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Abstract
As an important cause of global warming, CO2 concentrations and their changes have aroused worldwide concern. Establishing
explicit understanding of the spatial and temporal distributions of CO2 concentrations at regional scale is a crucial technical
problem for climate change research. High accuracy surface modeling (HASM) is employed in this paper using the output of the
CO2 concentrations from weather research and forecasting-chemistry (WRF-CHEM) as the driving fields, and the greenhouse
gases observing satellite (GOSAT) retrieval XCO2 data as the accuracy control conditions to obtain high accuracy XCO2 fields.
WRF-CHEM is an atmospheric chemical transport model designed for regional studies of CO2 concentrations. Verified by
ground- and space-based observations, WRF-CHEM has a limited ability to simulate the conditions of CO2 concentrations.
After conducting HASM, we obtain a higher accuracy distribution of the CO2 in North China than those calculated using the
classical Kriging and inverse distance weighted (IDW) interpolation methods, which were often used in past studies. The cross-
validation also shows that the averaging mean absolute error (MAE) of the results from HASM is 1.12 ppmv, and the averaging
root mean square error (RMSE) is 1.41 ppmv, both of which are lower than those of the Kriging and IDW methods. This study
also analyses the space-time distributions and variations of the XCO2 from the HASM results. This analysis shows that in
February and March, there was the high value zone in the southern region of study area relating to heating in the winter and
the dense population. The XCO2 concentration decreased by the end of the heating period and during the growing period of April
and May, and only some relatively high value zones continued to exist.
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Introduction

Global warming has drawn worldwide attention. As an impor-
tant greenhouse gas, atmospheric CO2 concentrations can pro-
foundly affect the trends of developments various climate

scenarios, thus affecting national security and sustainable eco-
nomic developments. According to the newest WMO
Greenhouse Gas Bulletin (2017), globally averaged concen-
tration of atmospheric CO2 rose to 403.3 ppm in 2016, com-
pared with the 280 ppm of the preindustrial era. Therefore, to
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control CO2 emissions and reduce the effects of human activ-
ity on climate warming, understanding the spatial and tempo-
ral distributions of atmospheric CO2 is crucial.

A large number of ground-based observatories have
been built around the world that use methods such as
bottle sampling, spectroscopy, and eddy covariance to ob-
tain information about CO2 concentrations and carbon
fluxes. However, due to technical and financial constraints,
the distribution of surface observation stations is still too
sparse, and the region-scale observation capabilities are
limited. In recent decades, with the development of remote
sensing technology, satellite-based observations have made
up for some of the deficiencies of ground-based observa-
tions. The CO2 concentration data retrieved from the sat-
ellite observation spectral data provide additional support
for scientists studying the sources and sinks of CO2.
SCIAMACHY is the first satellite-based detector to be
sensitive to the boundary layer and acquired a large
amount of observations over its 10-year orbit. Despite its
lower accuracy, the data from the SCIAMACHY instru-
ment still provides an opportunity to study the behavior
of the terrestrial biosphere and climate change (Wang et
al. 2011; Barkley et al. 2007). At present, the satellites in
orbit that specifically make CO2 observations include
GOSAT from Japan, OCO-2 from the USA, and TanSat
from China. These satellites’ objectives are to provide
global, long-term, continuous monitoring of XCO2 concen-
trations, to improve the measurement accuracies of carbon
sources and sinks as well as of the regional scale CO2

concentrations, and to improve the understanding of their
distribution characteristics and evolutions (Turner et al.
2015; Hakkarainen et al. 2016; Fischer et al. 2017).
TanSat, the third carbon satellite in the world, has been
active for more than a year, and the relevant research
teams are working on spectral inversions of its data
(Zhang et al. 2017a). The work of this paper is mainly
to prepare regional scale research by TanSat data for the
future, after TanSat L2 retrieval data released.

Another viable method to obtain the high resolution
spatial and temporal distributions of CO2 concentrations
is via the atmospheric chemical transport model, which
uses meteorological data to represent atmosphere activities
and CO2 fluxes to identify different emission scenarios.
The chemical transport model is widely used to study
CO2 on global and regional scales and as a comparison
with observations (Shim et al. 2013; Wang et al. 2014).
Additionally, by combining atmospheric chemical transport
model and CO2 observations, atmospheric CO2 data as-
similation has become a direct and effective approach to
identify carbon sources and sinks (Peters et al. 2007; Peng
et al. 2015; Tian et al. 2014). Since the model’s result is
an estimation of the real world, the performance of the
model is limited by the accuracy of the priori flux field

and the model transport mechanism. Ground-based obser-
vations and satellite-based observations have high degrees
of accuracy but have the drawbacks of limited spatial
distributions and time spans (Yue et al. 2016a).

Based on the High Accuracy Surface Modeling (HASM)
developed from the fundamental theorem of surfaces, the
model simulation results are used as the driving fields, and
the observational data as the optimal control conditions to
obtain more accurate CO2 distribution fields. In this paper,
we first simulated the CO2 distributions over North China
using Weather Research and Forecasting - Chemistry (WRF-
CHEM) as a regional atmospheric chemical transport model
and evaluated the accuracy of the WRF-CHEM simulation
results. Second, the CO2 concentration field simulated by the
WRF-CHEM and GOSAT inversion data is introduced into
HASM to obtain XCO2 concentrations. Then, the availability
of HASM is verified by comparing its results with those of the
classical interpolation methods commonly used in past studies
(Xu et al. 2013; Liu et al. 2011). Finally, the distribution of
XCO2 from the HASM simulation results and the changes of
the monthly evolutions are discussed.

Data and methods

Study region

The study area is located in the North China, between 34.3°
N~43.5° N and 111° E~121.9° E (see Fig. 1). This region
incorporates the Beijing-Tianjin-Hebei region, which is a
key economic zone in northern China, and Shandong
Province, which is a large economically important province
with the second largest population in China. In addition, part
of Henan Province (which has the third largest population),
Shanxi Province, Liaoning Province, and Inner Mongolia,
which have a variety of underlying surfaces, including grass,
forests, farmland, and cities, are also included in the study
area.

GOSAT XCO2 data

GOSAT (Greenhouse gases Observing SATellite) was jointly
designed by the Ministry of the Environment (MOE), the
National Institute for Environment Studies (NIES), and the
Japan Aerospace Exploration Agency (JAXA), and was suc-
cessfully launched on January 23, 2009 by the Japanese Space
Agency. This satellite is the first to be used to specifically
monitor the concentrations of CO2 and CH4 from space, oper-
ating at a 666 km sun-synchronous orbit with a 3-day recur-
rence. The TANSO-FTS on the satellite can detect the gas-
absorption spectra of the reflected light in the Short Wave
InfraRed (SWIR) region (0.76, 1.6, and 2.0 μm) and Thermal
Infrared (TIR) band (from 5.5 to 14.3 μm) from the Earth’s
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surface. Using these spectra data, CO2 and CH4 can be re-
trieved with a footprint that measures 10.5 km along one side
(Kuze et al. 2009; Kadygrov et al. 2009; Yokota et al. 2009).

In this study, the column-averaged dry-air fractions of the
CO2 (XCO2) datasets released by the GOSAT project are used
as the true values to verify the chemistry transport model
outputs and drive the HASM. We chose the GOSAT FTS
SWIR L2 data (hereafter GOSAT XCO2) from February to
May of 2015, considering the consecutiveness of the data
availability in the study area, and the data were filtered by
the screening procedures described in NIES GOSAT
TANSO-FTS SWIR Level 2 Data Product Format
Description. The distribution of valid GOSAT XCO2 points
is shown in Fig. 1, noting that each point may have been
observed several times. The number of valid GOSAT XCO2

measurements from February to May are 39, 37, 30, and 33
respectively. The website containing the data is https://data2.
gosat.nies.go.jp/index_en.html.

WDCGG

The WDCGG (World Data Centre for Greenhouse Gases) is
one of the data archiving and service centers under the GAW
(Global Atmosphere Watch) program of WMO (World
Meteorological Organization) that collects all observational da-
ta of greenhouse gases. Such as CO2, CH4, CFC, N2O, from
378 stations all over the world. The WDCGG was founded in

October 1990 and operated at the Japan Meteorological
Agency (JMA). The download website for the WDCGG data
is https://ds.data.jma.go.jp/gmd/wdcgg/wdcgg.html. Based on
the study period and study area, Shangdianzi Station is used as
the ground observation point to verify the output of the
chemistry transport model at the surface. Shangdianzi Station
is located at 40.65° N, 117.12° E and is 150 km northeast of
urban Beijing (see Fig. 1). This station is mainly influenced by
land flux and anthropogenic emissions (Li et al. 2017).

WRF-CHEM

The WRF-CHEM (Weather Research and Forecasting-
Chemistry) is a regional air quality model developed by the
National Oceanic and Atmospheric Administration (NOAA)
for biomass combustion, anthropogenic emissions, chemical
vapor schemes, and aerosol solutions; the model includes a
trace gas transport option and a subroutine to calculate the
plume lifting (Simpson et al. 1995; Sandu et al. 2003; Liu et
al. 2012). The main components of theWRF-CHEM involved
in this study are the WRF and greenhouse gas module.

WRF

TheWRF (Weather Research and Forecasting) model is a new
generation of mesoscale weather forecasting model and was
codeveloped by NCAR and NCEP. This model has a fully
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Fig. 1 Land cover of the study
region derived from ESA
(European Space Agency) global
land cover dataset. The red dots
are the locations of the available
GOSAT XCO2 L2 data points
during the study period (from
February to May 2015). The blue
dot is the location of the
Shangdianzi Global Atmosphere
Watch (GAW) Regional Station
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compressible non-static equilibrium mode and contains a
wealth of physical parameterization options (Wei et al. 2016;
William et al. 2008). Due to its high prediction accuracy,
strong portability, fast calculation, and easy maintenance, this
model is widely used in meteorological research and busi-
nesses around the world. In WRF-CHEM, the role of the
WRF is to provide real-time meteorological fields for chemi-
cal modules. Because the WRF can provide a meteorological
element field with a high spatiotemporal resolution, WRF-
CHEM can meet the current requirements for refined forecast-
ing. This is one of the biggest advantages of WRF-CHEM.

Greenhouse gas module

The greenhouse gas module of WRF-CHEM was developed
by the Max Planck Institute for Biogeochemistry (Beck et al.
2011). This module is able to simulate the distributions and
transports of greenhouse gases (passive tracers such as CO2,
CH4, and CO) with high resolutions and is able to obtain the
initial field and boundary conditions required for simulations
from the global atmospheric transport model (Ahmadov et al.
2007; Diao et al. 2015; Pillai et al. 2016). The model was
originally called WRFGHG (WRF Greenhouse Gas model).
Starting at WRF-CHEM v3.4, the corresponding module of
WRFGHG was officially included in WRF-CHEM.

In the greenhouse gas module, the Vegetation Photosynthesis
Respiration Model (VPRM) is a key elemebt used to estimate
the net ecosystem exchange (NEE), including the light-driven
gross ecosystem exchange and the ecosystem respiration term
driven by temperature.

NEE ¼ −λ� T scale � Pscale �W scale � EVI

� 1

1þ PAR=PAR0ð Þ � PARþ α� T þ β ð1Þ

In which λ(μmol CO2 m
−2s−1/(μmol PAR m−2s−1)) is the

maximum quantum yield, and PAR0(μmol m−2s−1) is the half
saturation value of the photosynthetically active radiation.
EVI (Enhanced Vegetation Index) represents the ratio of the
absorbed photosynthetically active radiation to the total pho-
tosynthetically active radiation. Tscale, Pscale, and Wscale, re-
spectively, represent the characteristics of the leaf tempera-
tures, leaf surface characteristics, and canopy water contents.
The functions of Tscale, Pscale, andWscale are shown as follows:

T scale ¼ T−Tminð Þ T−Tmaxð Þ
T−Tminð Þ T−Tmaxð Þ− T−T opt

� �2h i ð2Þ

W scale ¼ 1þ LSWI

1þ LSWImax
ð3Þ

Pscale ¼ 1þ LSWI

2
ð4Þ

where T (°C) is the temperature in atmosphere, and Tmin, Tmax,
and Topi represent the minimum, maximum, and optimum
temperatures for photosynthesis. Tscale is set to 0 when the
air temperature is less than Tmin. LSWI (Land Surface Water
Index) is the moisture content of the vegetation canopy, and
LSWImax is the maximum LSWI value during the growing
season in each grid cell. The value of Pscale depends on the
growth stages of the vegetation, and for the evergreen forest,
the value of Pscale is fixed at 1.0. In other cases, Tscale, Pscale,
andWscale range from 0.0 to 1.0. Compared with other models
that treat breathing as an exponential function of temperature,
VPRM reduces breathing to a linear function of temperature in
which α(μmol CO2 m−2s−1/°C) and β(μmol CO2 m−2s−1) can
be adjusted according to the observed data.

Running of WRF-CHEM

We use a 1°× 1 reanalysis produce, i.e., the ERA-Interim data,
with time intervals of 6 h as downloaded from the European
Centre for Medium-Range Weather Forecasts (ECMWF) for
the initial field and boundary conditions for WRF. The total
surface CO2 exchanges are calculated as follows:

Ft ¼ Fant þ FR þ FGEE þ F fire ð5Þ
where Ft denotes the total CO2 flux. Fant is the anthropogenic
emissions obtained from the Emission Database for Global
Atmospheric Research (EDGAR). FR and FGEE are the bio-
spheric respiration and gross ecosystem exchange, respective-
ly, and both are calculated via the VPRM in greenhouse gas
module. Ffire is the biomass burning emissions provided by
the Global Fire Emissions Database (GFED). The initial fields
and boundary conditions of the CO2 concentrations from dif-
ferent sources are adopted from CarbonTracker2016.

The input of the VPRMmodule includes four kinds of data.
The temperature at 2 m and the downward shortwave flux at
the ground surface can be provided by the coupled WRF.
LSWI and EVI are calculated from the Terra MODIS satellite
level-3 land product (MYD09A1: MODIS/Aqua Surface
Reflectance 8-Day L3 Global 500 m SIN Grid V006) via the
VPRM-Preprocessor tool.

The WRF-CHEM utilized is WRF-CHEM version 3.6,
which is used to model from February to May 2015. During
the study period, simulations were performed four times. Each
simulation has a 6-h spin up for its meteorology and a 1-month
run time period for the CO2 transport. The model domain is
centered at 39.0° N, 116.5° E, with a 10 km× 10 km horizontal
resolution, 35 vertical layers in the terrain-following hydrostatic-
pressure vertical coordinate system from the surface to 50 hPa,
and an hourly output on the Lambert projection. The chosen
physical parameterization schemes are WSM 5-class micro-
physics scheme, RRTM longwave radiation scheme, Goddard
short wave radiation scheme, revised MM5 Monin-Obukhov
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surface-layer scheme, unified Noah land-surface model, YSU
boundary-layer scheme, and Grell 3D ensemble cumulus
scheme. The dataset, components, and workflow involved in
the operation of WRF-CHEM are shown in Fig. 2.

HASM

Based on the fundamental theorem of surface, a surface is
uniquely determined by the first and second fundamental co-
efficients. The first fundamental coefficients of a surface de-
scribe the geometric properties of the surface, by which we
can calculate the lengths of the curves, the angles of the tan-
gent vectors, the areas of regions, and the geodesics on the
surface. These geometric properties and objects are called the
intrinsic geometric properties and are only determined via the
first fundamental coefficients of a surface, depending on mea-
surements that we can conduct while staying on the surface
itself (Toponogov 2006). The second fundamental coefficients
of a surface describe the local deformations of the surface,
which can be observed while staying above the surface. In
other word, these are the deviations of the relevant point on
the surface from the tangent plane (Liseikin 2004).

Suppose a surface z can be represented by a function of x
and y; that is, z = f(x, y). The first fundamental coefficients, E,
F, and G, and the second fundamental coefficients, L, M, and
N, are defined as follow:

E ¼ 1þ f 2x ð6Þ
F ¼ f x ⋅ f y ð7Þ
G ¼ 1þ f 2y ð8Þ

L ¼ f xxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2x þ f 2y

q ð9Þ

M ¼ f xyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2x þ f 2y

q ð10Þ

N ¼ f yyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2x þ f 2y

q ð11Þ

In which fx is the first order partial derivative of the surface
z with respect to the independent variable x. fxx is the second
order partial derivative of the surface z with respect to the
independent variable x.

A similar definition applies for fy and fyy. fxy is the second
order mixed partial derivative of the surface z with respect to
the independent variables x and y successively.

Based on previous research, an equation set called the
Gauss equation was found to relate the intrinsic curvature of
the surface to the derivatives of the Gauss map, namely, the
first fundamental coefficients (Eqs. 6–8) and the second fun-
damental coefficients (Eq. 9–11) satisfy the following equa-
tion set:

f xx ¼ Γ1
11 f x þ Γ2

11 f y þ
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E þ G−1
p ð12Þ

f xy ¼ Γ1
12 f x þ Γ2

12 f y þ
Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E þ G−1
p ð13Þ

f yy ¼ Γ1
22 f x þ Γ2

22 f y þ
Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E þ G−1
p ð14Þ

where

Γ1
11 ¼

GEx−2FFx þ FEy

2 EG−F2
� � ð15Þ

Γ1
12 ¼

GEx−FGx

2 EG−F2
� � ð16Þ

Γ1
22 ¼

2GFy−GGx−FGy

2 EG−F2
� � ð17Þ

Γ2
11 ¼

2EFx−EEy−FEx

2 EG−F2
� � ð18Þ

NEE 

swdown, t2 prep_chem_ 

sources 

CO2 flux (EDGAR

GFED, CT2016) 

Greenhouse 

gas module 

Initial fields and boundary 

conditions of CO2

(CT2016) 
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Fig. 2 The dataset, components,
and workflow involved in the
operation of WRF-CHEM
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Γ2
12 ¼

EGx−FEy

2 EG−F2
� � ð19Þ

Γ2
22 ¼

EGy−2FFy þ FGx

2 EG−F2
� � ð20Þ

Γ1
11, Γ

1
12, Γ

1
22, Γ

2
11, Γ

2
12, and Γ2

22 are the second type of
Christoffel symbols and rely only on the first fundamental
coefficients, E, F, and G, and their derivatives. In the process
of solution of the Eqs. 12–14, the central difference method is
used to displace the partial derivatives.

We mark the first, second, and third equations of Gauss
equation set as a, b, and c. Then, HASM abc can be expressed
as a constrainted least-squares approximation.

min
A
B
C

2
4

3
5 ⋅ z n−1ð Þ−

d
q
h

2
4

3
5

nð Þ�������
�������
2

S ⋅ z n−1ð Þ ¼ k

8>>><
>>>:

ð21Þ

where the second equation of Eq. 21 is the constraint equation
representing the sampling points information. A, B, and C are
the coefficient matrix of the discrete equation form of the
Gauss equation. d, q, and p are found on the right-hand side
of the Gauss equation. S denotes the sampling matrix, and k
denotes the sampling vector.

Equation 21 is a least-squares problem constrained by ter-
restrial sampling. The purpose of Eq. 21 is to confine the
overall simulation error to a minimum value, while keeping
the simulated value equal to the sample value at the sampling
point. Taking full advantage of the sampling information is

WRF-CHEM GOSAT 

HASM 

Retrieved 

XCO2

Approximate 

XCO2 field

Updated XCO2

field

Fig. 3 The workflow used to obtain the XCO2 field based on HASM

390
395
400
405
410
415
420
425
430

Shangdianzi WRF-CHEM

Fig. 4 The comparison of CO2

values near the surface between
simulations and observations. The
red lines show the WRF-CHEM
grid CO2 simulations. The blue
line is the observations of
Shangdianzi Station from
WDCGG

Table 1 Basic statistics of XCO2 from WRF-CHEM and GOSAT

2015.02 2015.03 2015.04 2015.05

WRF-CHEM GOSAT XCO2 WRF-CHEM GOSAT XCO2 WRF-CHEM GOSAT XCO2 WRF-CHEM GOSAT XCO2

Max (ppmv) 404.41 405.35 403.87 406.36 405.35 404.71 404.97 403.22

Min (ppmv) 400.92 396.43 401.58 395.60 402.97 398.09 402.01 398.27

Mean (ppmv) 402.17 400.21 402.41 399.59 403.84 400.65 403.83 400.87

Variance 1.04 2.74 0.57 2.96 0.72 1.71 0.66 1.31

Correlation
coefficient

0.78 0.51 0.56 0.40
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also an effective way to ensure that the iterative formulation of
HASM approaches the best simulation result.

HASM can also be transferred into an unconstrained least-
squares approximation:

ATBTCTλ ⋅ ST
� � A

B
C
λ⋅S

2
664

3
775Z nþ1ð Þ ¼ ATBTCTλ ⋅ ST

� � d nð Þ

q nð Þ

p nð Þ

λ⋅k

2
664

3
775
ð22Þ

where λ denotes the weight of the sampling point
values, which refers the relative importances of the sam-
pling points in the simulated field. λ could be a real
number or a vector, depending on whether all sampling
points are equally important or if each point has its own
weight.

In the existing research, HASM have been applied for
the study of soil properties (Shi et al., 2011, 2016), carbon
storage (Wang et al., 2016; Yue et al. 2016b), and climate
change (Yue et al. 2013; Zhao and Yue 2014). At a global
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Fig. 5 Comparison of the three
methods and GOSAT retrieval
data on 2015.02. a HASM. b
Kriging. c IDW
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scale, Zhao (Zhao et al. 2017a, b) and Zhang (2017b)
introduced HASM for XCO2 simulations with plenty of
sampling points. Yue et al. (2015) verified that HASM is
an alternative approach to filling voids on XCO2 surfaces
from satellites. In this study, we force a regional scale
simulation with a scant number of sampling points to
investigate the performance of HASM. Based on HASM,
the workflow used to obtain the XCO2 field is shown in
Fig. 3.

Results and discussion

Comparison between WRF-CHEM and WDCGG

Figure 4 shows the comparison between the WRF-CHEM
CO2 data and the ground-based measurements from
Shangdianzi Station during the study period. Overall, the
WRF-CHEM CO2 simulations represent the fluctuations
of the observation time series, with a high correlation
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Fig. 6 Comparison of the three
methods and GOSAT retrieval
data on 2015.03. a HASM. b
Kriging. c IDW
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coefficient of approximately 0.94. The difference between
the model and observations is small in the low value
range (approximately 405 ppmv), whereas the bias be-
comes large when the observed CO2 concentrations are
high and the model values are lower. The reason for this
difference may be that the data from the model is a mean
value of a 0.1°× 0.1 grid cell. Therefore, the simulations

results reflect the smooth characteristics. Due to the com-
plexity of atmosphere and the lack of understanding of
atmospheric motion, WRF includes many approximations,
and the choice of many parameters is debatable. Because
of these issues, WRF is unable to accurately simulate the
wind field, thereby affecting CO2 transmission and diffu-
sion in the atmosphere. In addition, the emission data are
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Fig. 7 Comparison of the three
methods and GOSAT retrieval
data on 2015.04. a HASM. b
Kriging. c IDW
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not very accurate, which also affects the distribution of
CO2 concentration.

Comparison between WRF-CHEM and GOSAT
Based on the information of the dates and longitudes/

latitudes in the GOSAT retrieval dataset, we extract the simu-
lation data for the same dates and positions to compare be-
tween the simulation and GOSAT XCO2. Note that the orig-
inal WRF-CHEM output is a layered CO2 concentration.

Thus, here, WRF-CHEM XCO2 is calculated based on the
following function:

XCO2 ¼ ∑
N

i¼1
hiui ð23Þ

where N is the number of layers in the original WRF-CHEM
output, ui presents the CO2 concentrations as each layer, and hi
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Fig. 8 Comparison of the three
methods and GOSAT retrieval
data on 2015.05. a HASM. b
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presents the pressure weighting function which relates the
layered CO2 concentration to the profile-weighted average
(Connor et al. 2008).

hi ¼ −pi þ
piþ1−pi

ln
piþ!

pi

� 	
0
BB@

1
CCAþ pi−

pi−pi−1

ln
pi
pi−1

� 	
0
BB@

1
CCA




















1

Psurf
ð24Þ

where pi is the pressure on each level, and psurf is the surface
pressure. For the upper or lower boundary layers, the function
retains only the left or right items within the absolute operator.

The basic statistics of the XCO2 from the WRF-CHEM and
GOSAT retrieval data are shown in Table 1. In the 4-month
study period, the simulated minimums are approximately 4–
5 ppmv higher than those of the GOSATXCO2, and the average
of the simulations is also approximately 2–3 ppmv higher.
Considering XCO2 is the general representation of the CO2

content from the surface to the top of atmosphere, and the lower
simulated values of the surface CO2 concentration are shown in
Fig. 4, the higher simulated values of XCO2 fromWRF-CHEM
may come from excess CO2 simulated in the troposphere. The
simulated variances of each month in Table 1 are less than the
observed variances, which is a common problem for transmis-
sion models (Lei et al. 2014). The correlation coefficients of
WRF-CHEM XCO2 and GOSAT XCO2 are between 0.4 and
0.78, being highest in February and lowest in May.

From Fig. 4 and Table 1, WRF-CHEM has a certain degree
of ability to simulate regional CO2 concentrations. However,
due to the limited emission inventories and the performances
of the models, the simulation accuracies remain to be im-
proved. In the next chapter, we adopt HASM to achieve our
goal, such that the CO2 concentrations of the WRF-CHEM
model are taken as driving fields, and GOSAT XCO2 is used
as the accuracy control conditions.

Comparison with the Kriging and IDW methods

Taking the simulated XCO2 fields from WRF-CHEM and the
retrieval data from GOSAT as the driving field and accuracy
control conditions, respectively, we operate HASM to update
the XCO2 field. Meanwhile, as the classic interpolation
methods, Kriging and IDW methods are also involved in the
experiments to compare with HASM. The XCO2 data is calcu-
lated on a monthly basis due to limited retrieval data. For each
month, we organize the cross-validation test, which means that
one data point in GOSATXCO2 is selected as the test point, and
the remaining points are used to drive the three methods. After
this, the simulation values are extracted for the test points.

Comparisons of the three methods and the GOSAT retriev-
al data for each month are shown in Figs. 5, 6, 7, and 8. The
fitting equations of HASM present the highest R2 values
among the three methods in all cases; meanwhile, IDW

performs the worst, except in May. Furthermore, we use two
statistics to show the differences of the three methods:

MAE ¼ 1

N
∑
N

I
OI−SIj j ð25Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

I OI−SIð Þ2
N−1

s

Table 2 shows the monthly mean absolute error (MAE) and
root mean square error (RMSE) values of the three methods and
indicates that HASM perform better than the classic interpola-
tion methods. This is because that the HASM used in this paper
is not a typical spatial interpolationmethod to construct new data
points using only a finite set of known data points. The output of
HASM normally contains information from both finite known
data points and an approximate field. To some extent, the
HASM used in this paper is more of a data fusion method.

Spatiotemporal distribution of XCO2 from HASM

The monthly XCO2 outputs from HASM are reproduced in
Fig. 9. The distribution of XCO2 varies bymonth. In February,
the XCO2 is much higher in the southern regions and not the
northern regions of the study area. In Shandong Province and
the southern part of Hebei Province, the XCO2 exceeds
402 ppmv, in contrast to the values of less than 398 ppmv
observed in Inner Mongolia. The spatial distribution trend in
March is similar to that in February, although the high value
zone contracts. This distribution phenomena may be related to
the heating in the winter and the population distribution. In the
northern part of study area, there is a small population and thus
a lower energy consumption for heating. The middle of the
study area has a great population, and thus, the XCO2 is rel-
atively high. Shandong and Henan provinces are the second
and third most populous in China and contribute the most
carbon emission for heating. Especially in southern
Shandong, burning coal to keep warm in rural areas aggra-
vates the carbon emissions. Besides, northerly winds prevail-
ing in the winter reinforce this distribution.

Table 2 Mean absolute error (MAE) and root mean square error
(RMSE) values of the three methods

MAE (ppmv) RMSE (ppmv)

HASM Kriging IDW HASM Kriging IDW

2015.02 1.50 1.75 1.77 1.89 2.15 2.10

2015.03 1.53 1.48 1.48 1.98 2.00 2.04

2015.04 0.80 0.83 0.95 0.98 1.03 1.10

2015.05 0.65 0.76 0.72 0.80 1.02 0.88

mean 1.12 1.27 1.23 1.41 1.55 1.53
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With vegetation growth in the terrestrial ecosystems and
the end of heat use in April, the difference of the north-south
distribution of XCO2 rapidly decreases, and the high value
zone (i.e., greater than 402 ppmv) disappeared. The concen-
tration is further reduced in May. Only in Beijing and Tianjin
as well as at the border of Shandong, Henan, and Hebei is the
XCO2 greater than 401 ppmv but less than 402 ppmv, which
means that the carbon emissions in these areas are strongly
influenced by human activity.

Conclusions

According to the fundamental theorem of surfaces, a surface is
determined by the first and the second fundamental coefficients.
In this paper, HASM is applied to obtain high precision simulat-
ed XCO2 fields, using the simulated field outputs from the atmo-
spheric chemical transport model as the approximate driving

fields and the observed data as the accuracy control points. The
main conclusions of this paper are as follows: (a) The simulation
results of the regional atmospheric transport modelWRF-CHEM
can reflect the changes and distributions of CO2 concentrations to
a certain extent. Although the precision of this model is poor, the
result can provide driving field information for HASM for an
approximate surface. (b) Comparing the output of HASM with
those of the classical Kriging and IDW interpolation schemes
shows that the simulation results ofHASMhave relatively higher
accuracies during the study period. A cross-validation shows that
theMAE fromHASM is 1.12 ppmv and RMSE is 1.41 ppmv. c)
The CO2 concentration field simulated by HASM has obvious
spatial differentiations and changes with the seasonal changes.
Due to heating emissions in the winter, densely populated areas
have higher CO2 concentrations. With the end of the heating
period and the new growth of plants, the high concentration
values rapidly decrease. At this time, the distribution of high
concentration area is related to industrial activities.

(a) 

(b) 

Fig. 9 Spatiotemporal distribution of monthly XCO2 values from HASM. a February. b March. c April. d May
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Compared with the previous research of HASM, the few
observed data are used in this study. Meanwhile, the accuracy
of the WRF-CHEM simulation field is limited. These factors
will transmit biases into the outputs of HASM. Therefore,
increasing the number of observation points and improving
the driving field accuracies are important methods to obtain
more accurate CO2 distributions using HASM. In addition, the
GOSAT inversion data is used as the true values due to the
lack of XCO2 observations from ground-based observation
stations within the study area. This study should be repeated
as more data from ground- and space-based observations be-
come available.
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