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Abstract
Terrestrial oil pollution is one of the major causes of ecological damage within the Niger Delta region of Nigeria and has caused a
considerable loss of mangroves and arable croplands since the discovery of crude oil in 1956. The exact extent of landcover loss
due to oil pollution remains uncertain due to the variability in factors such as volume and size of the oil spills, the age of oil, and
its effects on the different vegetation types. Here, the feasibility of identifying oil-impacted land in the Niger Delta region of
Nigeria with a machine learning random forest classifier using Landsat 8 (OLI spectral bands) and Vegetation Health Indices is
explored. Oil spill incident data for the years 2015 and 2016 were obtained from published records of the National Oil Spill
Detection and Response Agency and Shell PetroleumDevelopment Corporation. Various health indices and spectral wavelengths
from visible, near-infrared, and shortwave infrared bands were fused and classified using the machine learning random forest
classifier to distinguish between oil-free and oil spill–impacted landcover. This provided the basis for the identification of the best
variables for discriminating oil polluted from unpolluted land. Results showed that better results for discriminating oil-free and oil
polluted landcovers were obtained when individual landcover types were classified separately as opposed to when the full study
area image including all landcover types was classified at once. Similarly, the results also showed that biomass density plays a
significant role in the characterization and classification of oil contaminated and oil-free pixels as tree cover areas showed higher
classification accuracy compared to cropland and grassland.
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Introduction

An oil spill is the discharge of petroleum hydrocarbon prod-
ucts into marine or terrestrial ecosystem. Terrestrial spills

result from underground and surface pipeline leakages, sabo-
tage, and operational failure, as well as transport of oil slicks
from sea to land (Taheri 2012). Oil can damage vegetation
through several mechanisms, such as the ingestion and ab-
sorption of toxic compounds through the biota’s respiratory
structures (Joel and Amajuoyi 2009; Mendelssohn et al.
2012), coating and smothering which affects temperature ad-
aptation, and gas regulation as well as other life-supporting
processes (Mendelssohn et al. 2012). On shore, oil spill con-
tamination has the potential of increasing erosion and loss of
salt marsh due to oil-induced plant mortality (Khanna et al.
2013) and the longer oil resides on land, the greater the impact
and slower the recovery (Gundlach and Hayes 1978; Jackson
et al. 1989; Khanna et al. 2013). This results from direct im-
pacts of hydrocarbon crude oil on plant metabolism as well as
indirect impacts through disruption of plant-water relation-
ships and reduced gas exchange between atmosphere and
soil (Hester and Mendelssohn 2000; Khanna et al. 2013;
Pezeshki et al. 2000).
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In Nigeria, the effects of oil exploration are particularly
glaring in the Niger Delta. Reduced food productivity, dam-
ages to the subsistence economy, habitat distortion, epidemic
outbreaks, and general social instability are among the numer-
ous negative impacts that crude oil exploitation has had in the
Niger Delta (Onwurah et al. 2007). The Nigerian
Conservation Foundation in a study in 2006 put the figure
for oil spilt, onshore and offshore, at 9 to 13 million barrels
of oil over the past 50 years. This has massively threatened the
well-being of the people (Nriagu 2011). Onwurah et al. (2007)
noted that a good percentage of oil spills that occurred on the
dry land between 1978 and 1979 in Nigeria affected farmlands
in which crops such as rice, maize, yams, cassava, and plan-
tain were lost. Similarly, findings from the studies conducted
by the United Nation Environmental Programme (UNEP) in
2011 in the Niger Delta suggest that residents are exposed to
elevated levels of petroleum hydrocarbon in contaminated
drinking water and outdoor air which posed a serious threat
to their health (UNEP 2011).

Detecting oil spill through remote sensing is frequently the
basis for establishing the impact of oil pollution near shore,
marshes, and mudflat ecosystems. Common techniques used
for oil spill detection include image spectroscopy (Khanna
et al. 2013; Kokaly et al. 2013) and field spectroscopy
(Mishra et al. 2012), broadband Vegetation Health Indices
(Adamu et al. 2015; Arellano et al. 2015; Noomen et al.
2015), narrowband vegetation indices (Arellano et al. 2015;
Noomen et al. 2015), and recently airborne SAR polarimetry
(Ramsey et al. 2015; Ramsey III et al. 2011; Ramsey et al.
2014). Results from satellite image processing with emphasis
on vegetation health are particularly useful in assessing the
impact of oil on terrestrial mangrove and swamp ecosystems
as well as fragile near-shore marsh vegetation (Adamu et al.
2016; Khanna et al. 2013; Kokaly et al. 2013; Mendelssohn
et al. 2012; Mishra et al. 2012; Noomen et al. 2015; Onwurah
et al. 2007; Ramsey et al. 2015; Ramsey III et al. 2011; Shi et al.
2007; Sun et al. 2016; Zabbey and Uyi 2014). This is because
of the toxicity of crude oil and its potential to alter the biophys-
ical and biochemical processes in plants and ecosystem com-
munity. However, most studies in oil spill impact assessment
have focused on detecting the phenomenon without necessarily
establishing the extent of the impact of these obnoxious com-
pounds on the adjoining landcover. Attempts have also been
made to map landcover changes as a result of the long-term
impact of hydrocarbon on plant communities (Ayanlade and
Howard 2016; Kuenzer et al. 2014; Ochege et al. 2017). A
significant number of studies have primarily focused on
assessing general changes on mangrove fields over time with-
out specific efforts to distinguish between the healthy compo-
nents (oil-free) and oil-impacted landcover component, and
how the observed trends affect the broader landcover change.

This study focuses explicitly on distinguishing and map-
ping oil-free and oil-impacted landcovers separately. This

can provide a basis for assessing future terrestrial based oil
spill impacts and how the inter landcover variability of oil
polluted and oil-free landcover types contribute to a general
landcover change pattern. Furthermore, the effective dis-
crimination of oil polluted and oil-free landcovers can pro-
vide information on the location of oil pipeline leakages
and the extent of land area affected by oil in regions with
limited accessibility. This mapping can also provide useful
landcover discriminatory maps for timely intervention in
oil spill prone areas, as well as a basis for formulating
mitigation and remediation strategies before irreversible
damage is done to the ecosystem. In the long term, howev-
er, this approach can also be used to formulate robust and
transferable image processing models which can be used to
track future terrestrial oil spills leveraging on the pool of
spectral library generated.

Some studies have tried to reduce the confusion between
classes by implementing spectral space delineation to obtain
pure image training samples specific to each class to generate
accurate maps (Aplin and Atkinson 2001; Arif et al. 2015;
Arroyo et al. 2010; MacLachlan et al. 2017; Tsutsumida
et al. 2016).

Generally, two fundamental types of image processing
methodologies exist, parametric and non-parametric algo-
rithms (Li et al. 2013). While the first is dependent on the
characteristic nature of input variables with respect to statis-
tical distribution, probability, and clustering of pixel values,
the non-parametric methods do not require variables to fol-
low a particular statistical distribution and they also have the
ability of discretely handling problems of noise, model
fitting, and relatively lower computational demands than
other classification approaches. Several on shore oil spill
studies have used decision tree algorithms for the
assessment of oil contamination on mangrove and
marshland. Giri et al. (2011) used a decision tree classifier
based on a univariate decision tree (C45.5) algorithm to
classify Landsat and Airborne photography of the
Louisiana mangroves. Emphasis was on depicting the
spatiotemporal characteristics of ecosystem shifts, in terms
of expansion, retraction, and disappearance. Khanna et al.
(2013) also used a binary decision tree based on vegetation
index, angle index, and depth of oil absorption to produce a
classification map for six classes, oiled soil, oiled dry vege-
tation, oil-free soil, oil-free dry vegetation, green vegetation,
and water to assess oil impact on marshland vegetation of
the Louisiana coast. However, little attempts have been
made to assess the functionality of random forest classifica-
tion algorithms for discriminating oil-impacted landcover
from oil-free landcover at a broader scale. The robust appli-
cation of random forest in the extraction of precise details
from remotely sensed data has been demonstrated in several
studies (Du et al. 2015; Jhonnerie et al. 2015; Juel et al.
2015; Liu et al. 2014).
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This study aims to

& Explore the potential of the non-parametric random forest
machine learning classifier to discriminate pixels of oil
polluted landcover from oil-free landcover types within
the Niger Delta region of Nigeria using Landsat 8 visible,
near-infrared, and shortwave infrared bands and derived
Vegetation Health Indices

& Identify the variables that provide most information for this
discrimination using this non-parametric method, as several
studies (Adamu et al. 2015, 2016, 2018; Khanna et al. 2013;
Zhu et al. 2013) have tested the sensitivity of some of these
variables to detect oil spill using parametric methods

& Highlight the possible reduction of confusion between
classes by implementing subset classification for the sep-
arate landcover types of cropland, grassland, and tree cov-
er areas is demonstrated

Materials and methods

The study area

The study area defined by four corner coordinates of longitude
6.957° E latitude 5.025° N, longitude 7.247° E latitude 5.025°
N, longitude 6.96° E latitude 4.795° N, and longitude 7.254°
E latitude 4.804° N covers 1320 km2 within the Niger Delta
region of Nigeria (Fig. 1). It cuts across Abia and Rivers
States. To the far west corner is the Ukwa West Local
Government Area of Abia State and to the easterly corner
are Ikwerre, Obio/Akpor, Eberi/Omumma, Oyigbo, Eleme,
and Port Harcourt Local Government Area of Rivers state.

Data

Three datasets were used in this research: oil spill incident
data, satellite image (Landsat 8, Operational Land Imager),
and the landcover data.

Oil spill incident data

The oil spill dataset was obtained from two published sources,
the Shell Petroleum Development Corporation (SPDC)
https://www.shell.com.ng/sustainability/environment/oil-
spills.html and the National Oil Spill Detection and Response
Agency (NOSDRA) https://oilspillmonitor.ng/. The
NOSDRA is a government agency tasked with capturing all
oil spill incidents both in marine and terrestrial realms across
the country.

Landcover data

The landcover map for the African continent produced by the
European Space Agency Climate Change Initiative 2016 was
used in this study (http://2016africalandcover20m.esrin.esa.
int/). The product contains 10 classes for different landcover
categories including built-up areas, waterbody, and various
vegetation types produced from 20-m-high spatial resolution
Sentinel-2A image over Africa. The tile information covering
the study area was downloaded, subsetted, and used for the
establishment of appropriate landcover types for the study
area. The major landcover categories used in this study were
cropland, grassland, and tree cover areas (TCA). Features
such as built-up areas, waterbody, and baresurface were ex-
cluded from this study as most oil pipelines and the

Fig. 1 Location of the study area
within Nigeria in Africa. The
brown-colored area represents
Nigeria within the African
continent, while the green-colored
area is the oil-producing Niger
Delta region. The image shows
the precise extent of the study area
(Source: ESRI, ArcGIS BaseMap
Image, provided by Digital
Globe, GeoEye, and Airbus)
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corresponding spill incidents occur on terrestrial vegetation
classes. Thus, their exclusion reduced artifacts and
misclassification.

Landsat 8: OLI image

The Landsat 8 (OLI data) for the year 2016 was downloaded
from the USGS website (earthexplorer.usgs.gov). The image
acquired was a Landsat surface reflectance higher-level data
product processed using the Landsat surface reflectance code
(LaSRC). The LaSRC makes use of the coastal aerosol band
to perform aerosol inversion tests using auxiliary climate data
fromMODIS and a unique radiative transfer model (Roy et al.
2014). Additionally, LaSRC hardcodes the view zenith angle
to B0^ and solar zenith which are used for calculations as part
of the atmospheric correction process. The image acquired
and used for this study, acquired on the 6th of December, is
a post spill dry season image with little to no cloud cover,
aerosol, and haze effect. Images between the months of
March and November had significant cloud cover due to the
wet season.

Methods

Sampling regime

& Spill incident harmonization

The oil spill data harmonization sought to integrate and
expand the oil spill database for this research. The harmoni-
zation operation was carried out by overlaying both datasets
(NOSDRA and SHELL) in a GIS environment. Points with
repeated information as a result of duplicate capture and mul-
tiple spill incidents over the years were identified and marked.
Duplicates (in most cases the SPDC data) were deleted since
the dataset provided by NOSDRA is all encompassing as the
government’s regulatory agency with the responsibility of
documenting all spill incidents. The spill information relating
to volume, size, and date of spill was checked, as this provided
the basis for tracking the spill intensity on the different
landcover types. The minimum area covered by the spill data
used for this exercise is 1000 sqm, which is greater than a
single Landsat image pixel of 900 sqm. This is to ensure that
pixels used for training, testing, and validation of the final
model as well as the image classification have dominant spec-
tral reflectance of a typical oil polluted site.

& Assignment of spill incidents to landcover

The assignment of oil spill incidents to the corresponding
landcover categories is an important step in this study, as the
RF algorithm would rely on the spectral signatures provided
by these training sites to build a robust model. For each

landcover class (cropland, grassland, and TCA), spill inci-
dents located within the landcover classes were identified.
This provided the various training and validation sites for
the identification of oil-impacted (polluted landcover) classes.

& Selecting non-polluted sites for the different landcover

Non-polluted sample sites are necessary in this study for
two main reasons: first, for the identification of oil-free (non-
polluted) landcover types within the study area and secondly
for an effective discrimination between pixels of oil-free and
oil spill–impacted landcovers. Proximity analysis as sug-
gested by (Obida et al. 2018; Park et al. 2016; Whanda et al.
2016) provided the basis for the selection of the polluted and
oil-free vegetation pixels. The minimum rule was set that all
non-polluted sites must be located at least 600 m away from
all polluted sites based on the maximum area of spill recorded.
This resulted in an 800 m buffer ring around all existing spill
points, which avoided any overlap with any likely spill-
impacted area. The procedure ensured that sample sites select-
ed for the respective oil-free landcover are reasonably well-
spaced from the oil polluted sites. Thereafter, the training sites
for the non-polluted landcover categories were selected at ran-
dom outside the buffer ring established. Furthermore, specif-
ically only healthy vegetation as inferred from high-resolution
Google Earth image was chosen.

& Pixel selection using buffer analysis

Following the reconciliation and extraction of the oil spill
points and the non-polluted sites respectively according to
their respective landcover classes (cropland, grassland, and
TCA), the points were then sub-divided into two categories
for training and validation purpose. Sixty percent of the points
for individual landcover category were randomly selected for
training, while the other 40% were set aside for validation in
post classification accuracy assessment. Table 1 shows the
distribution of the polluted spill sites and oil-free sites accord-
ing to their respective landcover classification schemes. To
this end, 30 m buffer ring polygons were established around
all the training sites to ensure that only adjacent pixels within

Table 1 Total number of sites used for calibrating and validating the
random forest classification

Class label Number of spill sites

Non-polluted cropland 41

Non-polluted grassland 27

Non-polluted tree cover areas 25

Polluted cropland 44

Polluted grassland 26

Polluted tree cover areas 26
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the high consequence area close to the point of impact are
selected specially for the polluted sites (Alexakis et al. 2016;
Whanda et al. 2016).

Image preprocessing

As the Landsat surface reflectance higher-level data product
was obtained, there was no need to carry out any atmospheric
correction operations.

& Geometric correction

In order to ensure that the Landsat 8 (OLI satellite image)
co-registers properly with the other datasets (such as the oil
spill sites and boundary dataset), the satellite image was re-
projected to the Universal Transverse Mercator projection and
the World Geodetic Survey 1984 Datum of Zone 32 North
(UTM WGS84 Zone 32N).

& Landcover image masking

Following the geometric correction of the study area image,
the three dominant existing landcover classes extracted from
the ESA CCI data (BLandcover data^) were used to subset the
image for the different landcover types. This provided the basis
of implementing a general study area wide classification oper-
ation (at macro level) and individual landcover subset classifi-
cation (at micro level). The landcover image extent generated
was for cropland, grassland, and TCA (i.e., dense canopy veg-
etation), in which the harmonized oil spill and oil-free
landcover training sites were used to implement a macro and
micro level classification. This produced six different landcover
schemes, that is, polluted (oil-impacted) cropland, polluted
grassland, polluted TCA, non-polluted (oil-free) cropland,
non-polluted grassland, and non-polluted TCA.

Retrieval of important Vegetation Health Indices

Eight Vegetation Health Indices were generated using the for-
mulae presented in Table 2. The indices were generated from
the pre-processed Landsat 8 (OLI image) of the study area
using the red, green, blue, near-infrared, shortwave infrared
1, and shortwave infrared 2 bands.

Random forest classifier

The random forest (RF) algorithm was proposed by Breiman
(2001). It is an ensemble method for supervised classification
and regression, based on classification and regression trees
(CART). It relies on the assumption that different independent
samples can influence positive predictions in different areas,
thus combining these true positives can significantly improve
overall prediction accuracy (Polikar 2006). The method also

seeks to optimize training samples by randomly selecting sam-
ples to split each node in the decision trees to maximize pre-
diction accuracy. This offers the opportunity of including
many variables in a single classification operation, which in
turn should contribute positively to the prediction of the final
class. A list of variable importance and their contribution to-
ward class assignment during the classification process is gen-
erated through the mean decrease in Gini (MDG) coefficient.
The RF classification was used to distinguish and effectively
characterize landcover impacted by oil pollution from oil-free
vegetation. The analysis was carried out using the ImageRF
component of the EnMap Box (Waske et al. 2012). To achieve
this, various Vegetation Health Indices (generated in
BSampling regime^) together with seven Landsat (8 OLI
bands) (across visible, NIR, and SWIR) were fused for the
classification process. The tree size (ntree) used for classifica-
tion was determined through repetitive runs before an optimal
value of 500 (ntree) was arrived at and used for parametriza-
tion in all classification scenarios implemented. Table 3 out-
lines the list of variables used for the RF classification.

Accuracy assessment

Two performance indicators were employed to assess the RF
calibration model and the resulting classified image obtained.
First is the F1 accuracy, which is the harmonic mean of pre-
cision and sensitivity (recall) accuracy statistics. This is used
in the ImageRF to assess the out of bag error of the RF cali-
bration. The precision is the ratio of correctly predicted posi-
tive pixels to the total positive observations (incorporating true
positives and false positives), while the recall is the ratio of
correctly predicted positive observations to the sum of true
positives and false negative observations. This however can
be further interpreted as the measure of truly assigned pixels to
a particular class (recall) and the measure of truly assigned
pixels in the image space. The F1 score is a robust accuracy
measure for model performance. This is because it seeks to
balance the influence of recall and precision through the use of
harmonic mean of both measures.

This is denoted by the formulae below:

F1 Accuracy ¼ 2� Precision� Recall
Recall þ Precision

ð1Þ

Precision ¼ TP
TP þ FP

ð2Þ

Recall ¼ TP
TP þ FN

ð3Þ

where
TP = true positives
FP = false positives
FN = false negatives
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The error matrix as described by (Congalton 1991) was also
used to assess the classified image output from the RF classifi-
cation using the 40% validation points (BSampling regime^).
This enabled an effective comparison of the classified image
outputs to the original reference sites. Specific attention was
given to the users, producers and the overall accuracies.

Results

RF model calibration

Figure 2 shows the result of the RF out of bag error. In general,
the result indicates that the landcover subset images had lower
out of bag errors and consequently higher calibration

accuracy, compared to the result obtained from the full image
calibration. This shows that of the six schemes calibrated, the
non-polluted (NP) and polluted (P) TCA and grassland re-
spectively had better calibration result ranging from 45 to
70% F1 accuracy. While on the contrary, both the P and NP
croplands had lower calibration accuracies when the full study
area image was calibrated. The model calibration result also
showed that of the six different schemes investigated, the NP
grassland and NP TCA had the best prediction to error ratio of
86% and 84% as indicated in the F1 accuracy when the re-
spective landcover subsets were used. In contrast, the P and
NP croplands had the least calibration accuracy. In terms of
the implication for interclass separability and model fit, it is
observed that calibration accuracy increased gradually from
zero and mostly attained saturation when the tree size (ntree)
in the RF reached 50 using the variables, although for some
cases the F1 accuracy increased up to 100 trees before maxi-
mum saturation was reached. This however implied that a
lower ntree value could yield sufficient calibration result.

Landcover subset vs full image classification

Figures 3 and 4 show the images classified from the two
scenarios. The image classification at the landcover subset
level had better representation of landcover extents with a
more generalized boundary compared to the full image clas-
sification which had a crisper and noisy representation. This
however supports various assertions in several studies where
subpixel classification has been implemented (Aplin and
Atkinson 2001; Arif et al. 2015; MacLachlan et al. 2017). A
major reason for the observed disparity could be as a result of
the presence of multiple signatures from conflicting landcover
features causing high spectral mixing for the RF classifier at
the macro level. Fröhlich et al. (2013) have also observed that
textural characteristics of neighboring adjacent features can
inadvertently cause false representation of image features.
Similarly, the spectral diversity of the features investigated

Table 2 Vegetation Health Indices generated using the red, green, blue, NIR, and SWIR bands

Vegetation indices Formula Author

Difference Vegetation Index RNIR − RRED Tucker 1980

Modified Soil-Adjusted Vegetation Index 1=2 2RNIR þ 1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2RNIR þ 1ð Þ−8 RNIR−RREDð Þp
� �

Qi et al. 1994

Moisture Stress Index RMidIR/RNIR Doraiswamy and Thompson 1982

Normalized Difference Vegetation Index (RNIR − RRED)/(RNIR + RRED ) Rouse Jr et al. 1974

Normalized Differential Water Index (RNIR − RSWIR)/(RNIR + RSWIR) Hardisky et al. 1983

Renormalized Difference Vegetation Index RNIR−RRED=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RNIR þ RRED
p

Roujean and Breon 1995

Ratio Vegetation Index RRED/RNIR Jordan 1969

Soil and Atmospherically Resistant Vegetation Index (1 + 0.5) (RNIR − RRB)/(RNIR + RRB + 0.5) Qi et al. 1994

Soil-Adjusted Vegetation Index (1 + L)(RNIR − RRED)/(RNIR + RRED + L) Huete 1988

Transformed Difference Vegetation Index
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RNIR−RNIR
p

=ð RNIR þ RREDð Þ + 0.5) Bannari et al. 2002

Table 3 List of variables used for the RF classification

S/no Spectral variables

1 Band 1—ultra-blue band

2 Band 2—blue

3 Band 3—green

4 Band 4—red

5 Band 5—near-infrared (NIR)

6 Band 6—shortwave infrared (SWIR) 1

7 Band 7—shortwave infrared (SWIR)2

8 Difference Vegetation Index (DVI)

9 Modified Soil-Adjusted Vegetation Index (MSAVI)

10 Moisture Stress Index (MSI)

11 Normalized Differential Vegetation Index (NDVI)

12 Normalized Differential Water Difference (NDWI)

13 Renormalized Difference Vegetation Index (RDVI)

14 Ratio Vegetation Index (RVI)

15 Soil and Atmospherically Resistant Vegetation Index (SARVI)

16 Soil-Adjusted Vegetation Index (SAVI)

17 Transformed Normalized Difference Vegetation Index (TNDVI)
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(polluted and non-polluted landcovers) had smaller separabil-
ity index as observed from the out of bag error for the full
study area image. This can affect the performance of the clas-
sifier in adequately producing generalizable extents. The im-
plication of this effect was further assessed using error matri-
ces generated.

Variable importance

The near infra band had the highest contribution to the assign-
ment of endmember classes for the six landcover schemes
when the full study area image was classified (Fig. 5). Other
variables however such as Moisture Stress Index, Normalized
Difference Water Index, shortwave infrared 1 (mid infrared
region), and the green band also contributed substantially in
the classification process. At the subset level, the result
showed that the Normalized Difference Water Index and
Moisture Stress Index were very influential in providing the
best splits between polluted and oil-free cropland landcover

schemes. This conforms with results obtained in Kalubarme
and Sharma (2015) where NDWI values were observed to be
sensitive to stress conditions in wheat-cultivated farm planta-
tions. Similarly, results obtained by Benabdelouahab et al.
(2015) also showed that MSI and NDWI are sensitive indica-
tors of stress also in a wheat-cultivated farm field. However,
the near-infrared and shortwave infrared bands were also ob-
served to have the highest contribution in splitting oil contam-
inated and oil-free grassland landcover scheme. While the
Difference Vegetation Index (DVI) and Normalized
Differential Water Index clearly had strong contribution in
splitting oil polluted from oil-free TCA.

In general, the moisture-related indices and sensitive bands
(shortwave infrared 1) were observed to have more significant
contribution in distinguishing oil polluted from oil-free
landcover types both at the macro level of the entire study
area and at the micro level of the individual landcover subsets.
This is expected as the fundamental characteristics of stressed
vegetation are their inability to carry out basic life-supporting

Fig. 2 RF parameterization result for the full study area image and
individual landcover subset images using training samples of oil-free
and oil-impacted landcover. The green line represents parameterization

F1 accuracy for the individual landcover subset images, while the red line
represents F1 accuracy for the full study area image

Environ Sci Pollut Res (2019) 26:3621–3635 3627



Fig. 4 Subset of the study area showing the RF-classified image with the
landcover subset of cropland into polluted and oil-free croplands. Inset is
a high-resolution image from Google Earth for the same area. This

showed that spill-impacted and oil-free croplands were better captured
by the image subset classification (left), compared to themore crisp extent
from the full study area image classification (right)

Fig. 3 RF Image classification result for the full study area image and individual landcover subsets. It is observed that the former produced a more
generalized representation of landcover extents compared to the crisp output from the full study area image
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functions such as respiration, transpiration, and photosynthe-
sis (Arellano et al. 2015), which the classifier can rely on from
the distinctions provided by the indices for class assignment.
Figure 6 shows the most important variables (i.e., NDWI,
SWIR, and DVI) in the classification process for cropland,
grassland, and TCA landcover subsets respectively and their
respective oil-free and oil polluted landcover extents.

This shows that areas with high Vegetation Health Indices
and greenness are predominantly associated with oil-free
landcover types especially for the oil-free cropland and grass-
land landcover. While areas with low vegetation health and
greenness are mostly associated with polluted landcover
schemes in this case the polluted cropland and grassland.
However, TCAwas noticed to have a poor split as indicative
of the most important variable in the RF classification (Fig. 6).
This could be associated to the fact that large parts of the Niger
Delta are characterized by dense and mangrove forest vegeta-
tion (James et al. 2007), in which case the impact of crude oil
would pose minimal discernible effect with a typical oil-free
vegetation.

Vegetation greenness distribution

Figure 7 is a box plot showing vegetation greenness retrieved
from NDWI for the various polluted and oil-free landcover
training sites. This was the most influential index when the
full study area image was classified together with theMoisture
Stress Index (MSI). Their performance in the classification

operation further reinforces the potentials of moisture-based
indices in depicting stress on vegetation. This plot showed the
degree of variation in the health status of the oil-impacted and
oil-free landcover classes. Non-polluted TCA were observed
to have the highest NDWI compared to the non-polluted crop-
land and grassland. Generally, polluted grassland and crop-
land had the least NDWI greenness compared to their respec-
tive non-polluted classes. This is an indication that their health
status could have been affected by the oil spill in those loca-
tions thereby accounting for lower health indices compared to
the respective oil-free vegetation. Similarly, the distribution of
the indices for the six classes shows little to no overlap be-
tween oil polluted and oil-free landcovers, a trend which could
have accounted for the high performance of the NDWI in the
classification process.

Accuracy assessment

The confusion matrix generated was used to evaluate the re-
sult of the RF classification for the two scenarios implemented
using the validation data (BOil spill incident data^) (Table 4).
The overall accuracy from the full image classification gave
much lower accuracy (30.147%) compared to the result re-
corded from the various landcover subsets. Result from the
tree cover densely forested areas gave the highest result of
70%, while the grassland and cropland subsets gave accura-
cies of 65% and 60.61% overall classification accuracy re-
spectively. In terms of interclass accuracy, the result from

Fig. 5 Variable importance plot of the RF classification for the full study area image and landcover subset image classification
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Fig. 7 Box plot of vegetation
greenness retrieved from NDWI
for the polluted and oil-free
landcover samples

Fig. 6 The most important variable for cropland—NDWI, grassland—
SWIR, and TCA—DVI in the classification processes. Result shows that
the most important variable for cropland and grassland classification had

the best split into oil-impacted and oil-free vegetation, as opposed to TCA
subset where the most important variable did not give favorable split into
oil-impacted and oil-free TCA
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the validation exercise showed that the highest user accuracies
were obtained from the non-polluted grassland and polluted
TCA with 80% from the subset classification. Similarly, the
landcover classes with the highest accuracy when the full
study area image was classified are the polluted and oil-free
TCA classes with producer and user accuracies of 50% and
40% respectively. This is not surprising as result from the
parameterization operation in Fig. 2 showed that the training
sites used for classification had better characterization be-
tween polluted and oil-free dense canopies. Furthermore, the
validation result obtained also showed that most of the classes
that had better calibration also recorded higher accuracy. An
example is in the case of TCA and grassland schemes which
recorded high accuracies of above 80% out of bag error, also
came out with 70% and 65% overall accuracies.

Spill-impacted vs non spill landcover spatial extent

Figure 8a and b presents a stacked bar plot comparing the
total estimated area covered by oil-impacted and oil-free
landcover classes from the full study area and landcover
subset classification respectively. This was also compared
to the total area coverage of the landcover product provid-
ed by the ECCI. Generally, the result showed that aggre-
gated areas of polluted and oil-free landcover classes were
closer to the areas from the ECCI when the image subsets
are classified than when the full image is classified.
Similarly, the extent of spill-impacted grassland and TCA
were larger than their respective oil-free vegetation, except
in cropland landcover where the area covered by oil-free
cropland was larger than the oil-impacted cropland. In ad-
dition, of the six landcover classes investigated the spatial
extent of oil-impacted cropland from the full study area
image and cropland landcover subset image classification
remained close. This, however, suggests that the spectral
characteristics of the polluted cropland have remained un-
changed in the two experimental classifications imple-
mented. This is an indication that this class could have
been more heavily impacted from the 2015 and 2016 spill
incidents in the area.

Discussion

Oil pollution and contamination of vegetation canopies within
the Niger Delta region is a common and almost a consistent
phenomenon. Few studies have focused on leveraging on the
potentials of machine learning (ML) approaches (such as RF) to
map the exact oil spill extent for different landcover types. This
study attempted to bridge this gap by using RF classification to
first establish the precise extent of oil spill–impacted and oil-
free landcover types. Then, secondly to identify the most useful
optical indicators and discriminators of oil-impacted vegetation
communities from their respective oil-free vegetation. The re-
sult obtained from these experiments after calibration of sample
sites and implementation of the classification operations
showed that RF algorithm has the potential of providing reli-
able maps of oil-free and oil-impacted landcover. The RF clas-
sifier produced better results with the different landcover sub-
sets as opposed to when the full study area image is classified,
reinforcing the findings of Arroyo et al. (2010) where image
space delineation for automatic classification of landcover fea-
tures proved very successful.

The high calibration results obtained from the out of bag
errors during the parameterization exercise of the RF at the
micro level clearly account for the high accuracies of 70%
and 65% obtained for the TCA and grassland vegetation types
respectively. Although the result of the most important variable
in the classification process (Fig. 6) does not mirror an excellent
split as can be observed with TCA and grass landcover subsets.
A major reason for this trend can be attributed to the fact that
most cropland vegetations are distinctly sparse in nature and a
huge volume of the oil spilt in these areas experience significant
seepage into the soil sub surface and immediately causing de-
tectable impact on crops. This invariably accounts for a better
split of oil polluted and oil-free croplands, as indicative of the
NDWI. Similarly, the exposed soil in cropland fields also
means that much of the oiled sand surface reflective, account-
ing for the significant influence of shortwave infrared band
(Ben-Dor et al. 1997; Cloutis 1989; Kühn et al. 2004) and its
derived indices in distinguishing oil-impacted and oil-free crop-
lands (Adamu et al. 2015; Ben-Dor et al. 1997; Brekke and

Table 4 Accuracy assessment result for the full study area and landcover-masked image classification

Map class Full image classification Masked classification

User’s accuracy
[%]

Producer’s accuracy
[%]

Overall accuracy
[%]

User’s accuracy
[%]

Producer’s accuracy
[%]

Overall accuracy
[%]

Non-polluted cropland 25 18.75 30.14 58.82 62.5 60.61
Polluted cropland 29.17 41.18 62.5 58.82

Non-polluted grassland 18.18 20 61.54 80 65
Polluted grassland 30 30 71.43 50

Non-polluted tree cover areas 50 40 75 60 70
Polluted tree cover areas 37.5 30 66.67 80
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Solberg 2005; Khanna et al. 2013; Kühn et al. 2004). This very
much infers that biomass density could play a significant role in
the characterization and mapping of oil polluted and oil-free
terrestrial landcovers.

The variable importance plot obtained from the RF image
analysis also showed that the near-infrared, shortwave infrared
bands, Normalized Difference Water Index, DVI, and MSI are
particularly influential in pixel class assignment. Some of these
variables (shortwave infrared, MSI, and NDWI) are mostly
sensitive to vegetation moisture content (Gao 1996). Several
studies (Agapiou et al. 2012; Arellano et al. 2015;
Benabdelouahab et al. 2015; Dotzler et al. 2015; Kalubarme
and Sharma 2015) have also shown that SWIR, MSI, and
NDWI variables are useful indicators of stress in vegetation
canopy as a result of their sensitivity to water net loss or gain.
Similarly, the NIR band is also well known for its ability to
distinguish between stressed and stress-free vegetations. This is
because a major characteristic of a stress-free vegetation will be
the absorption of visible light for photosynthesis necessary to
propagate the high reflectance of near-infrared energy (Ben-
Dor et al. 1997; Knipling 1970). It is without doubt that these
variables have the most ideal spectral information to character-
ize oil-free from oil polluted vegetation. The complex interac-
tion of these variables is a major reason for their incorporation
in the classification process basically suggesting that stress as a
result of oil pollution can be better characterized and mapped.

In addition, the result obtained from the spatial extent of the
classified maps for polluted and oil-free landcovers further

suggests that cropland had the most significant impact, as
the areas recorded from the full study area image and cropland
landcover subset remained similar. This is quite contrary to the
results obtained from the TCA and grassland landcover, where
the spatial extent of their polluted landcover had a much
higher area than their non-polluted/oil-free landcovers. A pos-
sible reason for this trend could be as a result of over gener-
alization of the extent of spill-impacted landcover overlapping
with other areas where vegetation stresses by other stressors
exist. A post classification ground truth exercise carried out
showed that features such as waterlogged areas, dried vegeta-
tion, burned vegetation, and cleared/exposed surface often
exhibited similar spectral signatures as polluted sites and were
classified as such. This is in line with observations made by
Khanna et al. (2013) and Kokaly et al. (2013). Although most
of the aforementioned misclassification anomalies are also
vegetation stress related, accounting for the superior perfor-
mance of the NDWI, NDVI, SWIR, and NIR in the classifi-
cations processes. Figure 9 shows some the areas that exhib-
ited similar spectral response.

The problem of pixel misclassification in image classifica-
tion is a general problem as also observed in (Ishida et al. 2018;
Xiao and McPherson 2005; Zlinszky et al. 2012) where the
characterization of a single vegetation type into a more narrow
group by species delineation or health status has been imple-
mented. The occurrence of pixel mismatch and over generali-
zation of landcover spatial extent is very much apparent in this
study. One way of addressing this problem in the future study is

Fig. 8 Spatial extent of oil-
impacted and oil-free landcover
classes retrieved from the a full
study area image and b landcover
subset image classification. The
orange and blue stacks represent
polluted and oil-free landcover
classes, while the ash-colored line
represents the aggregate obtained
from the ECCI landcover dataset
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the incorporation of other relevant variables (such as radar
datasets, digital elevation model, soil-type map and soil mois-
ture) which generally do not specifically rely on the biochem-
ical components of vegetation, rather the structural characteris-
tics of vegetation and environmental factors are depended on to
further improve discrimination accuracy.

However, the concentration and size of spill also plays a
significant role in the detection and mapping of affected areas
using the satellite image. Studies such as Adamu et al. (2016)
have shown that the size of oil spill with respect to volume and
age of oil is a major determinant of detectability of spill effect.
This is largely predicated on the fact that not all spill incidents
come in large sizes or quantities that can be meaningfully
captured by the satellite sensors or pose detectable stress on
vegetation communities. In this study, we addressed this chal-
lenge by using only spills with 1000 sqm or above in size to
ensure that the characteristics of a typical spill site are reason-
ably captured within the spill epicenter and adjacent pixel
used for classification. It was however observed that other
stress factors and features with same spectral characteristics
can be potentially misclassified as oil polluted landcover,
which also transcend the results of the two image classifica-
tion levels (micro and macro level) implemented. These cer-
tainly call for further research, especially using fuzzy tech-
niques in establishing precise spill threshold values for ade-
quate detection and classification purpose.

Conclusions

This study aimed at applying RF in discriminating Landsat 8
image pixels of oil polluted and oil-free landcover types using
published oil spill incident records as the basis for formulating
training and validation sites. In addition, relevant Vegetation
Health Indices and image spectral bands were fused and classi-
fied with RF classifier to support the discrimination process.
Classification operation was implemented at the full study area
(macro) level and at the individual landcover subset (micro)
level. Results obtained from the latter gave a better characteri-
zation of oil-free from oil polluted landcover classes, as this
produced a more generalized extent compared to the crisp and
granular outputs produced from the former. Over generalization
and over estimation of the oil-impacted site were observed for

grassland and TCA, which can be addressed by the incorpora-
tion of other relevant variables in the classifier. In addition, the
result of the variable importance showed that shortwave infra-
red and NDWI are significant variables in distinguishing oil
polluted and oil-free landcover, especially in cropland areas.
However, of the three oil polluted landcovers investigated, it
is apparent that polluted cropland could have had the most
significant impact due to the similar result obtained (in terms
of spatial extent) from the full study area and cropland image
subset classification. Similarly, the high distinctive split obtain-
ed from the NDWI (i.e., the most important RF variable) be-
tween the oil-free and oil-impacted cropland areas, compared to
the TCA and grassland, is an indication of prolonged impact of
hydrocarbon crude oil on the fragile cropland vegetation.

The result obtained from this study certainly informs on the
capability of using earth observation satellite data in charac-
terizing oil spill–impacted from oil-free areas even after sev-
eral months of spill occurrence. The successful application of
this method and approach to distinguishing these areas cer-
tainly reinforces the potential of assessing the intrinsic linkage
between oil-induced impacts and the concomitant long-term
landcover changes. This will in no doubt provide a better
medium for assessing landcover change with specific recourse
to oil spill incident in a typical oil spill prone area like the
Niger Delta region of Nigeria. Other limitations encountered
in this study such as the lack of extensive cloud-free multi-
temporal optical images to establish phenological changes and
implement multi-temporal based classification can be system-
atically addressed in future studies by incorporating radar
backscatter such as the freely accessible sentinel 1 SAR im-
ages in fostering the derivation of precise area extent of the
damage posed by oil pollution.
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