Skip to main content
Log in

Stability of mercury on a novel mineral sulfide sorbent used for efficient mercury removal from coal combustion flue gas

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nano-structured zinc sulfide (Nano-ZnS) has been demonstrated to be a promising alternative to activated carbon (AC) for controlling mercury emission from coal combustion flue gas. The ultimate fate of the mercury-laden Nano-ZnS after mercury capture is mostly disposed in landfill with fly ashes. Thus, the stability of mercury adsorbed on the Nano-ZnS is of considerable significance in the secured disposal of fly ash after mercury removal and in the commercial application of the Nano-ZnS sorbent for removal of mercury from coal combustion flue gas. In this work, a modified toxicity characteristic leaching procedure (TCLP) was conducted to evaluate the leachability of mercury on the Nano-ZnS. The effects of leachate pH value, leaching time, liquid-to-solid ratio, and acid rain types on mercury leaching from the mercury-laden Nano-ZnS were systematically investigated. The TCLP results show that the concentration of mercury in leachate was far below the safe limit (200 μg/L) as imposed by the US Environmental Protection Agency (EPA) for classifying a material as a hazardous waste. All the key parameters that generally affected metal leaching rate exhibited slight effect on mercury leaching from the mercury-laden Nano-ZnS. Leaching tests at various highly severe conditions resulted in less than 0.01% mercury leaching from the mercury-laden Nano-ZnS. Sequential selective extraction tests demonstrated that mercury sulfide (HgS) was the dominant adsorption product on the Nano-ZnS, which guaranteed the excellent stability of mercury adsorbed on the Nano-ZnS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmaruzzaman M (2010) A review on the utilization of fly ash. Prog Energy Combust Sci 36:327–363

    Article  CAS  Google Scholar 

  • Al-Abed S, Jegadeesan G, Scheckel K, Tolaymat T (2008) Speciation, characterization, and mobility of as, se, and hg in flue gas desulphurization residues. Environ Sci Technol 42:1693–1698

    Article  CAS  Google Scholar 

  • Aravind PV, de Jong W (2012) Evaluation of high temperature gas cleaning options for biomass gasification product gas for solid oxide fuel cells. Prog Energy Combust Sci 38:737–764

    Article  CAS  Google Scholar 

  • Ariya PA, Dastoor AP, Amyot M, Schroeder WH, Barrie L, Anlauf K, Raofie F, Ryzhkov A, Davignon D, Lalonde J (2004) The Arctic: a sink for mercury. Tellus B 56:397–403

    Article  Google Scholar 

  • Bisson TM, Xu Z (2015) Potential hazards of brominated carbon sorbents for mercury emission control. Environ Sci Technol 49:2496–2502

    Article  CAS  Google Scholar 

  • Bloom NS, Preus E, Katon J, Hiltner M (2003) Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Anal Chim Acta 479:233–248

    Article  CAS  Google Scholar 

  • Bordas F, Bourg A (2001) Effect of solid/liquid ratio on the remobilization of Cu, Pb, Cd and Zn from polluted river sediment. Water Air Soil Pollut 128:391–400

    Article  CAS  Google Scholar 

  • Cheerarot R, Jaturapitakkul C (2004) A study of disposed fly ash from landfill to replace Portland cement. Waste Manag 24:701–709

    Article  CAS  Google Scholar 

  • Cho JH, Eom Y, Park JM, Lee SB, Hong JH, Lee TG (2013) Mercury leaching characteristics of waste treatment residues generated from various sources in Korea. Waste Manag 33:1675–1681

    Article  CAS  Google Scholar 

  • Chou PI, Ng DQ, Li IC, Lin YP (2018) Effects of dissolved oxygen, pH, salinity and humic acid on the release of metal ions from PbS, CuS and ZnS during a simulated storm event. Sci Total Environ 624:1401–1410

    Article  CAS  Google Scholar 

  • Coruh S, Ergun ON (2010) Use of fly ash, phosphogypsum and red mud as a liner material for the disposal of hazardous zinc leach residue waste. J Hazard Mater 173:468–473

    Article  CAS  Google Scholar 

  • da Silva EB, Li S, de Oliveira LM, Gress J, Dong X, Wilkie C, Townsend T, Ma LQ (2018) Metal leachability from coal combustion residuals under different pHs and liquid/solid ratios. J Hazard Mater 341:66–74

    Article  CAS  Google Scholar 

  • Ding F, Zhao Y, Mi L, Li H, Li Y, Zhang J (2012) Removal of gas-phase elemental mercury in flue gas by inorganic chemically promoted natural mineral sorbents. Ind Eng Chem Res 51:3039–3047

    Article  CAS  Google Scholar 

  • Gonzalez-Raymat H, Liu G, Liriano C, Li Y, Yin Y, Shi J, Jiang G, Cai Y (2017) Elemental mercury: its unique properties affect its behavior and fate in the environment. Environ Pollut 229:69–86

    Article  CAS  Google Scholar 

  • Graydon JW, Zhang X, Kirk DW, Jia CQ (2009) Sorption and stability of mercury on activated carbon for emission control. J Hazard Mater 168:978–982

    Article  CAS  Google Scholar 

  • Hansen JC (2000) Environmental contaminants and human health in the Arctic. Toxicol Lett 112:119–125

    Article  Google Scholar 

  • Hu Y, Cheng H (2016) Control of mercury emissions from stationary coal combustion sources in China: current status and recommendations. Environ Pollut 218:1209–1221

    Article  CAS  Google Scholar 

  • Hu C, Zhou J, Luo Z, He S, Wang G, Cen K (2006) Effect of oxidation treatment on the adsorption and the stability of mercury on activated carbon. J Environ Sci 18:1161–1166

    Article  CAS  Google Scholar 

  • Huang Y, Deng LT, Japenga J, Chen Q, Yang X, He Z (2017) Anthropogenic mercury emissions from 1980 to 2012 in China. Environ Pollut 226:230–239

    Article  CAS  Google Scholar 

  • Jala S, Goyal D (2006) Fly ash as a soil ameliorant for improving crop production--a review. Bioresour Technol 97:1136–1147

    Article  CAS  Google Scholar 

  • Khamparia S, Jaspal DK (2017a) Evaluation of decoloration potential of xanthium strumarium seed hull for adsorption of direct red 81 in aqueous solution. Environ Dev Sustain 19:1–19

    Article  Google Scholar 

  • Khamparia S, Jaspal DK (2017b) Xanthium strumarium L. seed hull as a zero cost alternative for rhodamine B dye removal. J Environ Manag 197:498–506

    Article  CAS  Google Scholar 

  • Khayati GR, Janghorban K, Shariat MH (2012) Isothermal kinetics of mechanochemically and thermally synthesized Ag from Ag2O. T Nonferr Metal Soc 22:935–942

    Article  CAS  Google Scholar 

  • Li XD, Poon CS, Sun H, Lo IM, Kirk DW (2001) Heavy metal speciation and leaching behaviors in cement based solidified/stabilized waste materials. J Hazard Mater 82:215–230

    Article  Google Scholar 

  • Li H, Wu S, Wu CY, Wang J, Li L, Shih K (2015) SCR atmosphere induced reduction of oxidized mercury over CuO-CeO2/TiO2 catalyst. Environ Sci Technol 49:7373–7379

    Article  CAS  Google Scholar 

  • Li H, Zhu L, Wang J, Li L, Shih K (2016) Development of nano-sulfide sorbent for efficient removal of elemental mercury from coal combustion fuel gas. Environ Sci Technol 50:9551–9557

    Article  CAS  Google Scholar 

  • Li H, Zhang W, Wang J, Yang Z, Li L, Shih K (2018) Copper slag as a catalyst for mercury oxidation in coal combustion flue gas. Waste Manag 74:253–259

    Article  CAS  Google Scholar 

  • Liao Y, Xiong S, Dang H, Xiao X, Yang S, Wong PK (2015) The centralized control of elemental mercury emission from the flue gas by a magnetic rengenerable Fe-Ti-Mn spinel. J Hazard Mater 299:740–746

    Article  CAS  Google Scholar 

  • Liu W, Vidic RD (2000) Optimization of high temperature sulfur impregnation on activated carbon for permanent sequestration of elemental mercury vapors. Environ Sci Technol 34:483–488

    Article  CAS  Google Scholar 

  • López-Antón MA, Abad-Valle P, Díaz-Somoano M, Suárez-Ruiz I, Martínez-Tarazona MR (2009) The influence of carbon particle type in fly ashes on mercury adsorption. Fuel 88:1194–1200

    Article  CAS  Google Scholar 

  • Luo Z, Hu C, Zhou J, Cen K (2006) Stability of mercury on three activated carbon sorbents. Fuel Process Technol 87:679–685

    Article  CAS  Google Scholar 

  • Ma J, Zhang Y, Qin Y, Wu Z, Wang T, Wang C (2017) The leaching kinetics of K-feldspar in sulfuric acid with the aid of ultrasound. Ultrason Sonochem 35:304–312

    Article  CAS  Google Scholar 

  • Malviya A, Kaur D (2012) Removal of toxic azo dyes from wastewater using bottom ash-equilibrium isothermal modeling. Orient J Chem 28:955–961

    Article  CAS  Google Scholar 

  • Miretzky P, Bisinoti MC, Jardim WF, Rocha JC (2005) Factors affecting Hg (II) adsorption in soils from the Rio Negro basin (Amazon). Quim Nova 28:438–443

    Article  CAS  Google Scholar 

  • Pavlish JH, Sondreal EA, Mann MD, Olson ES, Galbreath KC, Laudal DL, Benson SA (2003) Status review of mercury control options for coal-fired power plants. Fuel Process Technol 82:89–165

    Article  CAS  Google Scholar 

  • Rodríguez-Pérez J, López-Antón MA, Díaz-Somoano M, García R, Martínez-Tarazona MR (2011) Development of gold nanoparticle-doped activated carbon sorbent for elemental mercury. Energy Fuel 25:2022–2027

    Article  CAS  Google Scholar 

  • Schippers A (2004) Biogeochemistry of metal sulfide oxidation in mining environments,sediments, and soils. Geol Soc Am Spec Pap 379:49–62

    Google Scholar 

  • SEPA(State Environmental Protection Administration of China) (2007) Identification standards for hazardous wastes identification for extraction toxicity (HJ/T300–2007). China

  • Sjostrom S, Durham M, Bustard CJ, Martin C (2010) Activated carbon injection for mercury control: overview. Fuel 89:1320–1322

    Article  CAS  Google Scholar 

  • Sun L, Lin S, Feng L, Huang S, Yuan D (2013) The distribution and sea-air transfer of volatile mercury in waste post-desulfurization seawater discharged from a coal-fired power plant. Environ Sci Pollut Res 20:6191–6200

    Article  CAS  Google Scholar 

  • Sun M, Cheng G, Lu R, Tang T, Baig SA, Xu X (2014) Characterization of Hg0 re-emission and Hg2+ leaching potential from flue gas desulfurization (FGD) gypsum. Fuel Process Technol 118:28–33

    Article  CAS  Google Scholar 

  • Tong S, Fan M, Mao L, Jia CQ (2011) Sequential extraction study of stability of adsorbed mercury in chemically modified activated carbons. Environ Sci Technol 45:7416–7421

    Article  CAS  Google Scholar 

  • U.S. EPA (Environmental Protection Agency of the US) (1992) Method 1311 toxicity characteristic leaching procedure. The United States https://www.epa.gov/sites/production/files/2015-2012/documents/1311.pdf (accessed February 14, 2018)

  • U.S. EPA (Environmental Protection Agency of the US) (2009) Hazardous waste characteristics, A User-Friendly Reference Document. The United States https://www.epa.gov/sites/production/files/2016-2001/documents/hw-char.pdf (accessed February 14, 2018)

  • UNEP (United Nations Environment Program) (2017) Minamata convention on mercury. Switzerland http://www.mercuryconvention.org/Portals/11/documents/Booklets/COP1%20version/Minamata-Convention-booklet-eng-full.pdf, 2017 (Accessed 14 February 2018)

  • Xie J, Qu Z, Yan N, Yang S, Chen W, Hu L, Huang W, Liu P (2013) Novel regenerable sorbent based on Zr-Mn binary metal oxides for flue gas mercury retention and recovery. J Hazard Mater 261:206–213

    Article  CAS  Google Scholar 

  • Xu H, Qu Z, Zong C, Quan F, Mei J, Yan N (2016) Catalytic oxidation and adsorption of Hg0 over low-temperature NH3-SCR LaMnO3 perovskite oxide from flue gas. Appl Catal B Environ 186:30–40

    Article  CAS  Google Scholar 

  • Yang J, Zhao Y, Guo X, Li H, Zhang J, Zheng C (2018a) Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres from fly ash. Part 4. Performance of sorbent injection in an entrained flow reactor system. Fuel 220:403–411

    Article  CAS  Google Scholar 

  • Yang J, Zhao Y, Liang S, Zhang S, Ma S, Li H, Zhang J, Zheng C (2018b) Magnetic iron–manganese binary oxide supported on carbon nanofiber (Fe3-xMnxO4/CNF) for efficient removal of Hg0 from coal combustion flue gas. Chem Eng J 334:216–224

    Article  CAS  Google Scholar 

  • Zeng X, Li J, Shen B (2015) Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid. J Hazard Mater 295:112–118

    Article  CAS  Google Scholar 

  • Zhao S, Duan Y, Chen L, Li Y, Yao T, Liu S, Liu M, Lu J (2017) Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 1. Mercury. Environ Pollut 229:863–870

    Article  CAS  Google Scholar 

  • Zhou W, Eggenspieler G, Rokanuzzaman A, Lissianski V, Moyeda D (2010) Prediction of activated carbon injection performance for mercury capture in a full-scale coal-fired boiler. Ind Eng Chem Res 49:3603–3610

    Article  CAS  Google Scholar 

  • Zhou J, Hou W, Qi P, Gao X, Luo Z, Cen K (2013) CeO2-TiO2 sorbents for the removal of elemental mercury from syngas. Environ Sci Technol 47:10056–10062

    Article  CAS  Google Scholar 

  • Zhu Z, Zhuo Y, Fan Y, Wang Z (2016) Fate of mercury in flue gas desulfurization gypsum determined by temperature programmed decomposition and sequential chemical extraction. J Environ Sci (China) 43:169–176

    Article  Google Scholar 

Download references

Funding

This project was supported by the National Natural Science Foundation of China (No. 51476189, 51776227) and the Natural Science Foundation of Hunan Province, China (2018JJ1039, 2018JJ3675).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Yang.

Additional information

Responsible editor: Tito Roberto Cadaval Jr

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhang, M., Zhu, L. et al. Stability of mercury on a novel mineral sulfide sorbent used for efficient mercury removal from coal combustion flue gas. Environ Sci Pollut Res 25, 28583–28593 (2018). https://doi.org/10.1007/s11356-018-2896-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2896-z

Keywords

Navigation