arrington DA (2005) Effect of watershed parameters on mercury distribution in different environmental compartments in the Mobile Alabama River Basin, USA. Sci Total Environ 347:187–207

    Article  CAS  Google Scholar 

  • Xia K, Skyllberg UL, Bleam WF, Nater EA, Helmke PA (1999) X-ray absorption spectroscopic evidence for the complexation of Hg(II) by reduced sulfur in soil humic substances. Environ Sci Technol 33:257–261. https://doi.org/10.1021/es980433q

    Article  CAS  Google Scholar 

  • Zheng YM, Liu YR, Hu HQ, He JZ (2008) Mercury in soils of three agricultural experimental stations with long-term fertilization in China. Chemosphere 72:1274–1278. https://doi.org/10.1016/j.chemosphere.2008.04.052

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Science Centre (grant number 2014/13/B/ST10/02807) and University of Gdansk (project number 538-G235-B552-17)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karolina Gębka.

Additional information

Responsible editor: Severine Le Faucheur

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 37 kb)

ESM 2

(DOCX 412 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gębka, K., Saniewska, D. & Bełdowska, M. Mobility of mercury in soil and its transport into the sea. Environ Sci Pollut Res 27, 8492–8506 (2020). https://doi.org/10.1007/s11356-019-06790-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06790-8

Keywords

Navigation