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Abstract Recently, it was observed that there is an increasing
application of nanoparticles (NPs) in aquaculture. Manufacturers
are trying to use nano-based tools to remove the barriers about
waterborne food, growth, reproduction, and culturing of species,
their health, and water treatment in order to increase aquaculture
production rates, being the safe-by-design approach still
unapplied. We reviewed the applications of NPs in aquaculture
evidencing that the way NPs are applied can be very different:
some are direclty added to feed, other to water media or in aqua-
culture facilities. Traditional toxicity data cannot be easily used to
infer on aquaculturemainly considering short-term exposure sce-
narios, underestimating the potential exposure of aquacultured
species. The main outputs are (i) biological models are not

recurrent, and in the case, testing protocols are frequently differ-
ent; (ii) most data derived from toxicity studies are not specifi-
cally designed on aquaculture needs, thus contact time, exposure
concentrations, and other ancillary conditions do not meet the
required standard for aquaculture; (iii) short-term exposure pe-
riods are investigated mainly on species of indirect aquaculture
interest, while shrimp and fish as final consumers in aquaculture
plants are underinvestigated (scarce or unknown data on trophic
chain transfer of NPs): little information is available about the
amount of NPs accumulated within marketed organisms; (iv)
how NPs present in the packaging of aquacultured products
can affect their quality remained substantially unexplored. NPs
in aquaculture are a challenging topic that must be developed in
the near future to assure human health and environmental safety.
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Abbreviations
NPs Nanoparticles
nTiO2 Titanium dioxide NPs
selenium NPs nSe
nZnO Zinc oxide NPs
nFe Iron NPs
nSiO2 Silicon dioxide NPs
nAu Gold NPs
SWCNTs Single-walled carbon nanotubes
C60 Fullerene
nAg Silver NPs
QDs Quantum dots
nSnO2 Tin oxide NPs
nCeO2 Cerium oxide NPs
nAl2O3 Aluminum oxide NPs
nCuO Copper oxide NPs
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ZFL Zebrafish liver cell line
WSSV White spot syndrome virus
CAgNCs Chitosan-silver nano composites
MIC Minimum inhibitory concentration
RFID Radio frequency identification
DAG-PEG Diacylglycerol-polyethyleneglycol
Cu2+-MMT Copper-bearing nanomontmorillonite
TBT Antifouling pesticide tributyltin
HSP Heat shock proteins
CYP Cytochrome P450
HEK 293 Human embryonic kidney 293 cells
UV Ultraviolet light
EC50 Half maximal effective concentration
SOD Superoxide dismutase
CAT Catalase
LPO Lactoperoxidase
GOT Glutamic-oxaloacetic transaminase
GPT Glutamic-pyruvic transaminase
GSTs Glutathione-S-transferase
ROS Reactive oxygen species
RBC Red blood cell
WBC White blood cell
HB Hemoglobin
HTC Hematocrit
SGOT Serum glutamic-oxaloacetic transaminase
SGPT Serum glutamic-pyruvic transaminase
GRP Glucose-regulated protein
LMS Lysosomal membrane stability
TBARS Thiobarbituric acid reactive substances
MWNTs Multiwalled carbon nanotubes
PVP Polyvinylpyrrolidone
PEG Polyethylene glycol
LC50 Lethal concentration 50
BHAL Bi-potential human liver cells
GSH-Px Glutathione peroxidase

Introduction

Aquaculture and fisheries supply about 15% of the average
animal protein consumption to 2.9 billion people worldwide
in, and is still increasing. Approximately 43.5 million people
are directly employed within these sectors, and 520 million
people indirectly derive their livelihoods from aquaculture and
fisheries industries (Asche et al. 2015).

Similarly, nanotechnology is no more a niche for researchers,
but a really fast growing and impacting key economical field
providing new nanoenabled products with novel and unique
functions. The new-engineered nanoenabled products, improved
by nanoparticles (NPs), have been the key factor for the success
of the nanotechnology industry. With a size between 1 and
100 nm on at least one dimension, NPs present unique
physico-chemical properties that differ from their bulk materials,

such as a greater surface area to volume ratio, resulting in a larger
reactivity. Due to their remarkable properties, NPs have been
widely used in different fields such as energy and electronics,
wastewater treatment, personal care products, and medicine and
agriculture (ETC 2003; Karnik et al. 2005; Aitken et al. 2006;
Libralato et al. 2013; Callegaro et al. 2015; Dasgupta et al. 2015;
Perera et al. 2015; Libralato 2014; Libralato et al. 2016a;Minetto
et al. 2014, 2016; Podyacheva and Ismagilov 2015; Vale et al.
2016). Recently, nanotechnology has found several applications
in aquaculture, but their implications are still unknown.

In the fishery and aquaculture industry, NPs are used for sev-
eral direct and indirect applications as summarized in Fig. 1.
Indirect uses include water and wastewater treatment, fishpond
sterilization, and harvested fish packaging for commercialization
like as barcoding and tagging; direct uses involve feeding indus-
try and animal healthcare like fish disease control.

The escalating production and application of NPs have
raised concerns about their safety to human health and the
environment. While a significant number of studies have been
conducted on NP potential toxicity toward humans and other
organisms, few have been directed toward the effects in aqua-
culture. The assessment of potential bioadverse effects of NPs
would allow the determination of a safe limit concentration to
be used on food production activities such as fishery and
aquaculture. Moreover, this could trigger the discussion on
the regulatory use of NPs in the food industry and the creation
of proper legislation, which are still currently missing.

Direct use

feed enhancer

nutraceu�cals

pharmaceu�cals

Indirect use

water and
wastewater
treatment

pond and cage
steriliza�on

biofilm and
fouling control

packaging

barcoding and
tagging

Fig. 1 Direct and indirect use of nanotechnology in aquaculture activities

Environ Sci Pollut Res (2017) 24:17326–17346 17327



The present study reviewed for the first time the potential
toxicity of NPs in aquaculture providing a critical summary of
recent scientific literature on their potential hazardous effects.
Our focus is not the environment, but aquacultured species
intentionally treated with NPs or indirectly exposed to NPs
used in aquaculture activities.

Aquaculture industry and nanotechnology

Nanotechnology and aquatic feed

One of the most important nanotechnology application in
aquaculture is the feed production where the use of NPs have
proved to be effective for (i) micronutrient delivery (e.g., chi-
tosan NPs), (ii) amount of produced feed per unit time (e.g.,
single-walled carbon nanotubes (SWCNTs), fullerenes (C60),
and nTiO2), and (iii) growth promotion (e.g., nFe, nSe, nTiO2,
and nZnO) (Table 1).

Chitosan [poly(1,4-β-D-glucopyranosamine)] is a polysac-
charide with low immunogenicity, low toxicity, and antimi-
crobial potential being widely used on feed production for
human and animals (Rather et al. 2013; Luo and Wang
2013; Ferosekhan et al. 2014; Vendramini et al. 2016).
Novel applications of chitosan NPs, for the delivery of unsta-
ble and/or hydrosoluble micronutrients, are in early stages of
development. Alishahi et al. (2014) showed that the use of
chitosan NPs significantly increased shelf life and delivery
of vitamin C in rainbow trout after 20 days of feeding.
Jiménez-Fernández et al. (2014) conducted a similar study
applying chitosan NPs for delivering ascorbic acid (AA) in
(i) zebrafish liver cell line (ZFL) and (ii) in vivo to the rotifer
Brachionus plicatilis. NPs had the ability to penetrate fish
intestinal epithelium showing a significant increase of AA
on both models. Rotifers fed with AA-NPs increased up to
twofold their AA levels in comparison to the control groups.

During the administration of feed directly to water, nutri-
ents can be relased from feed pellets to water. Chitosan NPs
can be used as an encapsulating agent for nutrients that can
easily degradate when in contact with water (Chatterjee and
Judeh 2016; Ji et al. 2015). Peniche et al. (2004) prevented the
leakage of liver oil of shark when encapsulated with calcium
alginate coated with chitosan. Klinkesorn and Mcclements
(2009) conducted an in vitro study and demonstrated that en-
capsulation of tuna oil droplets, with chitosan NPs, increased
physical stability and subsequently decreased the fatty acids
released from the emulsions.

Addition of SWCNTs (Fraser et al. 2011; Bisesi et al.
2015), C60 (Fraser et al. 2011), and nTiO2 (Ramsden et al.
2009) to rainbow trout fathead minnows and rainbow trout
food changed the physical properties of fish pellet resulting
more compact than usual, decreasing the nutrients’ leaching
and their subsequent waste in fishpond.

Selenium (Se) is a trace element essential for life, and has
been recently considered in many case studies for animal nu-
trition (Polettini et al. 2015; Sabbioni et al. 2015). Se is a
component of glutathione peroxidase (GSH-Px) enzymes
(Rotruck et al. 1973) that protect the cell membrane through
glutathione reduction. Supplemental Se can be acquired
through diet (Fotedar and Munilkumar 2016; Wang et al.
2013), and Se NPs are gaining a great deal of attention due
to its bioavailability and antioxidant defense properties
(Sonkusre et al. 2014). Supplemental nSe increased the final
weight, protein content in muscle, and GSH-Px activity in
liver and blood plasma as well as decreased FCR in crucian
carp (Carassius auratus gibelio) that were fed with supple-
mented diets (Zhou et al. 2009). Additionally, Wang et al.
(2013) evidenced that nSe caused an increase in LDH, cellular
protein contents, Na+/K+-ATPase, SOD, and GSH-Px in
crucian carp (C. auratus gibelio), being this effect both NPs
size and dose dependent. Deng and Cheng (2003) reported
that nSe promoted a significant effect on the growth of Nile
tilapia (Oreochromis niloticus) at moderate (0.5 mg/kg) and
high (2.5 mg/kg) doses of Se NPs via spiked feed presenting a
weight gain rate of 86.3 ± 4.7 g.

Zinc (Zn) is another essential micronutrient involved in
several metabolic pathways and is essential for the regulation
of protein synthesis, energy consumption, and as well as vita-
min A and lipid metabolism (Muralisankar et al. 2014). Faiz
et al. (2015) investigated nZnO as a source of dietary Zn
evidencing improved growth and immune response in grass
carp (Ctenopharyngodon idella). Muralisankar et al. (2014)
showed a significant increase in protein content, antioxidant
enzymes activity, and increased weight in freshwater prawn
(Macrobrachium rosenbergii) after 90 days feeding with feed
improved with nZnO. Bhattacharyya et al. (2015) investigated
the use of nanomaterials (NMs) to induce the growth in aquat-
ic species increasing the proportion of nutrients passing across
the gut tissue and into the organism rather than passing
through the digestive system and excreted partially or totally
unused. Ramsden et al. (2009) used nTiO2 to improve growth
performance in rainbow trout (Oncorhynchus mykiss).

Nanotechnology and aquatic reproduction

In artificial reproduction of commercial aquatic animal, one of
the most common problems is the incomplete vitellogenesis in
females leading to failure of the final oocyte maturation and
ovulation. To overcome this problem, it is necessary to devel-
op methods for controlling the reproductive process. Chitosan
NPs can be used to carry and release in a controlled way
endogenous hormone (Pulavendran et al. 2011). Rather et al.
(2013) used salmon hormone chitosan-nAu to overcome the
problem of the short life of reproductive hormones in blood,
thus avoiding the use of multiple injections in order to en-
hance reproductive efficacy. Results showed that reproductive
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hormones were present in blood for a longer period in treated
organisms and the relative number of eggs and their fertiliza-
tion rate also significantly increased. Moreover, chitosan
nanoconjugated salmon luteinizing hormone-releasing hor-
mone (CsLHRH) increased the expression level of Sox9 tran-
scripts in gonads and steroid hormonal levels in blood of male
and female of Clarias batrachus being helpful for proper go-
nadal development (Bhat et al. 2016).

Nanotechnology and aquacultured species health

Aquaculture industry has experienced great problems with
pathogens (bacteria, fungi, and viruses) that were generally
controlled with chemical disinfectants and antibiotics
(Huang et al. 2015). Shaalan et al. (2016) reviewed the use
of NPs as potential antimicrobials, emphasizing on antibiotic-
resistant bacteria in fisheries, nanoparticle-based vaccines,
and the development of specific and sensitive tool for
diagnosis of bacterial, fungal, and viral diseases in
aquaculture. Ramya et al. (2014) showed the protective effi-
cacy of a DNA construct containing extra small virus anti-
sense (XSVAS) gene of nodavirus encapsulated with chitosan
NPs in M. rosenbergii increasing its survivability. The fish
nanomedicine is in its infancy and several gaps about potential
adverse effects to target and non-target species still needs to be
addressed.

Rapid detection of phatogens in aquatic organisms can be
very effective to disease control, but the available methods are
time consuming, costly, and might experience some
difficulties in pathogen separation and detection. Guo et al.
(2016) conducted a study to design an immunomagnetic NP-
based microfluidic system to detect Staphylococcus aureus
creating a microfluidic chip with indium tin oxide. Results
evidenced that sensitivity and specificity of the detection sys-
tem were the same of the colony counting method, with a
whole shorter detection time without colony cultivation.

Due to chitosan antimicrobial properties, several studies
investigated its application for seafood packaging (Alishahi
et al. 2014; Hosseini et al. 2016). Ramezani et al. (2015)
studied the effect of chitosan and chitosan NPs on silver carp
(Hypophthalmicthys molitrix) fillets stored at 4 °C, evidencing
that chitosan NPs exhibited interesting antimicrobial activity
and the ability to inhibit the TVB-N content improving the
general storage potentiality of the product.

Disease prevention and control are crucial for aquaculture
under an economical and environmental viewpoint. Thus,
vaccination plays an important role on large-scale commercial
fish farming. Nanoencapsulated vaccines against Listonella
anguillarum in Asian carp (Rajeshkumar et al. 2009), white
spot syndrome virus (WSSV), and infectious myoncronis vi-
rus (IMNV) (i.e., shrimp farming) (Rajeshkumar et al. 2009;
Chalamcheria 2015) have been delevoped. Polyanhydride
NPs were used for encapsulating and releasing vaccine

antigens determing immunization of shrimp via immersion
or with feed (Ross et al. 2014). Rajeshkumar et al. (2009)
investigated DNA constructed vacinnes based on nanotech-
nologies to produce immunologic proteins protecting shrimps
from WSSV for up to 7 weeks per application. NP-based
carriers, like chitosan, alginates, and poly-lactide-co-
glycolide acid (PLGA) for vaccine antigens, together with
mild inflammatory inducers orally, showing a high level of
protection to fish and shellfish with a relative survival rate of
up to 85% in cultured shrimp (Rajeshkumar et al. 2009).

In addition, silica-based NPs can be used for drug (i.e.,
pharmaceuticals or other therapeutics) administration due to
its porous structure and ability to incorporate high doses
(Strømme et al. 2009). Some authors (García-Rodríguez
et al. 2008; Bhattacharyya et al. 2015) evidenced their poten-
tial use in aquaculture in the near future.

Silver (Ag) NPs (nAg) are the most investigated multiple
mechanism nano-based antibacterial. The release of silver
ions (Ag+) and their binding onto bacterial cell membrane
proteins lead to cell membrane disruption and to cell death
(Lara et al. 2010; Huang et al. 2011). Dananjaya et al.
(2016) investigated the antibacterial function of chitosan-Ag
nanocomposites (CAgNCs) against fish pathogenic Aliivibrio
salmonicida. CAgNCs inhibited A. salmonicida growth indi-
cating minimum inhibitory concentration (MIC) and mini-
mum bactericidal concentration (MBC) at 50 and 100 mg/L,
respectively. No effects of CAgNCs were detected to Danio
rerio at 12.5 mg/kg of body weight/day (BW/day) as a feed
ingredient and Oplegnathus fasciatus testis cells up to 50 mg/
L, thus suggesting its potentiality as an antibacterial agent to
the control fish pathogenic bacteria.

Further investigations are also necessary about potential
side effects of nanotagging and nanobarcoding when applied
directly to organisms. The barcode can be detected by the
application of nanoscale components such as radio frequency
identification (RFID). These tags can hold more information
and can be used as a tracking device, monitoring their metab-
olism or swimming ability. In the processing and export in-
dustry, nanobarcoding can be used effectively to observe var-
ious aspects of delivery process and management, tracking the
source or delivery status of products (Rather et al. 2011).

Nanotechnology and (waste)water treatment
in aquaculture

The physico-chemical properties of water in aquaculture
ponds can be influenced by various parameters such as soil
composition, environmental pollution, and food waste
(Venkat 2011; Katuli et al. 2014a, 2014b), while in coastal
or open-sea cages, water quality is generally influenced by
the natural environment.

Aquatic pollution is one of the greatest threats for aquacul-
ture production. Recently, the application of nanoenabled
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products based on aerogels, polymers and functionalized com-
posites, hydrophobic organoclays, and magnetic engineered
NPs for water treatment and purification has been studied
(Bhattacharyya et al. 2015; Lofrano et al. 2016a). nAu, nAg
CNTs, nFe, lanthanum (La), and nTiO2 were used for the
removal of pesticides, ammonia, heavy metals, and phospahes
from water and wastewater (Ren et al. 2011; Xu et al. 2012;
Pradeep 2009; Rather et al. 2011). Quantum dots (QDs) due to
their unique optical properties (Vázquez-González and
Carrillo-Carrion 2014) have been proposed for the detection
of heavy metals in aquaculture media (Chen et al. 2013).

Intensive farming of shrimps and fish led to growing prob-
lems with bacterial diseases such as A. salmonicida,
Flavobacterium columnare, and Yersinia ruckeri (Pulkkinen
et al. 2010). In aquaculture, traditional disinfectants (e.g., hy-
drogen peroxide and malachite green), antibiotics (e.g., sul-
fonamides and tetracyclines), and anthelmintic agents (e.g.,
pyrethroid insecticides and avermectins) are frequently used
in large amounts, but presenting several limitations like high
cost of chemical drugs, negative effects on non-target organ-
isms, and increased resistance of pathogens (Romero et al.
2012).

The proliferation of opportunist pathogens (bacteria, virus,
fungi, or protozoa) is a known problem in fish farming due to
the high density of organism stocks and the food residues;
thus, the use of quick and effective antipathogens is of crucial
interest (Twiddy et al. 1995; Castillo-Rodal et al. 2012). For
example, nAg was used for the treatment of fungal infections
in rainbow trout egg showing inhibitory effect on fungi
growth (Johari et al. 2015). nZnO exhibited antibacterial ac-
tivity disrupting bacterial cell membrane integrity, reducing
cell surface hydrophobicity and downregulating the transcrip-
tion of oxidative stress-resistance genes (Pati et al. 2014).
Mühling et al. (2009) showed that nTiO2 and nAg reduced
the build-up of bacteria in estuarine water.

The use of Ti photoelectrolysis was used in environmental
applications including sterilization and disinfection. Under ul-
traviolet irradiation conditions, TiO2 NPs produce highly ac-
tive hydroxyl (OH−), superoxide ion (−O·), and peroxyl radi-
cal (O2

−) having high oxidation capacity. Free radicals change
cell membrane structure, leading to their apoptosis, thus ster-
ilizing and disinfecting (Yu et al. 2002; Sonawane et al. 2003;
Zhao et al. 2000).

Liu et al. (2009) reported bactericidal effects of copper-
bearing nanomontmorillonite (Cu2+-MMT) on three aquatic
(A. hudrophila, Vibrio parahaemolyticus, and Pseudomonas
fluorescens) and two intestinal pathogens (Lactobacillus
acidophilus and Bacillus subtilis), showing that the efficency
of Cu2+-MMT depended on temperature and contact time.
The bacter ia l removal eff ic iency was 100% for
A. hudrophila, in V. parahaemolyticus, and P. fluorescens,
and 24.9% for L. acidophilus and 25.6% in B. subtilis after
12 h at 30 °C.

Wen et al. (2003) stated that the nanodevices are very use-
ful to improve water quality in shrimp aquaculture, reducing
the rate of water exchange, improving shrimp survival rate
and yield.

Another major challenge in aquaculture is the biofouling
control. The bacterial biofilm allows the attachment of
macrofoulers, like in the case of mariculture cages causing
serious problems like corrosion, weight increase, surface al-
teration, and distrortion of submerged structures (Champ
2003). To get rid of fouling organisms, antifoulings are direct-
ly applied, but with potential undesired adverse effects on
other non-target species (e.g., TBT) (Lofrano et al. 2016b).
NP-based antifoulings like nCuO, nZnO, and nSi seem to be
potential good candidates (Rather et al. 2011) with their high-
surface-to-volume ratio creating a more efficient barrier to
fouling agents (i.e., at equal or lower concentrations). Ashraf
and Edwin (2016) used nCuO to treat cage nets evidencing a
significant reduction of fouling after 90 days from application.

BNanoCheck^ (Altair Nanotechnologies, Reno, NV, USA)
is a commercial product for fishpond management using 40-
nm particles based on La compounds supporting the absorp-
tion of water phosphates thus limiting algae growth (Mohd
Ashraf et al. 2011). Moreover, La oxides NPs were used as
phosphate scavenger leading microorganisms to starvation
showing promising effects on Escherichia col i ,
Staphylococcus carnosus, Penicillium roqueforti, and
Chlorella vulgaris (Gerber et al. 2012).

Vijayan et al. (2014) assessed the bacterial antibiofilm ac-
tivity of nAg and nAu synthetized from Turbinaria conoide
extracts highlithing that nAg was efficient in controlling bio-
film formation, while nAu was not.

Toxicological profiling in tissue-based target

Engineered NPs are applied in various aquaculture sectors,
and, currently, many studies are being carried out to check
their safe use, but out the aquaculture sector. Since all of their
effects on living organisms (especially aquatic organisms)
have not been fully identified, public concern raises from their
use in aquaculture. Toxicity of NPs can be different in relation
to the way they are administered, and toxicokinetics and
toxicodynamics. Concentrations of NPs administered via
feed, present in treated surfaces (i.e., cage nets), or waterborne
(i.e., fishponds) could be significantly higher than the expect-
ed NP environmental concentrations (Minetto et al. 2016)
being up to micrograms per liter or greater.

We tried to consider a system-based approach, focused on
the (eco-)toxicological profile of engineered NPs. In Table 1,
we summarized the information related to various NPs and
target organisms of potential aquaculture interest, including
the main relative testing conditions. NPs were listed and pre-
sented considering the following order: alginate, Al2O3, Ag,
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Au, CeO2, chitosan, chitosan-Ag nanocomposites CAgNCs,
CuO, Fe, La, QDs, Se, SiO2, SnO2, SWCNTs and MWCNTs
(including C60 and nano carbon black), TiO2, and ZnO.
Discussion about the comparison of negative or positive ef-
fects of NPs has been very tricky for four main reasons: (i)
biological models are not recurrent, and in the case, testing
protocols are frequently different; (ii) most data derived from
toxicity studies are not specifically designed on aquaculture
needs, thus contact time, exposure concentrations, and other
ancillary conditions (i.e., acclimation periods) do not meet the
required standard for aquaculture; (iii) short-term exposure
periods (generally up to 14 days) are investigated mainly on
species of indirect aquaculture interest (i.e., A. salina and
D. magna as feed for other organisms), while shrimp and fish
as final consumers in aquaculture plants are underinvestigated
(scarce or unknown data on trophic chain transfer of NPs):
little information is available about the amount of NPs accu-
mulated within marketed organisms; and (iv) howNPs present
in the packaging of aquacultured products can affect their
quality remained substantially unexplored.

Alginate NPs

Alginate is a natural polymer extensively used in food indus-
try as thickening, emulsifying, and stabilizing agent (George
and Abraham 2006; Klinkesorn and McClements 2009).
Alginate NPs were recently evaluated with positive results
(Guo et al. 2013; Guo et al. 2015). However, due to the limited
number of toxicity data, concern is present about its use.

Al2O3 nanoparticles

Al2O3 NPs are good dielectric and abrasive agents. Toxicity of
nAl2O3 was checked with Caenorhabditis elegans (used as
live food in the larval breeding of species in aquaculture and
aquaria), showing that concentrations >102mg/L significantly
inhibited the growth and number of eggs inside worm body
and offspring, and the worms’ reproduction was inhibited at
concentrations >203.9 mg/L of nAl2O3 (Wang et al. 2009).

Shirazi et al. (2015) demostrated that nAl2O3 presented
growth inhibition effects on Dunaliella salina, showing a di-
rect relationship between NP concentration and effect.
Moreover, the increase in NP concentration corresponded to
a chlorophyll and carotenoid decrease in microalgae.

Swain et al. (2014) explored the antimicrobial activity of
nAl2O3 (<50 mm) against microbes responsible to diseases in
aquaculture. Results showed that nAl2O3 is not able to inhibit
the activity of the isolated bacteria.

Barber et al. (2005) exposed nAl2O3 for 72 h to D. rerio,
evidencing that ingested NPs were mainly present in the fish
intestine and no lethality was recorded up to 500 g/L. Reduced
gill ATPase activity was observed, indicating compromised
gill function.

Ag NPs

Silver NPs (nAg) are widrespread in several consumer prod-
ucts such as cosmetics and plastics, water purifiers, textiles,
drugs, and agrochemicals. Due to their antibacterial activity,
nAg has been used in aquaculture for water treatment
(Mühling et al. 2009; Johari et al. 2015) and several studies
on its toxicity are available on aquatic organisms of aquacul-
ture interest.

Völker et al. (2015) exposed Sphaerium corneum to sub-
lethal nAg concentrations (up to 500 μg/L), evidencing a sig-
nificant ROS generation and antioxidant enzyme activity
compared to the control group. Rajkumar et al. (2016) ex-
posed Labeo rohita up to 100 mg/kg of nAg for 7 days,
highlighting a significant reduction in hematological parame-
ters. Antioxidant enzymes significantly increased in gills,
liver, and muscle; histopathological lesions were evidenced.

Kandasamy et al. (2013) assessed nAgNO3 (synthesized by
leaf extract of Prosopis chilensis), showing an antibacterial
effect on four species of V. pathogens on shrimps Penaeus
monodon after 30 days of exposure. Shrimps fed with
nAgNO3 exhibited higher survival rates, associated to
immunomodulation in terms of higher hemocyte counts,
phenoloxidase, and antibacterial activities of hemolymph.
Blinova et al. (2013) studied the adverse effects of nAg to
D. magna and Thamnocephalus platyurus. After 24 h of ex-
posure, EC50s of nAg for D. magna and T. platyurus were 17
and 27 μg/L, respectively. According to Arulvasu et al.
(2014), Artemia salina was exposed to a series of nAg con-
centration up to 12 nM for 24–48 h observing that mortality
rate, aggregation in gut region, apoptotic cells, and DNA dam-
age increased in a concencetration-dependent way, like cysts
hatching rate.

Large-scale culture of Hediste diversicolor provides an in-
creasing market of live baits and can be an important food
source for a variety of cultured species like marine prawns or
flatfish. García-Alonso et al. (2011) exposed H. diversicolor to
nAg@citrate (30 ± 5 nm; 250 ng/g sediment; 10 days), show-
ing aggregations of NPs in close association with the villi, and
in the glycolax matrix of the worms’ gut lumen. Cong et al.
(2011) investigatedH. diversicolor exposed to nAg-spiked sed-
iment, highlighting genotoxicity effects. It is not yet well un-
derstood the mechanism of oxidative stress response elicited by
nAg and how it relates to the Ag tissue burden. Cozzari et al.
(2015) exposed H. diversicolor to sediment spiked with dis-
solved Ag (added as AgNO3), Ag NPs (63 ± 27 nm), and larger
bulk Ag particles (202 ± 56 μm) for up to 11 days at sub-lethal
concentrations. Concentration- and time-dependent differences
were present in the accumulation of the three Ag forms, but all
three forms elicited an oxidative stress response. In the cases of
Ag NPs and bulk Ag particles, changes in glutathione, SOD,
CAT, GPx, SeGPx, GST, and GR occurred without significant
Ag accumulation, while differences in biomarker profiles
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between the three Ag forms suggest that the mechanism of
oxidative stress caused by particulate Ag is distinct from that
of dissolved Ag.

Gomes et al. (2013) evaluated the genotoxic impact of nAg
using M. galloprovincialis exposed to 10 μg/L of nAg (and its
bulk form) for 15 days, assessing genotoxic effects in hemocytes
using the comet assay. Ag (nanoparticles and ionic forms) in-
duced DNA damage in hemolymph cells with a time-response
effect. Ionic forms presented higher genotoxicity than NPs, sug-
gesting different mechanisms of action that may be mediated
through oxidative stress.

Khan et al. (2015) reported on bioaccumulation dynamics in
Lumbriculus variegatus of ionic Ag and three differently coated
nAg@ (PVP (polyvinylpyrrolidone), PEG (polyethylene glycol),
and citrate). Uptake rate constants for nAgwere ∼2–10 times less
than for Ag+, showing significant rank order concordance with
acute toxicity; Ag elimination fitted a 1-compartment lossmodel.

The effects of AgNPs in Labeo rohita liver were investi-
gated at genomic and cellular level for 7 days at the concen-
trations of 100, 200, 400, and 800 μg/L (with AgNPs of 18
and 29 nm) (Sharma et al. 2016). After histopathological ex-
amination, the liver highlighted vacuolar degeneration, pre-
senting hepatocytes with total degeneration and high accumu-
lation of AgNPs, depicting both time and dose-dependent re-
lationships. Moreover stress-related genes showed downregu-
lation, due to the production of free radicals and reactive ox-
ygen species.

Au NPs

Au NPs (nAu) is used in a variety of fields such as electronics,
catalysis, cosmetics, food quality control, and cancer detection
(Zhu et al. 2010a, b). Despite its use, little is known about its
uptake in aquatic organisms. Asharani et al. (2011) conducted a
study to evaluate and compare the effect of Ag, Au, and Pt NPs
on the development of zebrafish embryos, evidencing that nAu
presented no toxicity compared to nAg (concentration-dependent
increase in mortality and phenotypic changes, hatching delays)
and nPt (hatching delays).

Mytilus edulis exposed for 24 h to 750 mg/L of Au@citrate
NPs highlighted increased CAT activity in the heamolymph,
and reduced ubiquitination and caronylation in the digestive
gland, gill, and mantle (Tedesco et al. 2008). According to
García-Negrete et al. (2013), Ruditapes philippinarum accu-
mulated nAu@citrate (21.5 ± 2.9 nm; 6–30 mg/L) more read-
ily in digestive gland heterolysosomes (plateauing after 12 h),
while ionic Au was more associated to gills.

CeO2 nanoparticles

CeO2 NPs are used in coatings, electronics, and biomedical
devices and as fuel additives (Falugi et al. 2012). There are
still several uncertainties about its effect for human health and

the environment. Johnston et al. (2010) exposed D. rerio for
14 days to nCeO2, evidencing Ce accumulation in liver, but
not in gill, brain, and skin. A 5-day study (Falugi et al. 2012)
investigated the exposure of P. lividus to CeO2 (50–105 nm)
NPs at 10 mg/L, resulting in total mortality after only 2 days,
but animals survived for 5 days at 0.1 mg/L.

Chitosan NPs

Chitosan is a natural polysaccharide that presents interesting
biodegradability (Rather et al. 2013), biocompatibility (Luo
and Wang 2013), and mucoadhesiveness (De Campos et al.
2004) properties with potential applications for drug delivery
and gene transfer (Chatterjee and Judeh 2016; Ji et al. 2015).
Chitosan NPs can pass through tight junctions between epi-
thelial cells (Dodane et al. 1999), posing potential risks to
humans, animal, and environment. Hu et al. (2011) reported
death and malformation of zebrafish embryos exposed to in-
creasing concentrations of chitosan NPs (200 nm) with almost
100% mortality at 40 mg/L. ROS and hsp70 confirmed that
are concentration and size dependent. Rather et al. (2016)
studied the effects of kissppetin-10 (K-10) (i.e., an essential
gatekeeper of various reproductive processes) and chitosan-
encapsulated K-10 nanoparticles (CK-10) on gene expression,
evidencing that chitosan nanoparticles increased by 60% the
entrapment efficiency for K-10 being potentially useful for
developing therapies against various reproductive dysfunc-
tions in vertebrates. Loh et al. (2010) evaluated the cytotoxic-
ity of chitosan NPs in human liver cells showing that CYP3A4
enzyme activity increased in a dose-dependent way. Results
highlighted that the destruction of cell membrane was influ-
enced by different zeta potential of chitosan NPs. Similar re-
sults were reported by Huang et al. (2004) after exposig A549
cells to chitosan NPs to assess their uptake and cytotoxicity.

Cu NPs

Copper NPs (nCu), especially nCuO, present bactericide and
antifouling properties, and an excellent thermal conductivity,
being one of the most widely used metallic NPs (Buffet et al.
2011) with potential implications in aquaculture.

Griffitt et al. (2007) exposed D. rerio juveniles for 48 h to
waterborne nCuO, observing histological damages, Cu accu-
mulation in gill, and also 82 genes differentially expressed
compared to the controls.

Zhao et al. (2011) evaluated the effect of lethal and sub-
lethal concentration of nCuO in C. carpio showing that after
4-days exposure, no acute effect was observed, but after a 30-
day exposure to sub-lethal concentrations, it was observed a
reduced growth and Cu accumulation (intestine > gill > mus-
cle > skin and scale > liver > brain). Moreover, the reduction
of cholinesterase activity evidenced that Cu sub-lethal concen-
trations could have potential neurotoxicity for juveniles.
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Buffet et al. (2011) assessed the exposure ofH. diversicolor
to nCuO (197 nm, 10 μg/L) showing Cu accumulation and
oxidative stress evidenced by the increase of GSTs and CAT
activities.

Gomes et al. (2013) evaluated the genotoxic impact of
nCuO using M. galloprovincialis exposed to 10 μg/L of
nCuO (and its bulk form) for 15 days assessing genotoxic
effects in hemocytes using the comet assay. Cu (nanoparticles
and ionic forms) induced DNA damage in hemolymph cells
with a time-response effect. Ionic forms presented higher
genotoxicity than NPs, suggesting different mechanisms of
action that may be mediated through oxidative stress.

Adam et al. (2015) demonstrated that nCuO had less neg-
ative effect than Cu salt on growth and reproduction of
D. magna.

Fe NPs

Low toxicity and special surface chemistry of nFe2O3 wide-
spread its use in biomedical applications like cellular labeling,
drug delivery, tissue repair, in vitro bioseparation, and hyper-
thermia, with other applications like water and wastewater
treatment (Chen et al. 2011), and in aquaculture as food sup-
plement (Ren et al. 2011).

Chen et al. (2011) exposed medaka fish (Oryzias latipes) to
nFe for 14 days evidencing lethal and sub-lethal effects (ROS
generation and CATalteration), showing that coated NPs with
carboxymethyl cellulose were less toxic than uncoated ones.

Karthikeyeni et al. (2013) biosynthetized nFe2O3 and evi-
denced that after 96 h exposure toOreochromis mossambicus,
hematological (RBC, WBC, Hb, HCT) and biochemical pa-
rameters (SGOT, SGPT) significantly changed. Chen et al.
(2013) found after 7 days exposure of O. latipes to nFe0 high
mortality due to a combination of hypoxia and ROS
production.

Zhu et al. (2012) have investigated the effects of nFe2O3 on
the embryonic development of zebrafish resulting in embryos
mortality, hatching delay, and malformation after 7 days ex-
posure to ≥10 mg/L.

In Falugi et al. (2012), groups of 5–10 adults of
Paracentrotus lividus of a similar size (50–60 mm) were
forced to ingest of metal oxide NPs (SnO2, CeO2, and
Fe3O4) (nominal concentrations 10−2 and 10−4 g/L).
Results showed that after 1–2 days, none of the treated
organisms at 10−2 g/L nFe survived. Iron bioaccumulation
in digestive apparatus, severe reduction in the number of
stained vesicles, as well as down-expression of hsp70 and
GRP 78 were observed. The exposure of nFe3O4 to
M. galloprovincialis (50 nm, polyethylene glycol capped,
0.370 mg/L) showed an accumulation in digestive gland
after 8 h (>90%) remaning after 72-h depuration (>75%)
(Hull et al. 2013).

La NPs

Lanthanides are widely used in industry, medicine (Mácová
et al. 2014), and for water treatment (Rather et al. 2011).
Mácová et al. (2014) exposed for 96 h juveniles of D. rerio
and P. reticulate, and for 144 h embryonic stages of D. rerio,
reporting the following LC50 values 156.33 ± 5.59 and
128.38 ± 5.29 mg/L, and 152.98 ± 8.06 mg/L, in that order.
Thus, potential toxicity events could be associated to the use
of La NPs.

Lürling and Tolman (2010) exposed D. magna for 14 days
to different concentrations of La-QD, observing a size de-
crease in organisms after the first reproduction, but with no
changes in the reproductive age and number of offspring.

Balusamy et al. (2015) exposed Chlorella sp. to up to
1000 mg/L of La-QD, and fed it to D. magna. Results evi-
denced that both Chlorella sp. biomass and D. magna mobil-
ity decreased. The LC50 value for La-QD for D. magna was
500 mg/L, and after 48 h at 1000 mg/L, the mortality of
eposed daphins was 70%.

Quantum dots

QDs are used in electronic bioimaging, and biosensing
(Feswick et al. 2013), and recently for water quality monitor-
ing (Vázquez-González and Carrillo-Carrion 2014).

Louis et al. (2010) showed that O. mykiss exposed to
2 μg/L of QDs for 48 h presented an increase in total
metallothioneins and LPO. Lewinski et al. (2011) exposed
A. franciscana and D. magna for 24 h to 0.6 mg/L of QD.
These microorganisms were fed to juvenile and adult of
zebrafish for 21 days. Results showed no mortality after ex-
posure, but QDs accumulated up to 4 and 8% for juveniles and
adults, respectively. Gagné et al. (2008) obtained similar re-
sults after in vitro study with hepatocyte of O. mykiss.

Jackson et al. (2012) investigated the effects of QD-spiked
algae (3.6 mg/L) fed to Leptocheirus plumulosus compared to
water spiked with QDs. Results showed that mortality in-
creased after 4 h exposure in a concentration-dependent man-
ner in both administration routes with QD accumulation.

Kim et al. (2010) studied the influence of light wavelength
on QD LC50 on D. magna evidencing after 48 h exposure.
Toxicity increased from darkness to white fluorescence light,
natural sunlight, and up to UV-B. Moreover, the QDs’ coat-
ings seemed to be able to influence its toxicity, changing its
stability and the potential release of toxic components (Kim
et al. 2010; Feswick et al. 2013).

Selenium NPs

Se is an essential trace element required in diet for normal
growth and physiological function of several organisms
(Polettini et al. 2015), including fish (Khan et al. 2016); thus,
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it is an excellent bionutrient product for aquaculture enhance-
ment. Khan et al. (2016) investigated the effects of dietary
supplementation of nSe (0.68 mg/kg feed) on physiological
and biochemical aspects of juvenile mahseer fish (Tor
putitora), evidencing an increase in red blood cell count, he-
moglobin level, hematocrit values, and lysozyme activity
compared to the traditional diet as well as other biochemical
parameters (serum growth hormone levels, tissue total protein
content, and GSH-Px activity in liver and muscle tissues).

Silicon dioxide NPs

SiO2 NPs (nSiO2) are effective for drug delivery and optical
imaging (Ramesh et al. 2013), but applications in aquaculture
were reported as well in order to reduce the risk of disease
spread in crowded fish pools (Strømme et al. 2009). Anyhow,
Duan et al. (2013) observed an increase in zebrafish mortality
and malformation after 96 h exposure to Si NPs.

Sn oxide NPs

Tin oxide NPs (nSnO2) present unique features such as rigid
structure and low-temperature conductivity attracting great
interest especially in the development of gas sensors, opto-
electronic devices, catalysis, and electrochemical energy
storage. Little data are available on nSnO2 toxicity on
aquatic organisms, and its potential applications in
aquaculture are still under evalution with information on
only two species of potential interest. Krysanov et al. (2009)
exposed P. reticulata to 150 mg/L of nSnO2 for 5 days, show-
ing that tin accumulated in gill, spleen, intestine, liver, gonad,
thymus, and muscle. Falugi et al. (2012) reporting P. lividus
effects on nSnO2 were already discussed in the BFe NPs^
section.

SWCNTs

Carbon nanotubes (CNTs) present unique properties including
high electrical conductivity, very high tensile strength, and
hydrophobicity, which are valuable for wide-ranging industri-
al and biomedical applications such as electronic, drug deliv-
ery, and biosensing technology (McEuen et al. 2002;
Galloway et al. 2010). In aquaculture, CNTs are used to in-
crease food stability and promote water treatment (Fraser et al.
2011; Ren et al. 2011).

Fraser et al. (2011) compared the potential toxicity of
SWCNT and C60. After 6 weeks feeding rainbow trouts
(Oncorhynchus mykiss) by supplemented diet (500 mg
SWCNT or C60), SWCNT had toxic effects, but C60 had not
significanty effect on thiobarbituric acid reactive substances
(TBARS—an indication of LPO) compared to the control.
Smith et al. (2007) found after 10 days of exposure to
SWCNT to O. mykiss damaged gill structures, and breathing

and osmoregulation adversely affected, while TBARS
decreased and total glutathione levels increased.

Petersen et al. (2008) investigated sediment samples spiked
with SWCNTs and multiwalled carbon nanotubes (MWNTs)
exposed to Lumbriculus variegatus, looking for uptake and
depuration kinetics. Depuration behaviors suggested that
nanotubes detected within the organisms were associated to
the sediment remaining in organism guts, and not absorbed by
tissues.

De Marchi et al. (2017) assessed the toxic effects of
MWCNTs (0.01; 0.10 and 1.00 mg/L) in Diopatra
neapolitana and Hediste diversicolor (regenerative capacity
and respiration rate) and biochemical performance (energy
reserves, metabolic activities, oxidative stress-related bio-
markers, and neurotoxicity markers) after 28 days of expo-
sure. They evidenced that exposure to MWCNTs induced
negat ive effects on the regenerat ive capaci ty of
D. neapolitana, stimulated its respiration rate (at higher con-
centrations), and altered energy-related responses (higher
values of electron transport system activity, glycogen, and
protein concentrations) In addition, both species showed oxi-
dative stress with higher LPO, lower ratio between reduced
and oxidized glutathione, and higher activity of antioxidant
(CAT and SOD) and biotransformation (glutathione-S-trans-
ferases) enzymes in exposed organisms.

Titanium dioxide NPs

nTiO2 is used in several commercially available products such
as paints, papers, textiles, plastics, sunscreens, cosmetics, and
food products (Zhu et al. 2010a, b). As reviewed in the previ-
ous section, nTiO2 can be used both directly and indirectly in
aquaculture (Sonawane et al. 2003; Ramsden et al. 2009).
Therefore, it is necessary to investigate its potential toxicity
in aquatic organisms.

Embryos of D. rerio were exposed during 96 h to different
concentrations of nTiO2 in the form of anatase (TA) or
anatase/rutile mixture (TM), under either visible light or a
combination of visible and ultraviolet light (UV). Results
showed that both cristallographic forms of nTiO2 caused ac-
celerated hatching of larvae, alteration of the antioxidant en-
zymes (CATand GSTs), and increased malformation of larvae
(Clemente et al. 2014). nTiO2 facilitated the transport of Cd
into carp (Cyprinus carpio) after 20 days of exposure (Zhang
et al. 2007).

Bivalvia are highly vulnerable to ingestion of NPs from the
water column. The NP uptake primarily occurs via the gills,
and for this reason, it would be expected a higher accumula-
tion in these tissues (Canesi et al. 2012). Mytilus
galloprovincialis of 4–5 cm were kept for 24 h under static
test condition containing different concentrations of nTiO2

(Canesi et al. 2010a, 2010b). Results showed that NPs in-
duced significantly lysosomal membrane destabilization and
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lysosomal lipofuscin accumulation both in hemocytes and in
digestive gland, as well as increase GSTs in gills. Abalones
(Haliotis diversicolor) were exposed to lethal concentrations
of nTiO2 and after 96 h exposure showing an increase of the
lipid peroxidation (LPO), and a decrease in GSH activity and
nitric oxide production (Zhu et al. 2010a, b).

Artemia spp., Daphnia spp., Ceriodaphnia dubia, and
Lumbrinereis variegates are used as live food source in fresh-
water larviculture, and in ecotoxicological studies (García-
Alonso et al. 2011; Jackson et al. 2012; Feswick et al.
2013). A. salina is one of the most studied organisms in ma-
rine ecotoxicity (Radhika Rajasree et al. 2010; Libralato et al.
2016b). In Ates et al. (2013), A. salina was exposed to differ-
ent concentrations of nTiO2. Their results showed that after
96 h exposure, no mortality occured and LPO levels did not
change (Libralato 2014).

Acute and chronic ecotoxicity nTiO2 studies on D. magna
showed a dose-dependent mortality (Zhu et al. 2010a, b).
Results showed that Ti accumulated in the gut, but did not
cause any immobilization (Amiano et al. 2012). Lovern
et al. (2007) reported concentration-dependent mortality of
D. magna exposed to filtered nTiO2 (≈30 nm), with an LC50

5.5 mg/L. An EC50 >100 mg/L was reported by Warheit et al.
(2007) and Zhu et al. (2010a, b) for nTiO2 (100–140 nm) for
D. magna after 48 h of exposure. Wiench et al. (2009) found
EC50 >100 mg/L for both uncoated and coated TiO2 NPs.
Amiano et al. (2012) found an EC50 = 3.4 mg/L of nTiO2 after
exposure to 0.56 mW/cm2 UVA radiation using river water as
testing matrix. Marcone et al. (2012) showed no toxicity of
TiO2 during light and dark conditions up to 100 mg/L. Dalai
et al. (2013) evidenced after 48 h two EC50s considering light
(8.26 mg/L) and dark (33.65 mg/L) scenarios fo C. dubia.

A synergistic effect of nTiO2 and As5+ was observed on
C. dubia showing that at low concentrations of nTiO2, the
toxicity of As5+ can significantly increase (Wang et al.
2011). Arenicola marina was exposed for 10 days to SWNT
(0.003–0.03 g/kg) and nTiO2 (1–3 g/kg) (Galloway et al.
2010). Results showed that SWCNTs did not affect feeding
behavior, but nTiO2 did, in addition to lysosomal stability
causing DNA damage.

Zinc oxide NPs

ZnO NPs are used in optoelectronics, cosmetics, catalysts,
ceramics, pigments (Bai et al. 2010), and aquaculture (Faiz
et al. 2015). Contradictory results exist about nZnO effects
according to concetrations, contact time, and target organisms
(Berube 2008).

Bai et al. (2010) exposed zebrafish embryos to various con-
centrations of nZnO, showing a significant decrease in survival,
hatching, and larval growth rate after 94 h. Hao et al. (2013)
carried out a 30-day study on juvenile of C. carpio exposed to
nZnO, highlighting severe histopathological alterations and

intracellular oxidative stress. Muralisankar et al. (2014)
demostrated that M. rosenbergii after 90 days exposure to
nZnO showed impaired growth and survival rates, and alter-
ations in the activities of digestive enzymes (protease, amylase,
and lipase), and biochemical constituents (total protein, total
amino acid, total carbohydrate, and total lipid).

Trevisan et al. (2014) showed that after 96 h exposure of
Crassostrea gigas to lethal concentration of nZnO (30 mg/L),
Zn accumulated in gill and in digestive glands, causing oxi-
dative damage. O’Rourke (2013) evidenced that short-term
exposure (up to 96 h) to lethal concentrations of nZnO
(10 mg/L) had no negative effect on Lumbriculus variegatus,
but long exposure (up to 28 days) showed toxic effects.

The effects of nZnO evidenced effects on embryo develop-
ment, Zn bioaccumulation, oxidative stress, and behavior ac-
cording to exposure scenario and target organisms. In aqua-
culture, the use of nZnO can improve growth and immune
response and the quality of water in fishponds, but waterborne
and dietary exposure can have also undesired toxic effects.
Focused studies are required to determine the safe exposure
concentration of nZnO for aquaculture activity.

Conclusions

Nanotechnology is still in its infancy in aquaculture with just
few applications documented mainly in the packaging sector.
Little data were produced with the specific aim of checking
the effects of NPs on aquacultered species, while several NPs
are used in aquaculture. Thus, aquaculture must pay great
attention in keeping food security along the production pro-
cess in a cradle-to-grave perspective considering both human
health and the environment potential adverse effects of NPs.
Currently, it is unworthy to provide a toxicity ranking of NPs
in aquaculture, mainly because the amount of information is
aggregated just on few NPs (nAg and nTiO2) with scattered
data for all the remainings. Thus, results could be strongly
unbalanced.

Researchers and manufacturers are trying to use nano-
based tools to remove the barriers about waterborne food,
growth, reproduction, and culturing of species, their health,
and water treatment in order to increase aquaculture produc-
tion rates. Anyway, nanosafety-related concerns still exist and
must be tackled before their full-scale implementation.
Toxicological effects of NPs depend on various factors includ-
ing complex interplay between particle features (e.g., diame-
ter, form, surface charge, and chemistry), concentration, time
of exposure, nature of the NPs, medium composition, route of
particle administration, and target species immune system.
Despite the available information, several points of criticism
are hindering the exact understanding of NPs safety in aqua-
culture. Firstly, the way NPs are used in aquaculture can be
very different: addition to food, to water media, or in
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aquaculture facilities (i.e., surface treatments). Nevertheless,
the existing amount of studies in aquatic toxicology, the avail-
able exposure scenarios, are inadequate to fullfill the request
for NP safety in aquaculture like as their route of administra-
tion, their concentration, and exposure time. Concentrations
are sometimes lower (i.e., concentration administered via
feed) or higher (i.e., concentration administered via water or
surface treatments) than what it is applied or expected to be
applied in aquaculture leading to unrealistic results. Thus, it is
not possibile to infer about the potential adverse effects on the
final consumer. It is necessary to explore the safety of nano-
based aquaculture considering not only relatively short-term
treatment periods (<40 days) but also the whole aquacultured
products along their life cycle from the egg/larva to the table,
including water quality. Moreover, due to the fact that aquatic
organisms are cultured in different environments (e.g., fresh-
water and saltwater or tropical and temperate regions), nano-
based products can behave very differently like as the derived
effects; thus, it would be interesting to explore how nanosafety
could be influenced by environmental factors mainly salinity,
pH, and temperature.
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