Skip to main content
Log in

Developmental toxicity and apoptosis in zebrafish embryos induced by low-dose γ-ray irradiation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this paper, the developmental toxicity and apoptosis in zebrafish (Danio rerio) embryos induced by 0.01, 0.05, and 0.10-Gy γ-ray irradiation were investigated and verified by single cell gel electrophoresis, acridine orange staining, flow cytometry, transmission electron microscopy, digital gene expression sequencing, and Western blot analysis. DNA damage, deformity rates, and apoptosis of zebrafish embryos were found to increase significantly with the increase of irradiation dose, and survival and hatching rates significantly decreased when the irradiation dose exceeds 0.10 and 0.05 Gy, respectively. Exposure to 0.10-Gy γ-ray irradiation resulted in the swelling of cell mitochondria of zebrafish embryos and changes in their intracellular vacuoles. mRNA and protein expression levels of Shh (sonic hedgehog 19 KDa) and Smo (smoothened 86 KDa) of Hh signaling pathway associated with the development of early embryos significantly increased with the increase of irradiation dose. Expression of the AKT (56 KDa) and PiK3r3 (55 KDa) genes, which are anti-apoptotic and involved with the PI3K/Akt signaling pathway, significantly decreased, while expression of the bada gene, which is pro-apoptotic, significantly increased. The results show that γ-ray irradiations of 0.01 and 0.05 Gy can induce developmental toxicity and apoptosis in zebrafish embryos via Hh and PI3K/Akt signaling pathways, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  CAS  Google Scholar 

  • Azqueta A, Collins AR (2013) The essential comet assay: a comprehensive guide to measuring DNA damage and repair. Arch Toxicol 87:949–968

    Article  CAS  Google Scholar 

  • Brenner DJ, Hall EJ (2007) Computed tomography-an increasing source of radiation exposure. N Engl J Med 357:2277–2284

    Article  CAS  Google Scholar 

  • Cadet J, Carell T, Cellai L, Chatgilialoglu C, Gimisis T, Miranda M, O’Neill P, Ravanat J, Robert M (2008) DNA damage and radical reactions: mechanistic aspects, formation in cells and repair studies. CHIMIA Int J Chem 62:742–749

    Article  CAS  Google Scholar 

  • Cadet J, Ravanat JL, TavernaPorro M, Menoni H, Angelov D (2012) Oxidatively generated complex DNA damage: tandem and clustered lesions. Cancer Lett 327:5–15

    Article  CAS  Google Scholar 

  • Cohen BL (2011) The cancer risk from low level radiation. In: Tack D, Kalra M, Gevenois P (eds) Radiation dose from multidetector CT. Medical radiology. Springer, Berlin, pp 61–79

  • Datta K, Suman S, Fornace AJ (2014) Radiation persistently promoted oxidative stress, activated mTOR via PI3K/Akt, and downregulated autophagy pathway in mouse intestine. Int J Biochem Cell B 57:167–176

    Article  CAS  Google Scholar 

  • Dent P, Yacoub A, Contessa J, Caron R, Amorino G, Valerie K, Schmidt-Ullrich R (2003) Stress and radiation-induced activation of multiple intracellular signaling pathways. Radiat Res 159:283–300

    Article  CAS  Google Scholar 

  • di Magliano MP, Hebrok M (2003) Hedgehog signalling in cancer formation and maintenance. Nat Rev Cancer 3:903–911

    Article  Google Scholar 

  • Dimri M, Joshi J, Chakrabarti R, Sehgal N, Sureshbabu A, Prem KI (2015) Todralazine protects zebrafish from lethal effects of ionizing radiation: role of hematopoietic cell expansion. Zebrafish 12:33–47

    Article  CAS  Google Scholar 

  • Douki T, Ravanat JL, Pouget JP, Testard I, Cadet J (2006) Minor contribution of direct ionization to DNA base damage induced by heavy ions. Int J RadiatBiol 82:119–127

    Article  CAS  Google Scholar 

  • Fournier L, Laurier D, Caër-Lorho S, Laroche P, Le G, Bernard PF, Leuraud K (2016) P275 Risk of cancer mortality in a French cohort of nuclear workers when accounting for occupational, environmental and medical radiation exposure. Occup Environ Med 73(Suppl 1):A213–A213

    Google Scholar 

  • Gagnaire B, Cavalié I, Pereira S, Floriani M, Dubourg N, Camilleri V, Adam-Guillermin C (2015) External gamma irradiation-induced effects in early-life stages of zebrafish, Danio rerio. Aquat Toxicol 169:69–78

    Article  CAS  Google Scholar 

  • Geisler R (2002) Zebrafish: a practical approach. The practical approach series 261:175–212

    Google Scholar 

  • Hallare AV, Schirling M, Luckenbach T, Köhler HR, Triebskorn R (2005) Combined effects of temperature and cadmium on developmental parameters and biomarker responses in zebrafish (Danio rerio) embryos. J ThermBiol 30:7–17

    CAS  Google Scholar 

  • Hamra GB, Richardson DB, Cardis E, Daniels RD, Gillies M, O’Haga JA, Moissonnier M (2016) Cohort profile: the international nuclear workers study (INWORKS). Int J Epidemiol 45:693–699

    Article  Google Scholar 

  • Han ZH, Wang QW, Fu J, Chen HS, Zhao Y, Zhou BS, Liu HL (2014) Multiple bio-analytical methods to reveal possible molecular mechanisms of developmental toxicity in zebrafish embryos/larvae exposed to tris (2-butoxyethyl) phosphate. Aquat Toxicol 150:175–181

    Article  CAS  Google Scholar 

  • Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503

    Article  CAS  Google Scholar 

  • Hu M, Hu N, Ding DX, Zhao WC, Feng YF, Zhang H, Wan YD (2016) Developmental toxicity and oxidative stress induced by gamma irradiation in zebrafish embryos. Radiat Environ Biophys 55:441–450

    Article  CAS  Google Scholar 

  • Hurem S, Gomes T, Brede DA, Lindbo EH, Mutoloki S, Fernandez C (2017a) Parental gamma irradiation induces reprotoxic effects accompanied by genomic instability in zebrafish (Danio rerio) embryos. Environ Res 159:564–578

    Article  CAS  Google Scholar 

  • Hurem S, Martín LM, DAnders B, Skjerve E, Nourizadeh-Lillabad R, Lind OC, Salbu B ((2017b)) Dose-dependent effects of gamma radiation on the early zebrafish development and gene expression. PLoS One 12:e0179259

  • Hurem S, Martín LM, Lindeman L, Brede DA, Salbu B, Lyche JL, AleströmP KJH (2018a) Parental exposure to gamma radiation causes progressively altered transcriptomes linked to adverse effects in zebrafish offspring. Environ Pollut 234:855–863

    Article  CAS  Google Scholar 

  • Hurem S, Gomes T, Brede DA, Mayer I, Lobert VH, Mutoloki S, Gutzkow KB, Teien HC, Oughton D, Aleström P, Lyche PJ ((2018b)) Gamma irradiation during gametogenesis in young adult zebrafish causes persistent genotoxicity and adverse reproductive effects. Ecotox Environ Safe 154:19–26

  • ICRP (1990) Annex B Biological effects of ionising radiations. ICRP Publication 60. Pergamon Press, Oxford

  • Jarvis R, Knowles J (2003) DNA damage in zebrafish larvae induced by exposure to low-dose rate γ-radiation: detection by the alkaline comet assay. Mutat Res-Gen ToxEn 541:63–69

    Article  CAS  Google Scholar 

  • Kalueff AV, Stewart AM, Gerlai R (2014) Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci 35:63–75

    Article  CAS  Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2007) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36(S1):480–484

    Article  CAS  Google Scholar 

  • Kosmehl T, Hallare AV, Braunbeck T, Hollert H (2008) DNA damage induced by genotoxicants in zebrafish (Danio rerio) embryos after contact exposure to freeze-dried sediment and sediment extracts from Laguna Lake (The Philippines) as measured by the comet assay. Mutat Res-Gen ToxEn 650:1–14

    Article  CAS  Google Scholar 

  • Kumar MKP, Shyama SK, Kashif S, Dubey SK, Sonaye BH, Samit BK, Chaubey RC (2017) Effects of gamma radiation on the early developmental stages of Zebrafish (Danio rerio). Ecotox Environ Safe 142:95–101

    Article  CAS  Google Scholar 

  • Leuraud K, Richardson DB, Cardis E, Daniels RD, Gillie M, O’Haga JA, Moissonnie M (2015) Ionising radiation and risk of death from leukaemia and lymphoma in radiation-monitored workers (INWORKS): an international cohort study. Lancet Haematol 2:e276–e281

    Article  Google Scholar 

  • Matsumura H, Yoshida K, Luo S, Kimur E, Fujibe T, Albertyn Z, Schroth GP (2010) High-throughput Super SAGE for digital gene expression analysis of multiple samples using next generation sequencing. PLoS One 5:e12010

    Article  CAS  Google Scholar 

  • Michiue T, Yamamoto T, Yasuoka Y, Goto T, Ikeda T, Nagura K, Nakayama T, Taira M, Kinoshita T (2017) High variability of expression profiles of homeologous genes for Wnt, Hh, Notch, and Hippo signaling pathways in Xenopus laevis. Dev Biol 426:270–290

    Article  CAS  Google Scholar 

  • Miglioretti DL, Johnson E, Williams AG, Robert T, Weinmann S, Solberg LI, Vanneman N (2013) The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr 167:700–707

    Article  Google Scholar 

  • Nasevicius A, Ekker SC (2000) Effective targeted gene “knockdown” in zebrafish. Nat Genet 26:216–220

    Article  CAS  Google Scholar 

  • Olive PL, Banáth JP, Durand RE (1990) Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the “comet” assay. Radiat Res 122:86–94

    Article  CAS  Google Scholar 

  • Pereira S, Bourrachot S, Cavalie I, Plaire D, Dutilleul M, Gilbin R, Adam-Guillermin C (2011) Genotoxicity of acute and chronic gamma-irradiation on zebrafish cells and consequences for embryo development. Environ Toxicol Chem 30:2831–2837

    Article  CAS  Google Scholar 

  • Pereira S, Malard V, Ravanat JL, Davin AH, Armengaud J, Foray N, Adam-Guillermin C (2014) Low doses of gamma-irradiation induce an early bystander effect in zebrafish cells which is sufficient to radioprotect cells. PLoS One 9:e92974

    Article  CAS  Google Scholar 

  • Porter JA, Young KE, Beachy PA (1996) Cholesterol modification of hedgehog signaling proteins in animal development. Science 274:255–259

    Article  CAS  Google Scholar 

  • Postlethwait JH, Woods IG, Ngohazelett P, Yan YL, Kelly PD, Chu F, Huang H, Hill-Force A, Talbot WS (2000) Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res 10:1890–1902

    Article  CAS  Google Scholar 

  • Rasooly RS, Henken D, Freeman N, Tompkins L, Badman D, Briggs J, Hewitt AT (2003) Genetic and genomic tools for zebrafish research: the NIH zebrafish initiative. Dev Dyn 228:490–496

    Article  CAS  Google Scholar 

  • Scholz S, Fischer S, Gündel U, Küster E, Luckenbach T, Voelker D (2008) The zebrafish embryo model in environmental risk assessment-applications beyond acute toxicity testing. Environ Sci PollutR 15:394–404

    Article  CAS  Google Scholar 

  • Schuurbiers OCJ, Kaanders JHAM, van der Heijden HFM, Dekhuijzen RPN, Oyen WJG, Bussink J (2009) The PI3-K/AKT-pathway and radiation resistance mechanisms in non-small cell lung cancer. J Thorac Oncol 4:761–767

    Article  Google Scholar 

  • Socol Y, Dobrzyński L, Doss M, Janiak MK, Miller ML, Sanders CL, Vaiserman A (2014) Commentary: ethical issues of current health-protection policies on low-dose ionizing radiation. Dose-Response 12:342–348

    Article  Google Scholar 

  • Suman S, Kallakury BVS, Fornace Jr Albert J, Datta K (2015) Protracted upregulation of leptin and IGF1 is associated with activation of PI3K/Akt and JAK2 pathway in mouse intestine after ionizing radiation exposure. Int J BiolSci 11:274–283

    Article  CAS  Google Scholar 

  • Tang Y, Gholamin S, Schubert S, Willardson MI, Lee A, Bandopadhayay P, Vue N (2014) Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition. Nat Med 20:732–740

    Article  CAS  Google Scholar 

  • Tucker B, Lardelli M (2007) A rapid apoptosis assay measuring relative acridine orange fluorescence in zebrafish embryos. Zebrafish 4:113–116

    Article  Google Scholar 

  • UNSCEAR (2010) Summary of low-dose radiation effects on health. UNSCEAR Publication 90. English, Publishing and Library Section, United Nations Office at Vienna, New York

  • Veinotte CJ, Dellaire G, Berman JN (2014) Hooking the big one: the potential of zebrafish xenotransplantation to reform cancer drug screening in the genomic era. Dis Model Mech 7:745–754

    Article  CAS  Google Scholar 

  • Wang T, Zhang Y, Xu HM, Jiang JQ, Fan LG (2006) Individual external dose monitoring at QNPC from 1993 to 2005. Radiat Protect Bull 26:38–42 (in Chinese)

    Google Scholar 

  • Wang T, Xu W, Deng CG, Xua SX, Li FH, Wu YJ, Wu LJ, Bian P (2016) A pivotal role of the jasmonic acid signal pathway in mediating radiation-induced bystander effects in Arabidopsis thaliana. Mutat Res-FundMol M 791-792:1–9

    Article  CAS  Google Scholar 

  • Wang XZ, Zhi J, Yang HH, Liu YJ (2018) Dibenzoxanthenes induce apoptosis and autophagy in HeLa cells by modeling the PI3K/Akt pathway. J Photochem Photobiol B 187:76–88

    Article  CAS  Google Scholar 

  • Watkins DN, Berman DM, Burkholder SG, Wang B (2003) Hedgehog signaling within airway epithelial progenitors and in small-cell lung cancer. Nature 422:313–317

    Article  CAS  Google Scholar 

  • Weichselbaum R, Shafaee Z, Du W (2005) Combination therapy of hedgehog inhibitors, radiation and chemotherapeutic agents. U.S. Patents Application 11(/576):310

    Google Scholar 

  • Wu G (2008) The calculation method for effective dose of worker personnel in uranium mines. Ura Min Met 27:77–80 (in Chinese)

    Google Scholar 

  • Yang LL, Wang RJ, Gao YB, Xu XP, Fu KF, Wang SX, Peng RY (2014) The protective role of interleukin-11 against neutron radiation injury in mouse intestines via MEK/ERK and PI3K/Akt dependent pathways. Dig Dis Sci 59:1406–1414

    Article  CAS  Google Scholar 

  • Yang W, Liu YY, Gao RL, Yu HQ, Sun T (2018) HDAC6 inhibition induces glioma stem cells differentiation and enhances cellular radiation sensitivity through the SHH/Gli1 signaling pathway. Cancer Lett 415:164–176

    Article  CAS  Google Scholar 

  • Zhou B, Tan PP, Liu SJ, Zhao WP, Wang HW (2018) PI3K/AKT signaling pathway involvement in fluoride-induced apoptosis in C2C12 cells. Chemosphere 199:297–302

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the Defense Industrial Technology Development Program (No. JCKY2016403C001) and Key Project of National Defense Basic Research (No. B3720132001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dexin Ding.

Additional information

Responsible editor: Markus Hecker

Electronic supplementary material

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Hu, N., Ding, D. et al. Developmental toxicity and apoptosis in zebrafish embryos induced by low-dose γ-ray irradiation. Environ Sci Pollut Res 26, 3869–3881 (2019). https://doi.org/10.1007/s11356-018-3893-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3893-y

Keywords

Navigation