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Abstract
Numerous studies have investigated the impacts of ambient fine particulate matter (PM2.5) on human health. In this study, we
examined the association of daily PM2.5 concentrations with the number of deaths for the cerebrovascular disease on the same
day, using the generalized additive model (GAM) controlling for temporal trend and meteorological variables. We used the data
between 2012 and 2014 from Shanghai, China, where the adverse health effects of PM2.5 have been of particular concern. Three
different approaches (principal component analysis, shrinkage smoothers, and the least absolute shrinkage and selection operator
regularization) were used in GAM to handle multicollinear meteorological variables. Our results indicate that the average daily
concentration of PM2.5 in Shanghai was high, 55 μg/m

3, with an average daily death for cerebrovascular disease (CVD) of 62.
There was 1.7% raised cerebrovascular disease deaths per 10 μg/m3 increase in PM2.5 concentration in the unadjusted model.
However, PM2.5 concentration was no longer associated with CVD deaths after controlling for meteorological variables. The
results were consistent in the three modelling techniques that we used. As a large number of people are exposed to air pollution,
further investigation with longer time period including individual-level information is needed to examine the association.

Keywords Fine particulate matter . Cerebrovascular mortality . Generalized additive model . Multicollinearity . Principal
component analysis . Shrinkage smoother . Least absolute shrinkage and selection operator

Introduction

Air pollution represents the biggest environmental risk to
health, and outdoor air pollution alone has been associated
with an estimated three million premature deaths in a recent
year (World Health Organization (WHO), 2016). Harmful

substances, such as carbon monoxide, nitrogen dioxide, and
heavy metals from natural and unnatural origins, including
volcanoes to industrial activities, vehicle emission, and com-
bustion of fossil fuel, can take the forms of solid particles,
liquid droplets, or gasses (Fiordelisi et al. 2017). Fine partic-
ulate matter with a size less than or equal to 2.5 μm in
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diameters (PM2.5) is the sum of such solid or liquid pollutants
suspended in the air and particularly important as it tends to
stay longer in the air because of its small size (Lin et al. 2018),
increasing the chance of inhalation.

PM2.5 has been shown to have significant adverse effects
on human health, including reduced lung function and in-
creased risk of chronic bronchitis, heart disease, lung cancer,
and various forms of cardiovascular and cerebrovascular dis-
eases and mortality (Fiordelisi et al. 2017; Lu et al. 2015).
Mechanisms linking PM2.5 and human health outcomes have
not been fully understood, but unlike larger particles, small
particles like PM2.5 can penetrate deep into the respiratory
system or absorbed into the bloodstream and may increase
systemic inflammation and alter autonomic nervous system
activity (Fiordelisi et al. 2017; Shah et al. 2015).

Although air quality has been improved over the years,
many cities and regions in European and Asian countries still
suffer from PM2.5 concentration higher than 10 μg/m3 on an
annual average, above the limit recommended by the WHO
(Thunis et al. 2017). An increase in PM2.5 concentration by 10
μg/m3 was associated with 8–27% higher lung cancer risk
(Pope et al. 2002; Turner et al. 2011) and 4% higher all-
cause mortality risk (Pope et al. 2002), while a reduction by
10 μg/m3 expands life expectancy for 0.35 years (Correia
et al. 2013). Emergency hospital admissions for cerebrovas-
cular disease increased by 1.3% for every ≥ 10 μg/m3 increase
in PM2.5 concentration (Leiva et al. 2013).

The aim of our study was to evaluate the acute effect of
PM2.5 pollution on cerebrovascular disease (CVD) mortality
using data from Shanghai, China, between 2012 and 2014.We
focused on the influence of PM2.5 concentration on death dur-
ing the same day. As we adjusted for a number of meteoro-
logical variables and some of them showmulticollinearity, the
secondary aim was to examine the impact of the difference of
adjustment techniques that are commonly used in the presence
of collinearity: principal component analysis (PCA), shrink-
age smoother, the least absolute shrinkage and selection oper-
ator (LASSO) methods.

Materials and methods

Study setting and data

The data used this study include daily observations on the
number of CVD deaths, PM2.5 concentrations, and meteoro-
logical conditions between 2012 and 2014 in Shanghai,
China, with a total of 1091 observed days. During the study
period, the population of Shanghai was approximately 24.0
million, and the life expectancy was around 83 years
(Shanghai Statistics Bureau 2014). The detailed description
of the data was published elsewhere (Fang et al. 2017).
Briefly, daily average PM2.5 concentrations between January

1, 2012, and December 31, 2014, were obtained from the air
quality monitoring station of the US Consulate General in
Shanghai and the Shanghai Meteorological Bureau. Only the
measurements from a single air quality monitor station were
available during the study period. The daily mortality data
during the corresponding time period for all the 16 adminis-
trative districts in Shanghai were obtained from the Causes of
Death Registry of Shanghai Municipal Centre for Disease
Control and Prevention. The causes of death were coded ac-
cording to the International Disease Classification Codes, ver-
sion 10, and the codes for cerebrovascular diseases deaths
were I60–I69. Thirteen meteorological variables and the day
of the week were used as potential confounding factors.

Statistical model

Mean, standard deviation (SD), median, the first quartile (Q1),
and the third quartile (Q3) were calculated for daily CVD
deaths, PM2.5 concentrations, and meteorological variables.
Univariate associations between CVD mortality and PM2.5

and meteorological variables were evaluated using a general-
ized linear model with a log link function. Generalized addi-
tive model (GAM) was used for multivariate analysis. The
GAM is a generalization of the generalized linear model and
is widely used in time series studies on health effects of air
pollution because it does not expect a particular functional
form of a relationship, and is flexible for modelling nonlinear
associations (Crawley 2013). It exploits the quantity of a re-
sponse variable Y from a given distribution with different in-
dependent variables by estimating non-parametric functions
of the independent variables, which are connected to the re-
sponse variable through a link function. Because of the non-
linear relationship between death counts and weather condi-
tions, and exponential form of daily death counts within a
fixed period of time, the effect of PM2.5 on daily deaths in
the present study was modelled as:

Log E Yð Þ½ � ¼ Log μt½ � ¼ β0 þ β1X t þ ∑n
i¼1 f i Zið Þ þ β jD j

and Y∼Poisson μtð Þ

where E(Y) is the expected mean of deaths on day t, β0 and
β1 are the intercept and slope term respectively, Xt is the PM2.5

concentration on a day t, f is the smoothing function, Zi is the
confounding variables (i.e., time and weather conditions), and
Dj is the dummy variables of the day of the week (DOW) and
j = 1, 2,… , 6.

The smoothing functions fi are composed of non-
parametric splines of confounding variables. Splines are poly-
nomial curves that are connected at inner knots. The widely
used splines in GAM are defined as the natural spline, cubic
spline, or B-spline with a pre-specified number of knots. In
our study, two types of smoothing splines, cubic regression
spline (cr) and thin plate spline (tp), were used and compared.
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To avoid over-fitting, for each of confounding variables of
time and weather conditions, the optimal number of knots
(k) was selected based on Akaike’s information criterion
values using iterative processes. We compared k = 4, 5, 6, 7,
and 8 because most of the studies show that k = 3 is sufficient,
and often there was no notable improvement with more than 8
knots.

The coefficient of PM2.5 multiplying by 10 is interpreted as
a percentage increase in cerebrovascular deaths per 10 μg/m3

increment in PM2.5 concentration.

Controlling for multicollinearity

Except for controlling for temporal trends in daily cerebrovas-
cular deaths, meteorological variables were considered as po-
tential confounding factors (Jimenez-Conde et al. 2008).
Multicollinearity among 13 meteorological variables was ex-
amined using the Spearman correlation and variance inflation
factor (VIF), and statistically significant multicollinearity was
found among the variables. To deal with the multicollinearity
and high dimensionality of these confounding variables, we
used three different approaches. The first approach used the
principal component analysis (PCA) method to convert the
variables into mutually orthogonal principal components
(PCs) (Yang et al. 2015). Because the reduction of the number
of variables, or dimensionality, on the other hand, may lead to
a loss of useful information about the original data, we also

repeated the analysis using shrinkage smoothers as an alterna-
tive approach. Shrinkage is the procedure of compressing ex-
treme values towards a central value (Tibshirani 1996). The
benefit of using the shrinkage smoothers is to shrink less im-
portant variables into zero (Marra and Wood 2011). When
using PCA and shrinkage techniques, we applied both cr
and tp splines. The third approach used the least absolute
shrinkage and selection operator (LASSO) regularization,
which selected variables using a penalty α = 1 (Friedman
et al. 2010).

All analyses were conducted in R version 3.5.1 (R
Foundation for Statistical Computing, Vienna, Austria) using
packages psych, mgcv, and glmnet. Two-sided p values less
than 0.05 are considered statistically significant.

Results

Descriptive statistics and univariate association

The descriptive statistics of daily mortality caused by cerebro-
vascular diseases, PM2.5 concentrations, and the meteorolog-
ical variables are presented in Table 1. The mean of daily
PM2.5 concentration is 55 μg/m3. The daily average deaths
for the cerebrovascular diseases are 62 over the study period.
The estimated coefficient with PM2.5 is 1.653 × 10−3, corre-
sponding to a 1.653% increment in daily CVD deaths per 10

Table 1 Descriptive statistics and univariate association for the risk of cerebrovascular disease death

Variable Mean SD Median Q1 Q3 β SE p value

CVD deaths 62 14 60 51 71

PM2.5 (μg/m
3) 55 39 46 29 69 1.653 × 10−3 9.219 × 10−5 < 0.001

PreAvg (kPa) 101.61 0.88 101.51 100.82 102.26 0.1576 0.0045 < 0.001

PreMax (kPa) 101.80 0.90 101.84 101.01 102.49 0.1586 0.044 < 0.001

PreMin (kPa) 101.34 0.87 101.35 100.58 103.67 0.1531 0.0046 < 0.001

TemAvg (°C) 17 9 18 9 24 − 0.0172 0.0004 < 0.001

TemMax (°C) 21 9 22 13 28 − 0.0160 0.0004 < 0.001

TemMin (°C) 14 9 15 6 22 − 0.0168 0.0004 < 0.001

HumAvg (%) 70 13 72 62 79 − 0.0011 0.0003 < 0.001

HumMin (%) 51 18 51 38 63 − 0.0011 0.0002 < 0.001

RainVol (mm) 33 104 0 0 11 − 0.0002 4.055 × 10−5 < 0.001

Windspd (m/s) 2.8 1.0 2.7 2.1 3.4 − 0.0187 0.0041 < 0.001

WindMax (m/s) 5.2 1.2 5.0 4.3 5.8 − 0.0066 0.0032 0.0419

WindExt (m/s) 8.6 2.2 8.2 7.0 9.8 − 0.0019 0.0017 0.278

Sunshine (h) 4.7 4.0 4.8 0 8.2 − 0.0048 0.0010 < 0.001

CVD deaths stands for the deaths for cerebrovascular diseases. PreAvg, PreMax, and PreMin stand for the daily average, maximum, and minimum
atmospheric pressure, respectively. TemAvg, TemMax, and TemMin stand for the daily average, maximum, and minimum temperature, respectively.
HumAvg and HumMin stand for the daily average and minimum humidity measured as percentage. RainVol stands for the daily rain volume. Windspd,
WindMax, and WindExt are daily average, maximum, and extreme wind speed, respectively. SD stands for standard deviation. Q1 and Q3 stand for the
first and third quartiles. β stands for regression coefficient for the variable in generalized linear regressionmodel, accompanied by SE (standard error) and
p value
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μg/m3 increment in PM2.5 concentration. All meteorological
variables other than extreme wind speed showed a statistically
significant association, and higher value tended to be associ-
ated with lower death risk apart from the daily atmospheric
pressure variables.

There was multicollinearity among PM2.5 and meteorolog-
ical variables (Table 2).Most of the correlation coefficients are
statistically significant. For example, daily average atmo-
spheric pressure has a highly negative relationship with the
average temperature (r = − 0.87), average humidity is nega-
tively correlated with the sunshine (r = − 0.67), and volume of
rain is negatively correlated with the sunshine (r = − 0.61).
According to the VIF values, daily average pressure, maxi-
mum pressure, minimum pressure, daily average temperature,
maximum temperature, minimum temperature, daily average
humidity, minimum humidity, maximum wind speed, and ex-
treme wind speed are highly correlated to other variables and
daily average rain volume, wind speed, and sunshine are mod-
erately correlated to other variables (Table 3) (O’Brien 2007).
For example, the VIF value of daily average pressure indicates
that the variance of the estimated coefficient of the variable is
inflated by a factor of 273.34 as it is highly correlated with at
least one predictor variable. The correlations between PM2.5

and meteorological variables are rather weak, and most of
them have a Spearman’s r < 0.30 (Table 3).

Results of the GAM-PCA approach

The first four principal components derived from PCA ex-
plained approximately 91% variation of the original data
(Table 4). After adjusting for meteorological conditions

and day of the week, there was no longer a statistically
significant association between daily PM2.5 concentration
and CVD mortality in both cr and tp spline models. All the
smoothing functions of the PCs are statistically significant
except for the fourth PC.

Table 2 Spearman correlation coefficients between the meteorological variables

PreAvg PreMin PreMax TemAvg TemMin TemMax HumAvg HumMin RainVol Windspd WindMax WindExt Sunshine

PM2.5 0.24* 0.24* 0.23* − 0.33* − 0.37* − 0.26* − 0.08* − 0.23* − 0.15* − 0.34* − 0.21* − 0.22* − 0.01

PreAvg 0.98* 0.98* − 0.87* − 0.87* 0.85* − 0.25* − 0.25* − 0.2* − 0.1* − 0.1* − 0.04 − 0.01*

PreMin 0.96* − 0.85* − 0.84* − 0.82* − 0.26* − 0.25* − 0.2* − 0.1* − 0.16* − − 0.09* 0.001

PreMax − 0.89* − 0.89* − 0.84* − 0.24* − 0.24* − 0.1* − 0.08 − 0.09* − 0.01 − 0.04

TemAvg 0.98* 0.98* 0.09* 0.12* 0.03 0.10* 0.09* 0.03 0.18*

TemMin 0.98* 0.18* 0.24* 0.11* 0.14* 0.09* 0.05 0.07

TemMax 0.007 8 × 10−4 − 0.04 0.07 0.09* 0.01 0.29*

HumAvg 0.90* 0.61* − 0.09* − 0.12* − 0.10* − 0.67*

HumMin 0.59* 0.05 − 0.03 − 0.005 − 0.72*

RainVol 0.06 0.10 0.14* − 0.61*

Windspd 0.75* 0.71* 0.04

WindMax 0.90* 0.08*

WindExt 0.02

PresAvg, PreMax, and PreMin stand for the daily average, maximum, and minimum atmospheric pressure, respectively. TemAvg, TemMax, and
TemMin stand for the daily average, maximum, and minimum temperature, respectively. Humvg and HumMin stand for the daily average and minimum
humidity measured as a percentage. RainVol stands for the daily rain volume. Windspd, WindMax, and WindExt are daily average, maximum, and
extreme wind speed, respectively. *p < 0.05

Table 3 Variance
inflation factor (VIF) of
meteorological
conditions

Variable VIF

PreAvg 273.34

PreMax 97.96

PreMin 82.04

TemAvg 308.86

TemMax 118.51

TemMin 89.96

HumAvg 7.66

HumMin 10.97

Rainvol 1.30

Windspd 3.04

WindMax 6.52

WindExt 5.43

Sunshine 2.78

PreAvg, PreMax, and PreMin stand for the
daily average, maximum, and minimum
atmospheric pressure, respectively.
TemAvg, TemMax, and TemMin stand
for the daily average, maximum, and min-
imum temperature, respectively. HumAvg
and HumMin stand for the daily average
and minimum humidity measured as a per-
centage. RainVol stands for the daily rain
volume. Windspd, WindMax, and
WindExt are daily average, maximum,
and extreme wind speed, respectively
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Results of the GAM shrinkage smoothers approach

Both shrinkage smoothers (cr and tp) shrank daily average
atmospheric pressure, maximum atmospheric pressure, mini-
mum atmospheric pressure, minimum temperature, average
humidity, average rain volume, average wind speed, maxi-
mum wind speed, extreme wind speed, and sunshine to zero
(Table 5). Again, no statistically significant association was
found between daily PM2.5 concentration and CVD mortality
after adjusting for meteorological conditions and day of the
week. The smoothing terms of average and maximum temper-
ature and daily minimum humidity retained statistically
significant.

Results of the GAM-LASSO approach

Daily average temperature and minimum temperature
were selected using the LASSO procedure and included
in the model (Table 6). The association between daily
PM2.5 concentration and cerebrovascular mortality be-
came no longer statistically significant after adjustment,
but the smoothing term of average temperature retained
statistically significant.

Discussion

In the current study, we evaluated the effect of daily PM2.5

concentrations on the CVD deaths in Shanghai, China, using
GAM analysis with three different approaches for controlling
for collinear confounding variables while simultaneously tak-
ing into account the linear and nonlinear relationships between
meteorological confounding variables and the number of
deaths. The daily average PM2.5 concentration level in our
data was 55 μg/m3, and this was much higher than the recom-
mended levels for PM2.5 yearly average below 10 μg/m3 or 25
μg/m3 by the World Health Organization or the European
Union, respectively (Thunis et al. 2017). There was a 1.7%
elevated risk for CVD death per 10 μg/m3 PM2.5 concentra-
tion in the unadjusted model, but after adjustment for meteo-
rological variables and temporal trend, the exposure to PM2.5

was no longer associated. The results were consistent in the
three modelling techniques we used.

A body of research has shown that an increase in PM2.5 was
linked to an elevated risk of stroke (Franklin et al. 2008; Leiva
et al. 2013; Lin et al. 2017; Lisabeth et al. 2008; Shah et al.
2015; Wellenius et al. 2012), ischemic heart disease (Pope
et al. 2002), myocardial infarction (Peters et al. 2001), and
cerebrovascular mortality (Gutierrez-Avila et al. 2018), and

Table 4 Summary of the GAM-PC analysis for the risk of cerebrovascular disease mortality

Parametric coefficients SE p value

cr tp cr tp cr tp

Intercept 4.1 4.1 0.012 0.012 < 0.001 < 0.001

PM2.5 1.83 × 10−5 3.97 × 10−5 1.15 × 10−4 1.15 × 10−4 0.87 0.73

DOW1 1.09 × 10−2 1.08 × 10−2 1.45 × 10−2 1.44 × 10−2 0.45 0.45

DOW2 2.93 × 10−3 2.42 × 10−3 1.44 × 10−2 1.45 × 10−2 0.84 0.87

DOW3 1.63 × 10−2 1.58 × 10−2 1.44 × 10−2 1.44 × 10−2 0.26 0.27

DOW4 6.68 × 10−3 6.55 × 10−3 1.44 × 10−2 1.44 × 10−2 0.64 0.65

DOW5 5.62 × 10−3 5.53 × 10−3 1.44 × 10−2 1.44 × 10−2 0.70 0.70

DOW6 − 1.31 × 10−3 − 1.31 × 10−3 1.44 × 10−2 1.45 × 10−2 0.93 0.92

The approximate significance of smoothing terms

Edf Ref.df Chi-square p value

cr tp cr tp cr tp cr tp

s(PC1) 2.77 2.69 2.96 2.93 54.28 50.98 < 0.001 < 0.001

s(PC2) 1 1 1 1 7.22 6.04 0.007 0.01

s(PC3) 1 1 1 1 8.06 8.50 0.004 0.003

s(PC4) 1.55 1.44 1.83 1.74 1.40 0.50 0.43 0.63

s(t) 17.21 18.05 17.91 18.87 579.74 577.9 < 0.001 < 0.001

R-sq.(adj) Deviance explained REML Scale estimate N

cr tp cr tp cr tp cr tp cr tp

0.637 0.637 63.9% 64% 3990.6 3998.3 1 1 1091 1091

DOW, the day of the week; PC, principal component; SE, standard error; s(), smoothing function; t, time; cr, cubic regression; tp, thin plate; Edf, effective
degrees of freedom; Ref.def, reference degrees of freedom; REML, restricted maximum likelihood; N, total number of observations. Parameter coeffi-
cients are adjusted estimates
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recent reviews showed that PM2.5 was associated with ap-
proximately 1% elevated risk of cerebrovascular mortality
by every 10 μg/m3 increase (Shah et al. 2015; Wang et al.
2014). These studies revealed an increased risk of CVD as-
sociated with short-term exposure to PM2.5 in Europe, the
USA, Asia, Africa, and South America. The excessive risk
per 10 μg/m3 increase in PM2.5 concentration ranged from
0.7% in mortality to 1.3% in hospital admission. In our data,
the unadjusted association was similar but higher (1.7% ex-
cessive mortality per 10 μg/m3 increase in PM2.5 concentra-
tion). It has been proved difficult to quantify premature mor-
tality related to air pollution, notably in regions where air
quality is not systematically monitored, and also because
the toxic particles from various sources may vary (Tuomisto
et al. 2008). The estimated effect of PM2.5 on premature mor-
tality largely depends on the toxicity regarding the inhaled

particle components. In China, emissions from residential
energy use such as heating and cooking have the largest con-
tribution to PM2.5, whereas in much of the USA and in a few
other countries, emissions from traffic and power generation
are important. In the eastern United States, Europe, Russia,
and East Asia, agricultural emissions make the largest relative
contribution to PM2.5 (Lelieveld et al. 2015). It might partial-
ly explain the difference in the findings between our study
and other studies. On the other hand, the difference might be
in part due to the profoundly different demographic charac-
teristics, socioeconomic status, or environmental conditions.
For example, Shanghai is a megacity with a dense population
and high temperature and humidity all the year round, and
PM2.5 may impact public health differently from other studied
areas. Like the aforementioned studies, our study also con-
trolled for the temporal trend of deaths and confounding from

Table 5 Summary of the GAM with shrinkage smoothers analysis for the risk of cerebrovascular disease mortality

Parametric coefficients SE p value

cr tp cr tp cr tp

Intercept 4.1 4.1 0.012 0.012 < 0.001 < 0.001

PM2.5 6.9 × 10−5 1.5 × 10−4 1.1 × 10−4 1.2 × 10−4 0.52 0.16

DOW1 1.0 × 10−2 9.2 × 10−3 1.44 × 10−2 1.44 × 10−2 0.47 0.52

DOW2 4.1 × 10−3 3.1 × 10−3 1.44 × 10−2 1.44 × 10−2 0.78 0.83

DOW3 1.9 × 10−2 1.7 × 10−2 1.44 × 10−2 1.44 × 10−2 0.20 0.23

DOW4 7.0 × 10−3 6.1 × 10−3 1.45 × 10−2 1.44 × 10−2 0.63 0.68

DOW5 5.6 × 10−3 4.5 × 10−3 1.44 × 10−2 1.44 × 10−2 0.70 0.75

DOW6 − 1.4 × 10−3 − 2.1 × 10−3 1.44 × 10−2 1.44 × 10−2 0.92 0.88

The approximate significance of smoothing terms

Edf Ref.df Chi-square p value

cr tp cr tp cr tp cr tp

s(PreAvg) 6.6 × 10−4 2.3 × 10−4 9 9 0 0 0.54 0.42

s(PreMax) 1.3 × 10−3 0.707 9 9 0.001 2.11 0.35 0.08

s(PreMin) 6.9 × 10−4 2.2 × 10−4 9 9 0 0 0.68 0.85

s(TemAvg) 2.48 4.40 9 9 8.07 49.83 0.005 < 0.001

s(TemMax) 4.11 1.29 9 9 17.55 10.37 < 0.001 < 0.001

s(TemMin) 6.8 × 10−4 3.2 × 10−4 9 9 0 0.001 0.73 0.38

s(HumAvg) 5.2 × 10−5 0.68 9 9 0 1.92 0.31 0.067

s(HumMin) 1.64 1.06 9 9 14.14 9.48 < 0.001 < 0.001

s(Rainvol) 9.5 × 10−4 2.5 × 10−4 9 9 0 0 0.91 0.91

s(Windspd) 4.4 × 10−4 2.3 × 10−4 9 9 0 0 0.63 0.87

s(WindMax) 1.0 × 10−3 6.5 × 10−3 9 9 0.001 0 0.39 0.59

s(WindExt) 4.4 × 10−4 6.0 × 10−4 9 9 0 0 0.84 0.75

s(Sunshine) 5.1 × 10−4 2.3 × 10−4 9 9 0 0 0.82 0.82

s(t) 8.94 8.94 9 9 369.12 329.99 < 0.001 < 0.001

R-sq.(adj) Deviance explained REML Scale estimate N

cr tp cr tp cr tp cr tp cr tp

0.624 0.616 62.7% 62.1% 4000.7 4014.9 1 1 1091 1091

DOW, the day of the week; SE, standard error; cr, cubic regression; tp, thin plate; s(), smoothing function; Edf, effective degrees of freedom; Ref.def,
reference degrees of freedom; REML, restricted maximum likelihood; N, the total number of observations. Parameter coefficients are adjusted estimates
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meteorological variables. However, we notice that when we
adjusted for quite a few meteorological variables, the associ-
ation became no longer statistically significant. The results
were consistent across different modelling strategies, while
the nonlinear association of CVD mortality with the meteo-
rological variables retained. The observed PM2.5 concentra-
tions in Shanghai were substantially higher than those in
Europe or the USA where most of the current studies have
been conducted and conclusions derived. The high ambient
PM2.5 concentration level in itself might mask triggering ef-
fect of exposure, and the meteorological factors were only
contributing to exacerbation of a PM2.5 exposure effect,
which might be a potential reason that no statistically signif-
icant effect was observed for PM2.5 and deserves further in-
vestigation in the comparative studies using data from regions
with low PM2.5 pollution..

The strengths of our study include, first, the adjustment
using the rich information of meteorological variables en-
abled us for detailed control for weather conditions.
Weather conditions and time-varying risk factors such as
days of the week may cause a significant modification on
PM2.5 levels and cerebrovascular events (Zhang et al.
2014). Second, multicollinearity among meteorological
variables was handled using different approaches of
PCA, shrinkage smoothers, and LASSO regularization,
and the results were consistent in all the methods. Third,
the use of two types of smoothing splines for the GAM
model allowed us to compare results to minimize the bias
from spline selection, and the results were, again, consis-
tent regardless of types of smoothing splines. In the

multicollinearity context, shrinkage methods, such as
ridge regression, may reduce the dimensionality of the
data by shrinking some coefficient estimates towards zero
but not exactly to zero. While in LASSO, one of the
correlated coefficients is usually zeroed and the other is
assigned the entire impact. Because of this, ridge regres-
sion is expected to work better if there are many large
parameters of about the same value. LASSO, on the other
hand, is expected to come on top when only a few factors
actually have impacts (James et al. 2013)

However, our study also has limitations. First, the rela-
tively shorter time period for the analysis limited us to fully
assess the long-term time trend in both PM2.5 pollution
levels and cerebrovascular disease mortality. Second, only
city-level PM2.5 concentrations from one air monitoring
station were available in our study, but the concentration
of PM2.5 may differ within the city and change during the
day, and people’s location would also not be constant. As a
megacity with a population of about 24 million and an area
of 6,340 km2, Shanghai has vastly different PM2.5 concen-
trations and meteorological conditions across the city.
Although deaths from 16 administrative districts in
Shanghai were available, only aggregated deaths of the
whole city and the PM2.5 concentrations, as well as mete-
orological variables, from a single monitoring station were
available in the study. It may mask and obscure the spatial
and temporal variability of PM2.5 effects at particular ex-
posure hotspots, such as the heat island effect in some parts
of the city may exacerbate the effects of PM2.5 due to high
temperatures that may also affect the outcomes. To over-
come the lack of spatial variability in PM2.5 concentrations
and/or meteorological data, a land use regression approach
could be incorporated in the future (Liu et al. 2016). Of
course, air pollution and mortality data from multisite
would be more helpful for adjusting for the confounding
from the spatiotemporal variability in PM2.5 concentrations
and mortalities. Although many studies relied on air pollu-
tion information assuming a constant location of people at,
for example, their residential addresses, the quantification
of exposure using time and activity patterns of individuals
will also enhance the understanding (Reis et al. 2018).
Third, cerebrovascular mortality risk may vary by age,
sex, and socioeconomic factors, but these characteristics
were not controlled for in the current study. However, these
characteristics tend to be stable within the city given our
relatively short study period, thus confounding is unlikely
(Pope et al. 2002). Fourth, we focused on the same day’s
effect of a single pollutant and did not include multiple
pollutants (Wang et al. 2014) or lagged effects (Gutierrez-
Avila et al. 2018). Although it is possible that air pollution
may cause death after a certain period of time, a systematic
review indicates that the risk appeared hardly different by
the inclusion of lags (Shah et al. 2015).

Table 6 Summary of the GAM analysis with selected variables by
LASSO

Parametric coefficients SE p value

Intercept 4.11 0.012 < 0.001

PM2.5 3 × 10−5 1.1 × 10−4 0.80

DOW1 9.8 × 10−3 0.0144 0.50

DOW2 2.6 × 10−3 0.0144 0.86

DOW3 0.017 0.0144 0.25

DOW4 4.6 × 10−13 0.0145 0.75

DOW5 0.0041 0.0144 0.78

DOW6 − 0.0032 0.0145 0.82

The approximate significance of smoothing terms

Edf Ref.df Chi-square p value

s(PressMax) 2.39 3.09 3.98 0.26

s(TemAvg) 4.17 5.28 34.25 < 0.001

s(TemMin) 1.02 1.03 0.32 0.59

s(t) 17.18 17.89 464.62 < 0.001

DOW, the day of the week; SE, standard error; s(), smoothing function;
Edf, effective degrees of freedom; Ref.def, reference degrees of freedom
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Conclusion

In this study, we aimed to evaluate the effect of PM2.5 pollu-
tion on CVD mortality using GAM with three different ap-
proaches for controlling for confounding factors. The initially
statistically significant 1.65% elevated risk of CVD death was
no longer observed after adjusting for a number of meteoro-
logical variables. As a large number of people are exposed to
air pollution, further analysis using data with various measure-
ment times, periods, and detailed pollutant and exposure pro-
files would contribute to enhancing the understanding of the
impact of PM2.5 on human health and its mechanism.
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