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Abstract
Among pesticides and foliar sprays involved in the treatment of seed, soil, and grass, also to crops, an important group is
neonicotinoids. Neonicotinoid pesticides present similar properties with nicotine, but the mentioned compounds are less harmful
for humans. Nevertheless, neonicotinoids are poisonous to insects and some invertebrates, which can act against insects’ central
nervous system, leading to their death. Moreover, neonicotinoids can affect the reproduction, foraging, and flying ability of
honeybee and other insects including pollinators. In the present study, some neonicotinoids, such as imidacloprid, acetamiprid,
clothianidin, thiacloprid, and thiamethoxam together with their toxic effects, have been presented. The Environmental Protection
Agency (EPA) classifies these neonicotinoids as II and III class toxicity agents. Due to accumulation of these pesticides into the
pollen of treated plants, especially due to their toxic effects against pollinators, the consequences of the occurrence of these
insecticides have been discussed. Analytical aspects and methods involved in the isolation and determination of this class of
pesticides have been presented in this contribution.
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Introduction

The increasing use of chemical products in different spheres of
life not only brings benefits for the humanity but also presents
a large number of threats against the environment and in con-
sequence to human health. However, without transformations
that occurred thanks to chemical industry, the progress of civ-
ilization would have beenmuch slower. Huge progresses were

made in agriculture, particularly regarding different practices
using technology and agrichemicals.

Nevertheless, the products’ quality depends not only on
soil and climate but also on the methods of fertilizing and
cultivation. Thus, growing crop plants requires precautions
that can guarantee abundant high-quality yield. Most yield
gains are due to genetic improvements and fertilizer addition,
not to pesticides. Moreover, herbicides certainly help to re-
duce competition between cultivated plants and unwanted
weeds and help in yield increasing (Lechenet et al. 2017).
Consequently, very often the quality is not solely dependent
on nature, and can be strongly influenced by chemical sub-
stances used for plant growing and protection. Their use is
more than once necessary as insects, diseases, fungi, and
weeds may attack and compete the cultivated plants by steal-
ing nutrients, moisture, and sunlight. Therefore, some farmers
have been using plant protection agents, including pesticides,
but this is with opposition of organic farmers, who promote
the total elimination of pesticides. Nevertheless, pesticides are
natural or synthetic substances commonly used into control of
harmful or undesirable organisms both in agriculture and in
homes. Their use in forest protection and of bodies of water is
known. Pesticides are represented by a large group of chem-
ical compounds with a broad range of actions. These
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classifications are available based on firstly at the target or-
ganism to control (insecticides, herbicides, fungicides or bio-
cides), and second the physiological acting mechanism within
each of those groups, which is usually related to particular
chemical structures. A major inconvenience in the use of pes-
ticides is the influence of their residues on the environment.
Generally, they are xenobiotics, which can remain in various
elements of the environment, presenting toxicological proper-
ties for living organisms. Paracelsus, the founder of toxicolo-
gy, pointed out as early as the 15th century that in any poison
the most important is the amount: the Latin phrase sola dosis
facit venenummeans “the dose makes the poison.” Therefore,
we ought to support both the tendency to limit quantity of
toxic substances used and elimination of products which pose
a significant danger to ecosystems (Dobrzański et al. 2017).
Nevertheless, another important factor that determines the
dose that results in chronic toxicity is the time of exposure
or contact time of living organism with a toxin. Let us not
forget that the duration and long-term release of some toxic
substances is also dangerous. Therefore, completing, we can
state that dose and time of exposure make the poison
(Tennekes 2017).

Dependent by the mechanism of action in a plant, we can
distinguish between contact (surface) insecticides—which re-
main and act on the external plant surface—and system-
ic insecticides that enter into the plant system and are
transported with sap to the whole plant parts. Even if
the mentioned components are beneficial for plants, they are
poison for insects which are living around and feeding from
plants (Bonmatin et al. 2015). Insecticidesmay be divided into
two groups (Fig. 1) depending on the penetration of the active
substance into the pest, either directly (via the exoskeleton or
the respiratory system) or indirectly (with a poisoned plant).
The first group includes contact and respiratory insecticides
while the second one, digested ones.

Contact insecticides are soluble in lipids, which mean that
can easily penetrate the insect’s body, causing loss of coordi-
nation, convulsions, and contractions of the whole body, lead-
ing finally to death. Generally, the insecticides can act against
insects’ respiratory system in all their growing stages except
eggs’ phase. The penetration way of the insect’s body is as a
vapor or gas which is inhaled which blocks the activity of
respiratory enzymes. Other insecticides act when they are
ingested and poisoned plant matter gets into the insect alimen-
tary tract. These types of insecticides can be used as a soil

formulation, from which through the roots they get to the
aerial parts of the plant (Das 2013).

However, the pesticides and plant protection products are
frequently classified according to their main use. As chemical
products are used to protect plants in gardens and fields, they
have a large spectrum of action modes. It is important to know
what threats their use may pose (e.g., disruption of plant
growth) and the specific ways individual formulations operate
(Bateman et al. 2016; Zilberman and Millock 1997). In gen-
eral, the products currently in use ought to meet some of the
criteria before they are authorized for marketing. Risks to
human health and the impact on the environment are impor-
tant, which increases the likelihood of cancellation of selected
pesticides (Cropper et al. 1992). It is extremely important that
pesticides and plant protection products are to be both effec-
tive and safe for organisms inhabiting a given environment.
Another area to focus on is the life span of the used formula-
tions because when they are persistent and their residue re-
mains, they significantly endanger the environment. With re-
gard to modes of action, pesticides can be classified into sev-
eral groups and subgroups presented in Fig. 2 (Bateman et al.
2016). An important type of pesticides is represented by
neonicotinoids, the main subject of this study.

Neonicotinoids belong to the group of active compounds
against a broad spectrum of crop pests; therefore, they are
important for economic reasons. We also consider the impact
on the environment, insects, pollinators, small aquatic mam-
mals, birds, amphibians, reptiles, and fish. An important part
of investigations is the development of sample preparation
methods as well as qualitative and quantitative analysis; that
reason analysis of neonicotinoids has been a crucial part of the
presented work.

Neonicotinoids—a new insecticide class

In the beginning of 1990s, a new group of active compounds
was introduced, including neonicotinoid compounds (e.g.,
imidacloprid, acetamiprid, nitrosoguanidine, dinotefuran,
clothianidin, thiacloprid, and thiamethoxam); all of them are
insecticides (Frederickson et al. 2016; Simon-Delso et al.
2015). In contrast to the previously used agents,
neonicotinoids present the advantage that they can be used
in smaller doses. In time, a substantial progress was developed
in the production of pesticides as well as in other plant

Fig. 1 Routes of entry of active
substances of insecticide products
into the organism of a pest
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defender products. In the beginning, the recommended doses
of preparations with substances belonging to various chemical
groups were lowered. For example, the recommendation
for DDT and other chlorines was to use up to 1.5 kg of
substance per hectare, organophosphate insecticides were
effective at half that dose, and the products containing
neonicotinoids are used at the doses below 20 g of substance
per hectare (Michalcewicz 1995; Reynoso et al. 2019; Wood
and Goulson 2017).

Chemically, neonicotinoids are related to nicotine. Nicotine
itself has insecticidal properties and in the past it was used for
many years as infusions meant to eliminate some species of
pests. Good results in controlling aphids and various green-
house crop pests were achieved by fumigating greenhouse by
burning nicotine, mainly used as nicotine sulfate. However,
nicotine is toxic also to mammals, a reason why it ceased to be
utilized in plants’ protection. In reality, the nicotine lethal dose
is higher for flies than for rats. Research studies have been
developed to transform nicotine into substances that are safer
but still highly efficient in controlling pests. Nicotine has been
applied in agriculture, not only in the form of sulfate but also
in extracts that were very effective to control most kinds of
insects. The recent ban of nicotine (nicotine sulfate) for agri-
cultural purposes is not thanks to its toxicity to humans, but

rather to resistance process developed by insects to this sub-
stance (Hayes 1982). Moreover, the commercialization of
neonicotinoids is more profitable for the companies that make
them than nicotine—this natural compound is easily extracted
from tobacco leaves at lower cost. In this way, neonicotinoids
gained increasing popularity; they can be easily dissolved in
water and slowly break down in the soil, so they are easily
absorbed by plants and provide protection during plant growth
(Frederickson et al. 2016; Yamamoto et al. 1995).

Development of neonicotinoids was started in the 1990s by
Bayer (Simon-Delso et al. 2015). The Bayer company devel-
oped for the first time a commercial neonicotinoid,
imidacloprid, which in the end of 1990s was already used on
a large scale. In beginning of 2000s, two new neonicotinoids
were introduced to the general market—clothianidin and
thiamethoxam. Currently, the majority of crops (mainly corn
and soy) are treated with one neonicotinoid and fungicidal
products (Jeschke et al. 2011; Yang et al. 2014).

Structure and properties of neonicotinoids

The properties and certain physicochemical parameters of se-
lected neonicotinoids can be observed in Table 1.

Fig. 2 Classification of pesticides
according to use
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Like any pesticide group, several chemical subgroups can be
distinguished within the neonicotinoids based on their molecu-
lar structures. According to the action mechanism,
neonicotinoids are the same because they all act as agonists of
the on the nicotine receptors of acetylcholine (nAChRs) be-
cause they have the same active moiety (Moffat et al. 2016;
Pisa et al. 2017; Simon-Delso et al. 2015; Wood and Goulson
2017). Neonicotinoids are not a uniform chemical group, which
is reflected by their susceptibility to decomposing in the soil,
their metabolism in an insect’s organism, and their impact on
bees. Nevertheless, the cyano-substituted compounds have
lower toxicity to bees than the other neonicotinoids. This is
given by a detoxification mechanisms that occur for which
we have no explanation so far. However, cyano-substituted
neonics are as toxic to aquatic insects as the nitroguanidine
neonics (Morrissey et al. 2015).

As for chemical structure, different classifications of
neonicotinoids have been applied. The basis for classification
of these aromatic heterocyclic compounds can be the presence
of conjugated bonds. Neonicotinoids are hydroheterocyclic
guanidines/amidines, and they posses active substituents
(Fig. 3) (Yang et al. 2014).

Chemical structures of neonicotinoids created in the last
decades have four common elements: (1) aromatic heterocy-
clic group, (2) elastic bonds, (3) hydroheterocyclic, or
guanidine/amidine groups, and (4) electron withdrawing
group. Besides, new neonicotinoid derivatives are continuous-
ly created by modifying the structures of the mentioned com-
pounds by introducing a sulfonamide functional group or its
cyclical equivalent instead of cyano- or nitroguanidine/
amidine group (sulfonamide neonicotinoids, e.g., sulfoxaflor).
The sulfonamide derivatives may show significant activity in
insect and acari control, but a change of substitutes can result
in great disparities in strength. Individual insecticides may
vary in strength and way of action due to a combination of
factors like the number of substitutions, elasticity, or partici-
pation of free electrons (Yang et al. 2014).

A simpler division of these subclasses is also possible, with
just two types: nitroguanidine and cyanoamidine.
Neonicotinoids of the nitroguanidine type contain inside their
structure N-nitro groups, which contain oxygen atoms; conse-
quently, these particles are much more polar and reactive. This
group includes imidacloprid, thiamethoxam, and clothianidin
(Fig. 4). Due to its structure, clothianidin can be counted among
the substances most toxic to honey bees (Pisa et al. 2015).

Neonicotinoids of the cyanoamidine type instead of nitro
groups contain in their particles cyanoamidine groups, which
do not include oxygen atoms, and thus they are less polar and
less reactive. Such substances include acetamiprid and
thiacloprid (Fig. 5). They are not adequate to be used as seed
treatment because they quickly decompose. Acetamiprid tox-
icity for bees is low as it is easily metabolized by their organ-
ism (Iwasa et al. 2004).Ta
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On the world market, we can observe a continuous increas-
ing use trend of neonicotinoids (Jeschke et al. 2011; Simon-
Delso et al. 2015). Strategies of designing and synthesizing of
cyclical neonicotinoids are even now a very attractive research
field. For example, recent literature described divalent
neonicotinoids, imidacloprid proinsecticides, neonicotinoids
with N-substituted imine, bis-neonicotinoids, and crown-
capped imidacloprid. Other studies showed that nitenpyram
analogs with acyclic imine substitute show high biological
activity (Yamamoto et al. 1998). These results show that cy-
clical skeleton is not an obligatory requirement for
neonicotinoid to have insecticidal properties. It is useful to
search continuously for new neonicotinoid compounds be-
cause it has been observed that their use too frequently in
one given area, and for certain insect species, develops signif-
icant resistance. Modification of the structures of existing
neonicotinoids may be an effective way of eliminating resis-
tance in insects (Yang et al. 2014).Moreover, it was concluded
that any insecticide leads to insect resistance when used con-
tinuously for a long period (Pisa et al. 2017). In the long term,
such resistance cannot be overcome by developing new sub-
groups of insecticides, as demonstrated recently in the case of
sulfoxaflor (Liao et al. 2017).

Use of neonicotinoids

The last years made it clear that neonicotinoids are through
frequently used insecticides for target pests like sucking in-
sects, certain chewing insects, soil insects, and pests feeding
on, e.g., grain crops, legumes, potatoes, and other vegetables,
pomes, cotton, turf, etc. They are also used to kill fleas on
house pets. Also, based on the action way, these insecticides
became used worldwide due to some commercial marketing
strategies (Simon-Delso et al. 2015). Neonicotinoids are use-
ful for controlling sucking (e.g., aphids) and grubs that grow
within the plant (e.g., wireworms), and can use the statement
that they are selective to these groups of insects only. Table 2
presents information on some of these products, sold under
different trade names, such as Gaucho, Cruiser, Confidor, and
Actara, by various companies, e.g., Syngenta or Bayer.
Neonicotinoids are systemic insecticides, which means that

they do not remain on the plant’s surface, but enter its vascular
tissue system and are transported through the whole organism.
For this reason, part of these products is used into the treat-
ment of seeds to provide the plant protection against pests
from sowing time through germination until it is fully grown.
Such total long-term protection remains active for a long time
period and is distributed through stalks, leaves, and flowers of
the plant, and then get into pollen, nectar, and the drops of
water excreted by plant stomata (Bredeson and Lundgren
2018; Sur and Stork 2003).

Furthermore, imidacloprid may also be added to water used
for hydrating plants. Formulations which offer controlled re-
lease of imidacloprid require between 2 and 10 days to release
half of the active content in water (Adak et al. 2012).
Neonicotinoids were also shown to remain for a long time in
irrigation systems, drainage pipes, and soil. It was confirmed
that these insecticides were still found at low levels in the soil
even after 2 years from when the seeds were treated with
neonicotinoids (Schaafsma et al. 2015). They were also pres-
ent in the dandelion flower’s pollen (Krupke et al. 2012) and
corn whose pollen was gathered by bees (Botías et al. 2017).
Besides, the neonicotinoids such as imidacloprid, thiacloprid,
and clothianidin were often used to treat soil as they have long
periods of half-life in the earth (Bonmatin et al. 2015). For
imidacloprid, this time is 26–229 days (Scorza et al. 2004) and
even from 100 to 1,230 days (Baskaran et al. 1999). For
clothianidin, even as many as 148–1155 days (about
5 months–about 38 months). The presence of two
n eon i c o t i n o i d i n s e c t i c i d e s— c l o t h i a n i d i n and
thiamethoxam—was detected in the body of dead bees and
around beehives located near cultivated fields (Feltham et al.
2014). Some neonicotinoids are very persistent and they can
remain for several years and accumulate in the surroundings
due to repeated use, creating thus long-term risk (Bonmatin
et al. 2015). Although the application doses for neonicotinoid
insecticides are now much lower than for the previous gener-
ation of the commonly used organophosphates and carba-
mates, their harmful effects can still be noticeable even after
a long time (Beketov and Liess 2008; Rondeau et al. 2014).
As a consequence, this means greater exposure of pollinator
insects because the neonicotinoids are present in all parts of a
plant and during its whole growth (Goulson 2013). Besides

Fig. 3 Models of positions of
atoms and functional groups.
Original substances: imidacloprid
and acetamiprid, according to ref.
Yang et al. (2014)
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plant protection products, sulfonamide neonicotinoids were
found in different natural products and pharmaceuticals.
Currently, the utilization of this neonicotinoids’ type is also
increasing (Greenhill and Lue 1993; Yang et al. 2014).

Modes of action and biological activity

Neonicotinoids are an important category of insecticides due
to their effectiveness of action, the broad range of sucking
insects and some grubs affected and reduced toxicity to mam-
mals. These substances act selectively on the nicotine recep-
tors of acetylcholine (nAChRs), which plays crucial role into
the synaptic transmission in the central nervous system of
insects (Casida and Durkin 2013; Kimura-Kuroda et al.
2012; Matsuda et al. 2001; Tomizawa et al. 2000; Wood and
Goulson 2017; Yamamoto et al. 1995). Neonicotinoids are
like nicotine agonists of nicotinic acetylcholine receptors
(Casida and Durkin 2013; Kimura-Kuroda et al. 2012;
Sheets et al. 2016). These receptors in mammals are located
in the central and peripheral nervous systems, while in insects
they are placed in the central nervous system. Most of
neonicotinoids shows neurotoxic activity in the organisms of
undesirable insects and binds much stronger to the
neuroreceptors of insects than to those of mammals (Fig. 6)
(Chang et al. 2013; Kimura-Kuroda et al. 2012).

Nevertheless, all animals with nervous system have
nAChRs and neonics are agonists of the α4β2 (alpha-4
beta-2 nicotinic receptor) that make up these receptors. The
difference between insects and vertebrates is that all nAChRs
of insects contain these subunits, whereas in vertebrates only
about 8–10% of nAChRs have them. The susceptibility of
vertebrates to neonics, therefore, is much less than that of

insects (Tomizawa and Casida 2005). To sum up this part of
considerations is as follows: (i) the agonistic action on the
α4β2 subunits, which elicits a neuronal impulse in the organ-
ism; (ii) the competition of neonic molecules with the natural
neurotransmitter acetylcholine (Fig. 6); and (iii) the persis-
tence of the stimulus, as the neonic is not deactivated by the
enzyme acetylcholine-esterase, which leads to overstimula-
tion and eventual death of the neurons (Chang et al. 2013;
Rondeau et al. 2014).

Neonicotinoids act by binding no nicotine receptors of
nAChRs and influence synaptic transmission. The receptors
are usually activated by binding the neurotransmitter known
as acetylcholine (ACh). They are subsequently deactivated
when ACh is broken down by the acetylcholinesterase
enzyme (AChE), producing octane and choline (Fig.
6a). Similar to ACh, neonicotinoids can bind to and
activate nAChR, but—opposed to ACh—they cannot cause
deactivation by AChE (Fig. 6b). This leads into the overstim-
ulation of the nervous system and ultimately to cell death
(Chang et al. 2013).

The places of binding neonicotinoids to nAChR are electro-
negative, which contributes to their toxicity in insects (Kimura-
Kuroda et al. 2012; Yang et al. 2014). Due to this selectivity of
the action of neonicotinoid insecticides, they were considered
less toxic for mammals (Chen et al. 2014; Duzguner and
Erdogan 2010). It revealed that neonicotinoids are usually pres-
ent in food products. Although these levels were low, there
appeared suggestions connecting health-adverse effects ob-
served in honey with exposure to neonicotinoids. However,
there is a growing amount of data proving that neonicotinoids
(imidacloprid and clothianidin) have the ability to directly influ-
ence or change the activity of nAChRs in mammals (Chen et al.
2014; Kimura-Kuroda et al. 2012). Both in vivo and in vitro

Fig. 5 Neonicotinoids of the
cyanoamidine group,
non-toxic to bees

Fig. 4 Neonicotinoids of the
nitroguanidine group,
toxic to bees
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studies demonstrated that imidacloprid can change the mem-
brane properties of neurons in mice; consequently, sensorimotor
capability is significantly lowered and the level of glial lactic
acid increases in the brain ventricle which is considered to be
the center of emotions. Memory and autonomy of the nervous
system was observed in newborn rats when the gravid female
was exposed to trace amounts of such a substance. In most
mammals, the undesirable neonicotinoids’ toxic effects are con-
nectedwith their participation in binding to theα4β2 subunits of
nAChR (Chen et al. 2014; Kimura-Kuroda et al. 2012). A study
in vitro proved that imidacloprid and other neonicotinoids di-
rectly activate and change the α4β2 subtype of nAChR in
humans. It is the best known subtype of nAChR in mammal

brain, with the greatest density of receptors in diencephalon
(thalamus). The α4β2 subtype of nAChR is implicated in a
range of brain functions such as cognition, memory, and behav-
ior. There are hard proofs regarding the role of α4β2 nAChR
and the change in this receptor’s density in such CNS (central
nervous system) disorders as Alzheimer’s or Parkinson’s dis-
ease, schizophrenia, and depression. During brain development
(in utero), the α4β2 subunits of nAChR were involved in neu-
ron proliferation, apoptosis, migration, cell differentiation, crea-
tion of synapses, and development of neuronal nervous systems
(Chen et al. 2014; Sobkowiak and Lesicki 2011). It is likely that
neonicotinoids can affect these processes during nAChR activa-
tion. Additionally, research in absorption using human intestinal

Table 2 Examples of plant
protection products available in
Poland according to the
regulation of the Polish Ministry
of Agriculture and Rural
Development (https://www.gov.
pl/web/rolnictwo/rejestr-rodkow-
ochrony-roslin)

Trade
name*

Active substance
(example concentration)

Description and applications

Cezar

Hekplan

Mospildate

Shark

Tenaz

Vapcomore

Mortal

Profil

Assail

Intruder

Tri-star

Mospilan

Acetamiprid 20% This is an insecticide that is a powder that should be dissolved in
water.

Type of action: contract, stomach

Agricultural plants: potato, sugar beet, folder beet, winter oilseed
rape, spring rape, tobacco. Fruit trees: apple tree, berry plants:
raspberry, blackcurrant, strawberry. Vegetable plants (in ground
and under cover): brassica, onion (from sowing and seedling),
tomato, cucumber, paprika, eggplant. Ornamental plants (in the
ground and under the covers).

Agroprim

Gaucho

Confidor

Admire 2
Flowable

Merit

Provado

Marathon

Imidacloprid 200 g/L The formulation to combat flying insects (e.g., fly, mosquito, with
the exception of wasps and hornets) and running insects (for
example cockroach); indoors applications.

Clutch

Poncho

Dantotsu

Fullswing

Apacz

Clothianidin 500 g/kg
(50%)

Insecticide in the form if granules to the water, suspension of
operation of contact and distress; potatoes, apples, pears,
gerbera

Actara

Cruiser

Thiamethoxam 250 g/kg
(25%)

It is an insecticide registered for the control of potato beetles and
apple aphid and cactus cotton. Type of action: contact, stomach.
Potatoes, apple trees.

Calypso

Bariard

Alanto

Thiacloprid 480 g/L (40,
40%)

It is an insecticide from the chloronicotinyl group, available as a
water-soluble concentrate. The preparation is harmless to bees
and many beneficial insects.

Type of action: contact and stomach. Potatoes.

Proteus Thiacloprid 100 g/L

Deltamethrin 10 g/L

It is an insecticide with a systemic action against biting and
stinging pests in general and vegetable crops. Type of action:
contact, stomach.

Potatoes, winter oilseed rape, sugar beet, maize.
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cell line showed that neonicotinoids may be absorbed through
membrane transport. Therefore, a question arises: can
neonicotinoids potentially pose a danger to human health?
Considering contemporary research and the scattered use of
neonicotinoids in cultivation of plants and vegetables as well
as their presence in foods, as well as still limited knowledge
regarding toxicological repercussions of neonicotinoids on
mammals, conducting epidemiological research is reasonable
(Chen et al. 2014; Gibbons et al. 2015).

The mortality after the use of neonicotinoids for some in-
sects and crustaceans has been taken into account. It is true
that this class of compounds also interfere with the immune
system and reproduction, with the possibility of significantly
reducing the arthropod population in the environment, both in
the terrestrial and in the aquatic (Pisa et al. 2017; Ruckert et al.
2018). The influence of neonicotinoids on aquatic organisms,
in fact non-target organisms, cannot be overlooked (Basley
and Goulson 2018; Hladik et al. 2018; Miles et al. 2017;
Ruckert et al. 2018). The potential threat of neonicotinoids to
wetland communities has been evaluated by experiments which
simulated the exposures of invertebrates. The high tolerance to
this group of compounds even the highest dissolvable concen-
tration of insecticides was observed for freshwater snails and
amphibian larvae with no mortality (Miles et al. 2017).

Neonicotinoids’ impact on bees

Initially, neonicotinoids were considered to be substances that
protect plants from pests but show low toxicity towards many
useful insects (Blacquière et al. 2012; Tapparo et al. 2012;
Lundin et al. 2015; Wood et al. 2018). However, this conviction
has been recently put under question mark because of the great
losses suffered by bee population all over the world. The men-
tioned phenomenon was called bee colony collapse disorder
(Gliński and Kostro 2007; Neumann and Carreck 2010; Potts

et al. 2010; vanEngelsdorp et al. 2009; van der Zee et al. 2012).
The research studies proved that trace levels of neonicotinoids
used in agriculture usually do not kill the bees directly (lethal
effect) but have indirect (sublethal) influence as bees show all
the symptoms of insecticide poisoning—uncoordinated move-
ments, tremors, and convulsions. This affects the condition of
bees, and their capacity to forage, learn, remember flower loca-
tions, and find the route back to the colony, hive, or swarm; it
can also influence negatively the growth of honeybee and bum-
blebee colonies and the fertility of queens. This will not lead to
sudden death of the insects but significantlyworsens their health,
disrupts nutrition processes, and impairs the sense of smell and
navigational abilities; in consequence, the bees die sooner and
more frequently. The observed sublethal effects include also
physiological effects, i.e., developmental disorders in worker
bees and queens (Cresswell et al. 2012; Decourtye et al. 2004;
Laycock et al. 2012; Rumkee et al. 2017; Schneider et al. 2012;
Tirado et al. 2013; Whitehorn et al. 2012;Yang et al. 2014).

To exemplify, the harmful influence of clothianidin involves
immediate switching off of mitochondria in bee neurons while
the negative impact of imidacloprid is visible only after longer
exposure as it accumulates in the organism. Neonicotinoids dis-
turb the functioning of insect nervous system including commu-
nication between brain areas, which can cause paralysis and
death (Schneider et al. 2012). Furthermore, plant protection
chemicals can lower the resistance of insects, including the bees
and various pollinators to illnesses and parasites (Sánchez-Bayo
et al. 2016). Simultaneous use of different classes of chemicals,
including neonicotinoids and anti-parasite agents, also contrib-
utes to increased bee mortality (Fairbrother et al. 2014;
Schneider et al. 2012; Tirado et al. 2013;Whitehorn et al. 2012).

It is very worrying that bees prefer nectar contaminated by
pesticides as consuming such food gives them more pleasure
(Kessler et al. 2015). The bees also do not feel the taste of
neonicotinoids, which increases the poisoning risk after eating
contaminated nectar. The results of research on activity of

Fig. 6 Schematic presentation of action of neonicotinoid acetylcholine receptors in the presence of acetylcholine and a neonicotinoid substance,
according to ref. Chang et al. (2013)
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bees exposed to different doses of imidacloprid and
clothianidin can be observed in Figs. 7 and 8.

The fact is that neonicotinoids influence bees, similar with
the fact that nicotine influences humans. The toxic effects of
nicotine in humans are multiple, including sedative effects,
whereas in insects are lethal. However, some insect species,
for example a tobacco hornworm Manduca sexta L., is able to
develop a much greater resistance to the toxic effects of nicotine
(del Campo and Renwick 1999). It is supposed that they par-
tially affect the insect brain which are responsible for preserving
information regarding spatial orientation. Scientists are increas-
ingly afraid that even trace amounts of pesticides can have neg-
ative influence on bees (Tennekes and Sánchez-Bayo 2011; Pisa
et al. 2017). The conducted research unfortunately confirms
these suppositions. Bees which were given clothianidin and
imidacloprid showed less mobility in comparison with the con-
trol group (Schneider et al. 2012). In the case of the foraging
flights, their number was lower and the time needed for gather-
ing food was longer. Also returning time to the hive was longer
and not all the bees returned. The staying time in the hive be-
tween flights was also extended. With the increase in the
amount of neonicotinoid applied to the bees, the observed be-
havioral irregularities became more apparent. As clothianidin
has lower contact toxicity in comparison with imidacloprid, its
action is stronger, causing harmful effects even in lower doses.
During the experimental proceedings, it was observed that these
substances led into a significant reduction of foraging activity
and to longer foraging flights at doses for clothianidin and
imidacloprid of ≥ 0.5 ng/bee and ≥ 1.5 ng/bee respectively
(Schneider et al. 2012).

Ban on neonicotinoid use

Pollinator insects constitute a significant part of the environ-
ment. The last years revealed, however, that this balance has
been significantly disrupted. Both agriculture and apiculture
have more and more reasons to worry in connection with the
threat to bees created by the effects of neonicotinoid pesticides
(Sánchez-Bayo 2018).We cannot be sure that they are used in a
safe way, in appropriate concentrations and at appropriate
times. An answer to this issue is the Commission
Implementing Regulation (EU) No. 485/2013 of 24
May 2013 amending Implementing Regulation (EU) No. 540/
2011, concerning the approval conditions of active substances
clothianidin, thiamethoxam, and imidacloprid, and prohibiting
the use and sale of seeds treated with plant protection products
containing those active substances (Commission Implementing
Regulation 2013). The text was published in the Official
Journal of the European Union, L 139/12, Vol. 56, May 25,
2013. Currently, the implementing regulations have been pro-
posed by the European Commission (2018/783, 2018/784,
2018/785), in detail, which limited the use of these substances

only for use in permanent greenhouses and for the treatment of
seeds for the sowing only in such facilities. These regulations
concern three neonicotinoids such as imidacloprid,
clothianidin, and thiamethoxam. Nevertheless, the Polish
Ministry of Agriculture has approved a derogation from the
ban on the use of neonicotinoids in rape seed mortars. Also, a
temporary permit for the use of mortars containing
neonicotinoids to protect sugar beet has been issued. Note that
many countries in Europe like Germany and France have intro-
duced on their own prohibitions on the use of neonicotinoids.

Selected analytical methods used
for the determination of neonicotinoids

Neonicotinoids are used by farmers on a mass scale and fre-
quently without any restraint, so it has become necessary to
restrict the quantity of these substances in the products accept-
ed as human food. Routine determination of neonicotinoids
has been carried out only in the last several years, after it was
enforced by decrees of the EuropeanUnion. As new analytical
procedures had to be performed in a relatively short time, the
first methods used large amounts of toxic solvents (liquid–
liquid extractions). The procedures were time-consuming
and were based mainly on extracting analytes from samples
by shaking, where a single use required up to 100 mL of
solvent (e.g., dichloromethane).

Generally, for the determination of neonicotinoids separat-
ed from samples by liquid–liquid and/or liquid–solid extrac-
tion, the high-performance liquid chromatography (HPLC) is
applied in most cases (Chen et al. 2014; Lehotay et al. 2010;
Mandic et al. 2005). Newmethods use modern equipment and
devices for isolating and determining the tested analytes,
which increases the method sensitivity and shortens the anal-
ysis time. The main contributors are new extraction methods
and liquid chromatography. HPLC detectors should be char-
acterized by low sensitivity, high versatility as the ability of
indication of a large number of substances, selectivity with
respect to a certain number of substances, a wide linearity
range, to work independent on the temperature and velocity
of the mobile phase flow, and ease of use. Many detectors, i.e.,
UV/Vis, diode array detector (DAD), light scattering, corona
discharge, fluorescence, conductivity, electrochemistry, radio-
activity, and chemiluminescence, are available in various
HPLC equipment, depending upon the application.
Currently, various methodologies applied for the detection
and quantification of the abovementioned compounds have
been transformed by the use of automated liquid handling
and HPLC tandem mass spectrometry detection techniques
(LC-MS/MS).

The control of periodic changes in neonicotinoid concen-
tration is included in the research program in many countries.
An example can be investigations performed in the USA to
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control neonicotinoid pesticide residues in food (fruit, vegeta-
ble, meat, dairy, grain, honey, and baby food) and water sam-
ples. The investigation was continued for 16 years.
Concentrations of neonicotinoid residues in food did not ex-
ceed those tolerance levels permitted by US EPA. However,
higher concentration of imidacloprid has been found in water
samples (untreated water) during 7 years from 2004 to 2011
(Craddock et al. 2019).

Moreover, this work presents selected procedures of deter-
mining neonicotinoids in crops and hive produce which will
be suitable in the future for routine determination of contam-
ination by residues of such substances. New methods use
modern apparatuses and a variety of equipment both for

determining and for isolating of the tested compounds, which
has increased the sensitivity of the methods and shortened the
analysis time. The main contributors here are new extraction
techniques and detectors such as MS/MS. This part of the
review presents selected separation methods which were ver-
ified on real-life samples and which are suitable for routine
analyses of fruits and a variety of vegetables. The main object
of testing for residual insecticides is food products that were
most exposed to the contact with such substances, and
processed food produced from such produce, e.g., juices.
Imidacloprid was determined in fruit, fruit juices, and vegeta-
bles with LC-MS/MS or LC-DAD technique. Isocratic elution
(Watanabe et al. 2007; Mandic et al. 2005) with water and

Fig. 8 Changes in time between subsequent foraging flights of bees after application of known doses of selected neonicotinoids (Imida, imidacloprid;
Clothia, clothianidin), according to ref. Schneider et al. (2012)

Fig. 7 Frequency of bees leaving the hive after application of known doses of selected neonicotinoids (Imida, imidacloprid; Clothia, clothianidin).
According to ref. Schneider et al. (2012)

Environ Sci Pollut Res (2019) 26:34723–3474034732



acetonitrile (H2O/CH3CN) at the ratio 8:2 v/v or 75:25 v/v
was used, and the packing of chromatographic columns were
C18 sorbents (Hypersil ODS or Sun–Fire C18). If gradient
elution was used, the mobile phase was 1% solution of
HCOOH in water and 1% HCOOH in acetonitrile, and the
solid phase was Phenomenex ODS (Lehotay et al. 2010).

The studies on the determination of neonicotinoid pesti-
cides brought the publication of studies in which the re-
searchers determined side by side several of the insecticides
in use. Acetamiprid and thiamethoxam were determined in
okra seed pods (Abelmoschus esculentus L.) (Singh and
Kulshresta 2005); imidacloprid, acetamiprid, and thiacloprid
were determined in different fruits and vegetables (Ortelli
et al. 2004; Amelin et al. 2012) as well as in raisins
(Hernandez et al. 2006). A different combination of pesticides
was determined in vegetables: acetamiprid, nitenpyram, and
imidacloprid (Obana et al. 2002). These procedures used only
gradient elution with the solvents composed of H2O/CH3CN,
sometimes additionally acidified with HCOOH. The detectors
used were DAD (Amelin et al. 2012), MS (Hernandez et al.
2006), and MS/MS (Ortelli et al. 2004). Solid phases included
Nucleosil C18HD, Lichrospher RP-18, Atlantis C18, and X
Terra RP-18.

The studied analytes were isolated by extracting homoge-
nized samples with ethyl acetate and rotating them (Ortelli
et al. 2004) or with acetone, and subsequently, after salt pre-
cipitation and adding hexane, they were extracted with
CH2Cl2 (Singh and Kulshresta 2005). In other studies, the
targets were extracted with a mixture of methanol and water
(80:20), and then was purified with the solid-phase extraction
method (SPE) using OASIS HLB sorbent (Hernandez et al.
2006) or silica gel (Obana et al. 2002).

As the interest in the neonicotinoid analysis pollution was
increasing, there appeared publications that described deter-
mining a larger number of these insecticides side by side, in
different combinations. Acetamiprid, imidacloprid,
thiacloprid, and thiamethoxam (Di Muccio et al. 2006; Wu
et al. 2011) or acetamiprid, imidacloprid, thiacloprid, and
nitenpyram (Ferrer and Thurman 2007) were detected in fruits
and vegetables, and a mixture of clothianidin, dinotefuran,
thiacloprid, and thiamethoxam—in various vegetables (Min
et al. 2011). The pesticides were most frequently extracted
with acetone, and the extracts were purified with the SPE
technique using the sorbent Extrelux NT 20 ( (Di Muccio
et al. 2006) or with QuEChERS sets well known as a quick,
easy, cheap, effective, rugged, and safe sample preparation
method (Wu et al. 2011; Ferrer and Thurman 2007; Min
et al. 2011). Detection after gradient elution was carried
out with MS (Di Muccio et al. 2006), DAD (Wu et al.
2011), TOF-MS (Ferrer and Thurman 2007), and MS/MS
(Min et al. 2011) detectors. Solid phases were LiChrospher
100, Zorbax-Eclips XDB-C8, and Centurisil C18. The
expanding use of mass spectrometers in detection is

reflected in research covering an increasing number of
neonicotinoids. This detection technique makes it easier to
eliminate interference from other pesticides or sample ma-
trix contents. Detection can also be performed now at lower
concentration levels.

Fivemost often used neonicotinoids including acetamiprid,
thiacloprid, thiamethoxam, and nitenpyram (Obana et al.
2003) or clothianidin, which is a replacement of nitenpyram
(Benerjee et al. 2007), were identified in grapes, grapefruits,
peaches, various vegetables, and rice. Extraction from plant
samples was realized with either methanol or ethyl acetate; in
the latter case, ultrasound was involved to support the process.
Gradient elution was carried out with methanol and water
(Obana et al. 2003) or methanol and water with the addition
of 5 mM ammonium formate (Benerjee et al. 2007). In both
cases, short (50 or 75 mm) chromatographic columns with C-
18 packing were used.

In the mentioned study (Obana et al. 2003), the authors
used an MS detector, achieving LOQ at the level of
0.01 mg/kg, while in another study (Benerjee et al. 2007)
MS/MS detector was applied, which allowed the scientists to
obtain a higher sensitivity for determined compounds (LOQ =
0.00025 mg/kg).

The subsequent publications bring the results of the re-
search on the detection of a broadening range of insecticides.
The studies determined in vegetable and fruit samples also
imidaclotritz besides the five aforementioned insecticides
(Zhang et al. 2012) or another combination of six substances:
nitenpyram, clothianidin, thiacloprid, thiamethoxam,
imidacloprid, and acetamiprid (Hiemstra and De Kok 2007).

In the study by Zhang et al. (2012), modified QuEChERs
and LC-MS/MS techniques were developed. The method was
validated for the analysis of 50 agricultural samples.
Imidacloprid and imidaclotritz were detected at concentration
levels between 5.3 and 7 μg/kg in real samples.

Moreover, the sixth mentioned pesticides, dinotefuran, was
determined as a part of a 7-substance combination (Watanabe
et al. 2007a; Liu et al. 2010). The UHPLC technique was used
with a view to limiting the solvent volume and increasing the
determination speed (Liu et al. 2010).

Other studies reported the determination of not only those
pesticides, but also their metabolites. Clothianidin and its 4
metabolites in crown daisy, sedum, and amaranth grown in
greenhouse conditions have been determined (Kim et al.
2012). The targets were identified and determined using LC-
MS/MS. The LOQwere in the ranges of 0.04–0.16 mg/kg and
they obtained recoveries between 71.7 and 120.3%. Themeth-
odology was successively used for the analysis of extracts that
contain clothianidin and its metabolites in field-incurred sam-
ples (Kim et al. 2012).

The next analytical method (Rahman Md et al. 2013) was
applied for dinotefuran and its metabolites in melon, using
HPLC/UVD technique. For extraction and purification, the
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modified QuEChERs by acetate buffer was applied. The pro-
posed method allowed for the obtaining of high water misci-
bility of some metabolites of dinotefuran, and lower sensitiv-
ity of UV detection in shorter wavelength was observed. The
method was used for real samples, where dinotefuran and one
of its metabolites were detected in the field-incurred
melon samples. Residues were identified via LC-
tandem mass spectrometry in positive-ion electrospray
ionization (ESI (+)) mode.

Recently, due to the reports of possible threat that
neonicotinoid insecticides pose to bees, the interest of re-
searchers has been mainly focused on determining the resi-
dues of those compounds in bee products and the possible
presence of neonicotinoids in bees themselves (Cicero et al.
2017; Feltham et al. 2014). Neonicotinoid poisoning of hon-
eybees is a primary signal of negative effects of neonicotinoid
application. The influence of nicotinoid insecticides and espe-
cially in the decline of bees is considered by several laborato-
ries. Various researcher teams developed analytical methods
for the separation, identification, and quantification of pesti-
cides in honeybees and even other bee products like pollen,
wax, and honey (Cicero et al. 2017; Feltham et al. 2014;
Kasiotis et al. 2014).

Among the matrices of contaminating honeybees, a bee-
bread can be considered. Some study was undertaken to de-
velop and validate an original analytical approach that
consisted on an extraction method based on modified
QuEChERs, and by a selective analysis by UHPLC-MS/MS.
The method was used for the analysis of 32 beebread samples
and the presence of 7 of the target substances, and detected
approximately concentration 170 ng/g for acetamiprid and
thiacloprid. Although the contamination had low levels, this
data indicates bees’ exposure to neonicotinoids via consump-
tion of beebreads (Giroud et al. 2013). Martel and Liar (2011)
describe the a multi-residue analytical method used for the
identification of five neonicotinoids (imidacloprid,
clothianidin, acetamiprid, thiacloprid, and thiamethoxam) in
honeybees. The developed method was validated in detail.
The extract in acetonitrile and n-hexane was analyzed by
LC-ESI-MS/MS. The recovery data were obtained by spiking
samples at two different concentrations of various
neonicotinoids. For the experiments, honeybees without pes-
ticides have been applied. The recoveries were between 93.3
and 104% (RSD< 20%), and LOQ = 0.5 ng/g for all pesti-
cides, except acetamiprid, which was 1.0 ng/g. In another
publication, for the presence of neonicotinoid residues in an-
alyzed extracts, all samples from various areas of Greece were
taken. Samples such as honeybees, bee pollen, and honey
were taken into account. The total of 115 analytes among
which neonicotinoids, organophosphates, thiazols, carba-
mates, dicarboximides, and dinitroanilines in honeybee bodies
and honey and bee pollen were developed and validated by
use of LC-ESI-MS/MS method. After the sample analysis, 14T
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active compounds were observed in all matrices, but for hon-
ey, only in one single sample the carbendazim was detected at
1.6 ng/g (Kasiotis et al. 2014).

The identification of neonicotinoids and their metabolites
in honeybees and honey was achieved in the study (Gbylik-
Sikorska et al. 2015). For the simultaneous analysis of pesti-
cides such as imidacloprid, clothianidin, acetamiprid,
thiamethoxam, thiacloprid, nitenpyram, and dinotefuran and
their metabolites (in particular imidacloprid quinidine,
imidacloprid olefin, imidacloprid urea, desnitro-imidacloprid
hydrochloride, thiacloprid amid, and acetamiprid-N-
desmethyl) in honeybee and honey, a new analytical method
was developed. Preparation of honeybee samples involved
extraction with acetonitrile and ethyl acetate and a cleaning
up step using the Sep–Pak Alumina N–Plus Long cartridges.
Extracts of honey were purified with Strata X–CW cartridges.
The LOQs were between 0.1 and 0.5 μg/kg, and analyte re-
coveries ranged from 85.3 to 112.0%.

The next methods using LC-MS/MS for the determination
of neonicotinoids were published in Kiljanek et al. (2016) and
Cicero et al. (2017). Authors developed a method suitable for
200 pesticides and pesticide metabolites in honeybee samples.
Proposed method was in detail validated. Metabolites of
imidacloprid and thiacloprid have been detected. The sample
preparation required the use of buffered QuEChERs method.
Samples were extracted with acetonitrile containing 1% acetic
acid and then cleaned up by dispersive solid-phase extraction
using Z-Sep+ sorbent and PSA. The proposed method was
developed to investigate more than 70 honeybee poisonings
(Kiljanek et al. 2016). Cicero et al. (2017) described the mon-
itoring of neonicotinoid pesticides in beekeeping. In that
study, LC-MS/MS was applied and concentrations of
neonicotinoids were determined in samples of honeybees,
honeycomb, and honey, collected in 2015 during the bloom-
ing period from various areas in Sicily (Italy); the aim was to
carry out an evaluation of bee product safety and to have an
overview of neonicotinoid contamination in beekeeping.
Obtained results made it possible to confirm only the presence
of clothianidin in bee samples but these concentrations do not
represent a risk for bees’ vitality.

Li et al. (2015) developed and compared twomethods used
for the analysis of selected pesticides in honeybees, pollen,
and wax by GC/MS. Sample preparation methods consisting
of solvent extraction as cleanup procedure performed by the
gel permeation chromatography (GPC) and the dispersive
SPE with zirconium-based sorbent (Z-Sep) were applied.
Aims of investigation were the evaluation and comparison
of matrix effects, method detection limits (MDLs), recoveries,
and reproducibility of the analyzed pesticides. MDLs of
the insecticides for the GPC method ranged from 0.40
to 8.30 ng/g dry weight, while MDLs for the Z-Sep
method were from 0.33 to 5.37 ng/g dry weight. The
recoveries ranged from 64.4 to 149.5% and 71.9 to 126.2% for

the GPC and Z-Sep methods, respectively. It showed that the
Z-Sep method is more appropriate for the determination of the
target insecticides.

Recently, due to the reports of possible threat for bees
posed by neonicotinoid insects, the research focuses mainly
on determining the residue of such substances in bee products
and their possible presence in bees themselves. In this part of
the review of neonicotinoid determination methods, Table 3
presents selected separation methods, tested on real-life sam-
ples, which are suitable for routine analyses of a variety of
fruit and vegetables; such bee products as pollen, wax, and
honey; and bees themselves.

Conclusion

Bees and other pollinator insects are of immense importance
for humans and for crop yield. Their presence in ecosystems
brings huge benefits, estimated to amount to at least 153 bil-
lion euro on the global scale (22 billion euro in Europe itself).
However, as bees pollinate the crops (Gallai et al. 2009;
Garibaldi et al. 2014), they can be exposed to pesticides
(Sánchez-Bayo and Goka 2014).

The demand for neonicotinoids has grown significantly in
the last years. Fortunately, not all farmers use them, yet there
are those who overuse these substances, applying them even
when there are no pests. A drastic decrease is observed in the
population of honeybees, which have permanent contact with
neonicotinoids present at low levels in pollen and nectar com-
ing from the neighborhood of cultivated fields.

Polish regulations permit the sale of a few plant protection
products containing imidacloprid, clothianidin, acetamiprid,
and thiacloprid. The issued permits a certain date of an expi-
ration. Over the last 10 years in Poland, the sale of insecticide
plant protection products has more than doubled. Sale and the
use of insecticides have still grown in both cases, when mor-
tars containing neonicotinoid were allowed and later after reg-
ulation. Therefore, the use of mortars containing
neonicotinoid did not provide less use of insecticidal plant
protection products or larger crops.

Based on the abovementioned investigations (Duzguner
and Erdogan 2010; Schneider et al. 2012), it is worth it to
ask a question: can neonicotinoids have a negative impact
on the health of humans and other mammals, especially on
developing brains?
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