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with air pollution and climate variables in Chiang Mai Province, Thailand

Apaporn Ruchiraset1 & Kraichat Tantrakarnapa1

Received: 14 February 2018 /Accepted: 18 September 2018 /Published online: 26 September 2018
# The Author(s) 2018

Abstract
This study aimed to predict the number of pneumonia cases in Chiang Mai Province. An autoregressive integrated moving
average (ARIMA) was used in data fitting and to predict future pneumonia cases monthly. Total pneumonia cases of 67,583 were
recorded in Chiang Mai during 2003–2014 that the monthly pattern of case was similar every year. Monthly pneumonia cases
were increased during February and September, which are the periods of winter and rainy season in Thailand and decreased
during April to July (the period of summer season to early rainy season). Using available data on 12 years of pneumonia cases, air
pollution, and climate in Chiang Mai, the optimum ARIMA model was investigated based on several conditions. Seasonal
change was included in the models due to statistically strong season conditions. Twelve ARIMA model (ARMODEL1–
ARMODEL12) scenarios were investigated. Results showed that the most appropriate model was ARIMA (1,0,2)(2,0,0)[12]
with PM10 (ARMODEL5) exhibiting the lowest AIC of − 38.29. The predicted number of monthly pneumonia cases by using
ARMODEL5 during January to March 2013 was 727, 707, and 658 cases, while the real number was 804, 868, and 783 cases,
respectively. This finding indicated that PM10 held the most important role to predict monthly pneumonia cases in Chiang Mai,
and the model was able to predict future pneumonia cases in Chiang Mai accurately.
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Introduction

The autoregressive integrated moving average (ARIMA)
model was first proposed in 1976 and widely used for
predicting and early warning analyzing of infectious diseases
(Luz et al. 2008; Reichert et al. 2004; Yi et al. 2007) and for
predicting future air quality status from various aspects of
development in several countries (Konovalov et al. 2009;
Pedro Muñoz Miguel et al. 2017). In addition, examining
associations between environmental factors and adverse
health outcomes is more advantages using the ARIMA model
(Imai et al. 2015; Sharafi et al. 2017; Unkel et al. 2012). To

improve forecasting performance, exogenous variables were
included in the ARIMAmodel renamed the ARIMAXmodel.

Much evidence suggested that environmental air pollu-
tion, such as particulate matter (PM10), carbon monoxide
(CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and
ozone (O3), have adverse consequences for respiratory dis-
eases (Luong et al. 2017; Phung et al. 2016; Shen et al.
2017; Zhu et al. 2017). Additionally, climatic variables
(temperature, humidity, and rain) have also been reported
by a number of studies to be associated with pneumonia
hospitalization (Kim et al. 2016; Liu et al. 2014).
Pneumonia is a serious infectious respiratory disease
worldwide, especially among children. Of the estimated
nine million child deaths in 2007, around 20% or 1.8 mil-
lion were due to pneumonia (WHO and UNICEF 2009). To
control this risk, the World Health Organization (WHO)
and United Nations International Children’s Emergency
Fund (UNICEF) launched a Global Action Plan for
Pneumonia Prevention and Control (WHO and UNICEF
2009) in 2009. In Thailand, however, only few officials
publish concerning pneumonia incidence. In Nakhon
Phanom Province (northeast Thailand), pneumonia
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incidence was 831/100,000/year and 495/100,000/year in
Sa Kaeo Province (east Thailand) from 2002 to 2003
(Jordan et al. 2009).

Therefore, this study aimed to first analyze the time series
pattern of pneumonia administration in Thailand and obtain an
appropriate model to predict future pneumonia cases using the
ARIMAmodel. Since evidence suggests that air pollution and
climate variables are important causes correlated with pneu-
monia incidence, a number of exogenous variables were in-
cluded in the model. Chiang Mai Province, northern Thailand
was chosen as a representative area because a high number of
pneumonia admissions occur. Furthermore, this area usually
faces air pollution during dry season when haze related to
open burning occurs (Chantara et al. 2012) along with forest
fires (Sillapapiromsuk et al. 2013).

Method

Study area

Chiang Mai (Fig. 1), the second largest city in Thailand, cov-
ering an area of approximately 20,170 km2, is divided in 25
districts. The total population is 1,682,164 (30 June 2015)
with a total of 742,489 households (Chiang Mai governor
office 2018). The three seasons in Chiang Mai comprise

winter (November to February), summer (March to May),
and rainy season (June to October).

Data sources and data management

Air pollution and climate data in Chiang Mai Province were
acquired from the Pollution Control Department (PCD),
Ministry of Natural Resources and Environment, Thailand.
Two PCD monitoring stations located in Chiang Mai are in
Mueang Chiang Mai District (station numbers 35 and 36), as
presented in Fig. 1. Air pollution data consist of PM10, CO,
NO2, SO2, and O3 and climate data comprise rain, humidity,
and temperature. Both were normally documented on an hour-
ly basis. All missing data were handled using mean substitu-
tion method and then hourly concentrations were averaged to
give monthly concentrations.

Pneumonia case admissions in Chiang Mai were obtain-
ed from the Ministry of Public Health (MOPH), Thailand.
Pneumonia cases were classified using code 31 according
to one disease surveillance report (Report 506). Both pneu-
monia case admissions and air pollution data for Chiang
Mai were obtained from 2003 to 2014. For the model pre-
diction purpose, the data were divided in two groups. The
first group covered 10 years (2003 to 2012), which was
purposed for model fitting, and the remaining 2 years of
data (2013 to 2014) was used for model prediction.

Fig. 1 Chiang Mai, Thailand: the study area
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ARIMA and ARIMAX model development

The model was developed using RStudio, Version 1.0.136.
First, data were identified for a suitable model, and the
stationarity of the time series was determined. To obtain a
stationary time series, natural log transformation and
differencing process were employed. After that, the sta-
tionary time series data was fit to the ARIMA (p, d,
q)x(P, D, Q)s model where: p, d, and q represented
autoregressive (AR) order, differencing order, and moving
average (MA), respectively. Then, P, D, and Q referred to
AR, differencing and MA terms for the seasonal part of the
ARIMA model, where s represented the number of periods

in each season. The general multiplicative seasonal
ARIMA model used for this study can be written as Eq.
(1), which more described detail was in Box et al. (2015).

ϕ Bð ÞΦP Bsð Þ∇ d∇ D
s zt ¼ θq Bð ÞΘQ Bsð Þat ð1Þ

where ϕ(B) and θ(B) are the polynomials in B degree of p
and q, respectively. ΦP(B

s) and ΘQ(B
s) are the polynomials

in B degree of P and Q, respectively. zt is an observable
time series. at is a white noise process.

By using auto.arima with stepwise function from the
forecast package in R, we obtained the best order for the
(p, d, q)x(P, D, Q) part of the model (ARMODEL1). After
that, we simulated the ARIMA model with another 11
scenarios (as presented in Table 2). Exogenous variables
were included in the model, named the ARIMAX model
(ARMODEL2–ARMODEL12). In the ARIMAX model,
we separated exogenous variables in two groups, air pol-
lution variables (PM10, CO, NO2, SO2, O3) and climate
variables (rain, humidity, and temperature). The
ARMODEL2 comprised the ARIMA model with both
air pollution and climate variables. ARMODEL3 and
ARMODEL4 comprised the ARIMA model with five air
pollution and three climate variables, respectively.
Moreover, the individual exogenous variable was includ-
ed in the ARIMA model separately (ARMODEL5 to
ARMODEL12). Finally, we selected the best fitting mod-
el to predict future pneumonia cases in Chiang Mai ac-
cording to the Akaike Information Criterion (AIC) value.

Table 1 Descriptive statistics of data

Variable Range Mean ± s.d.

Monthly pneumonia cases 132–978 496 ± 179

Air pollution data (monthly average)

PM10(μg/m
3) 18.5–189.4 48.0 ± 30.2

CO (ppm) 0.16–1.79 0.63 ± 0.23

NO2 (ppb) 6.02–30.51 13.01 ± 5.58

SO2 (ppb) 0.21–3.10 1.04 ± 0.50

O3 (ppb) 7.31–40.57 19.67 ± 7.79

Climate data (monthly average)

Rain (mm.) 0.00–0.61 0.13 ± 0.14

Humidity (%RH) 43.45–88.99 69.20 ± 10.70

Temperature (°C) 20.1–31.58 26.8 ± 2.3

Fig. 2 Time series plot of monthly pneumonia case in Chiang Mai from 2003 to 2014
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Results

Explanatory statistics

A summary of data statistics is presented in Table 1. The num-
ber of pneumonia case admissions in both hospitals and prima-
ry health care units in Chiang Mai from January 2003 to
December 2014 totaled 67,583 cases. Maximum pneumonia
cases were 978 cases/month, while the minimum pneumonia
cases were 132 cases/month. Monthly average concentration of
PM10, CO, NO2, SO2, and O3, obtained from averaged values
of two PCD’s monitoring stations located in Chiang Mai, was
in the range of 18.5 to 189.4 μg/m3, 0.16 to 1.79 ppm, 6.02 to
30.51 ppb, 0.21 to 3.10 ppb, and 7.31 to 40.57 ppb, respective-
ly. The three climatic factors considered in this study, i.e., rain,
humidity, and temperature ranged from 0.00 to 0.61 mm, 43.45
to 88.99 %RH, and 20.1 to 31.58 °C, respectively.

Time series plot of monthly pneumonia cases in Chiang
Mai during the period of this study is illustrated in Fig. 2.
Monthly pneumonia cases were increased in January and
gradually decreased afterward to the summer period of
May. After the summer period, the pneumonia cases were
increased again from July to reach the peak point in
September. It was found that the monthly pneumonia cases
were increased during the last 3 years of the study (2012–
2014) as presented in the purple, pink, and dark pink line.
Monthly average concentration of air pollution and climate
variable was presented in Fig. 3. PM10, CO, NO2, and O3

concentrations were similar patterns during the study peri-
od. However, SO2 concentration show high concentration
during 2003 to 2005 and decreased after 2006 due to the
regulation of fuel type intervention and it was increased
again after 2011. Rain and humidity trend were gradually
decreased while temperature was gradually increased.

Fig. 3 Time series plot of
monthly air pollution variables
and climate variables from 2003
to 2014 in Chiang Mai
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ARIMA model

ARIMA modeling began by estimating the degree of
autoregressive (p), differencing (d), and MA (q). However, we
needed to check the time series before starting the modeling
process. Using an augmented Dickey-Fuller test (ADF), we
found our data was not stationary. To fix this problem, natural
log transformation and differencing were performed to make the
data stationary. Figure 4a, b, c presents monthly plots of pneu-
monia cases, differencing of monthly pneumonia cases and nat-
ural log transformedmonthly pneumonia cases, respectively. The
plot of Fig. 4a shows that mean monthly pneumonia case is a
function of time (data are nonstationary). To make the dataset
stationary, we tried differencing and making a natural log trans-
formation in the data series. Figure 4a, b, c shows the data series
achieved satisfying conditions. Moreover, we endeavored to use

both differencing and natural log transformation in the data series
resulting in a more stationary series (Fig. 4d). Subsequently,
differencing and natural log transformation of the data series
were implemented before ARIMA modeling processes.

Seasonality was also considered in the study, as presented
in Fig. 5. The ACF (autocorrelation function) plot of season-
ality exhibited strong positive autocorrelations at any time lag
6, 12, and 18 suggesting a strong seasonal component. Hence,
the seasonal component was considered for the ARIMA
models in this study.

To examine the best order for the ARIMA model (p, d, q
and P, D, Q), we used the auto.arima function in the forecast
package attached with stepwise function to identify the best
order. Stepwise function selected the best order of the ARIMA
model based on AIC value. To explore the optimum ARIMA
model, we used 12 different ARIMA models with various

Fig. 4 Transforming data to make
data stationary

Fig. 5 ACF and PACF of the first
difference order of log of
pneumonia cases in Chiang Mai
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scenarios as presented in Table 2. First of all, we examined the
ARIMA model (without exogenous variable) named
ARMODEL1. The result from stepwise function indicated
that the best order of the ARMODEL1 was ARIMA
(1,0,2)(2,0,0)[12] (AIC − 30.77). We hypothesized that exog-
enous variables, air pollution, and climate variables would
have an association with monthly pneumonia cases.
ARMODEL2 to ARMODEL12 were examined to identify
which exogenous variables should be included in the model.

The best model based on the lowest AIC value of each
scenario is shown in Table 3. The most appropriate
ARMODEL1 was ARIMA(1,0,2)(2,0,0)[12] for which the
lowest AIC was − 30.77. The most appropriate order of
ARIMA models with exogenous variables for ARMODEL2,
A R M O D E L 3 , a n d A R M O D E L 4 w e r e
A R I MA ( 1 , 0 , 2 ) ( 2 , 0 , 0 ) [ 1 2 ] ( A I C − 2 9 . 8 3 ) ;
A R I MA ( 1 , 0 , 2 ) ( 2 , 0 , 0 ) [ 1 2 ] ( A I C − 3 2 . 6 0 ) ;
ARIMA(1,0,2)(2,0,0)[12] (AIC − 34.08), respectively. In this
point of view, the ARMODEL4 exhibited the lowest AIC of −
34.08, which implied that climate variables had more impact
on monthly pneumonia cases than air pollution variables.

Models with individual exogenous variables (ARMODEL5
to ARMODEL12) were investigated to determine, which exog-
enous variable showed significant associations with monthly
p n e u m o n i a c a s e s . A s s h o w n i n T a b l e 3 ,
ARIMA(1,0,2)(2,0,0)[12] with PM10 (ARMODEL5) had the
lowest AIC of − 38.29 and was the best model in this study
because it exhibited the lowest AIC value. Figure 6 presents the
fitted and predicted value of ARMODEL5. The black dots in
Fig. 6 represent actual pneumonia cases monthly. The red line
represents the fittedvaluefromARMODEL5from2003to2012.
The blue line shows the predicted value using the model from
2013 to2014,whileupper and lower limits (definedby two times

standard deviation) are displayedwithorange lines on either side
of predicted line. The real number of monthly pneumonia cases
was407, 408, and383cases in January toMarch2003,while the
fitted by using ARMODEL5 was 431, 384, and 368 cases, re-
spectively. The predicted number of monthly pneumonia cases
by using ARMODEL5 during January to March 2013 was 727
(517–1099), 707 (443–1162), and658 (447–1190) cases (values
in the bracketwere lower and upper limit),while the real number
was 804, 868, and 783 cases, respectively. The results indicated
the predicted numbers were close to the real situation.

Discussion

This study aimed to predict monthly pneumonia cases in
Chiang Mai by applying ARIMA and ARIMAX modeling.
Pattern of pneumonia in Chiang Mai during study period was
similar pattern in each year that showed the increasing number
was observed during Februry and September, which are clas-
sified as the periods of winter and rainy season in Thailand
and it was decreased during April to July (the period of sum-
mer season to early rainy season).

When comparing between air pollution (ARMODEL3) and
climate variables (ARMODEL4), the results in this study indi-
cated that climate variables played a more important role
concerning pneumonia than air pollution variables because
ARMODEL4 exhibited lower AIC values than ARMODEL3.
However, worldwide studies have demonstrated that both air
pollution and climate variables affect pneumonia (Davis et al.
2016a; Kim et al. 2016; Paynter et al. 2013; Xu et al. 2014).
Several research studies have focused on the relation between
pneumonia admissions and air pollution. Chiu et al. (2009) stud-
ied the association of air pollutants and hospital admissions for

Table 2 Model scenario in this
study Model Exogenous variables

Air pollution Climate

PM10 CO NO2 SO2 O3 Humidity Rain Temperature

ARMODEL1

ARMODEL2 ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘

ARMODEL3 ✘ ✘ ✘ ✘ ✘

ARMODEL4 ✘ ✘ ✘

ARMODEL5 ✘

ARMODEL6 ✘

ARMODEL7 ✘

ARMODEL8 ✘

ARMODEL9 ✘

ARMODEL10 ✘

ARMODEL11 ✘

ARMODEL12 ✘

✘ Exogenous variable(s) included in the model.
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pneumonia in Taipei, Taiwan. They reported that increased am-
bient of air pollutants (PM10, CO, and O3) increased the risk of
hospital admissions for pneumonia. The study in Thailand by
Guo et al. (2014) indicated that PM10 was significantly related
to respiratory mortality.When focusing on air pollution variables
(PM10, CO, NO2, SO2, O3), PM10 exhibited the most robust
association with monthly pneumonia cases because the
ARMODEL5 presented the lowest AIC values when compared
with the others. PM10 concentration indicated the positive asso-
ciation with monthly pneumonia admission in Chiang Mai
Province; more PM10 concentration was also increased in num-
ber of monthly pneumonia cases particularly the early period of
each year. Particulate matter (PM) has been found to be the most
common and consistent variable associated with pneumonia
(Janssen et al. 2013; Zanobetti and Schwartz 2006). Increased
levels of PMwere associated with increased levels of respiratory
disease among children and older adults (Wang et al. 2015).
Medina-Ramon et al. (2006) stated that increased PM10 during
the warm season resulted in increased pneumonia admissions at
lag 0.Mechanisms of PM10 on adverse respiratory effects remain
unclear (Medina-Ramon et al. 2006). However, a probable rea-
son suggested byXing et al. (2016)was PM2.5 (particles less than
2.5 μm in diameter) can penetrate deeply in the lung, irritate, and
corrode the alveolar wall and consequently impair lung function.
Even though this study used PM10, PM2.5 is the subset of PM10.

When focusing on climate variables (humidity, rain, and tem-
perature), rain was seen to play the most important role with
pneumonia admissions in Chiang Mai. Selecting AIC values,
ARMODEL11 exhibited the lowest AIC of − 37.98 but its coef-
ficient (see Table 3) was insignificant. Therefore, ARMODEL10
(ARIMA model with humidity, AIC of − 30.43) was chosen
when considering only climate variables. Association of humid-
ity and pneumonia has been reported since 1980 (Bull 1980).
Bull (1980) stated that changes in temperature and humiditywere
highly and significantly correlated with changes in death rate
from pneumonia exhibiting a positive correlation of high
humidity and temperature. Moreover, Davis et al. (2016b) stated

that several research studies indicated that humidity was one of
the most highly associated variable with pneumonia. The study
in New Zealand by Davis et al. (2016a) found that respiratory
infection was enhanced during unusually cold conditions and
during conditions with unusually low humidity.

Although the coefficient of rain in ARMODEL11 was not
significant, it exhibited the lowest AIC value among these
groups. Consequently, we decided to use ARMODEL11 to
predict future monthly pneumonia cases. Evidence supporting
this decision has been shown by several research studies.
Singh et al. (2014) studied the association of rain-wetting with
the occurrence of pneumonia during an outbreak of influenza
A (H1N1) pdm09 virus infection. They found that the number
of pneumonia patients increased during periods of greater
rainfall and rain-wetting and may be an important risk factor
for the occurrence of pneumonia. Nevertheless, different re-
sults were shown by the Hei CollaborativeWorking Group on
Air Pollution et al. (2012) who found a relation between pneu-
monia hospitalizations and levels of PM10, SO2, and NO2

between the months of November and April annually (data
of 3 years in Vietnam) but found no association in the rainy
season months of May through October. However, several
limitations were reported in this study, such as the lack includ-
ing age and sex and the lack time to be reconsidered in a future
study. Moreover, it should be noted that air pollution and
climate variables used in this study were derived from two
monitoring stations located in Chiang Mai Province.

Conclusion

The study aimed to predict the number of pneumonia cases in
ChiangMai Province. Twelve years ofmonthly pneumonia cases,
air pollution, and climate variables in Chiang Mai was used to
investigate the optimum of model with several scenarios.
Seasonalitywas included in thismodel because it showed a strong
and significant association. ARMODEL5 (ARIMA(1,0,2)(2,0,0)
[12] with PM10) was themost appropriatemodel based on current
data. This suggested that PM10 was the most important factor to
predictmonthly pneumonia cases in ChiangMai.
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