
RESEARCH ARTICLE

Analysis of some metallic elements and metalloids composition
and relationships in parasol mushroom Macrolepiota procera

Jerzy Falandysz1 & Atindra Sapkota2 & Anna Dryżałowska1 & Małgorzata Mędyk1
&

Xinbin Feng2

Received: 20 September 2016 /Accepted: 27 April 2017 /Published online: 17 May 2017
# The Author(s) 2017. This article is an open access publication

Abstract The aim of the study was to characterise the multi-
elemental composition and associations between a group of 32
elements and 16 rare earth elements collected by mycelium
from growing substrates and accumulated in fruiting bodies of
Macrolepiota procera from 16 sites from the lowland areas of
Poland. The elements were quantified by inductively coupled
plasma quadrupole mass spectrometry using validated meth-
od. The correlation matrix obtained from a possible 48 × 16
data matrix has been used to examine if any association exits
between 48 elements in mushrooms foraged from 16 sampling
localizations by multivariate approach using principal compo-
nent (PC) analysis. The model could explain up to 93% vari-
ability by eight factors for which an eigenvalue value was ≥1.
Absolute values of the correlation coefficient were above 0.72
(significance at p < 0.05) for 43 elements. From a point of
view by consumer, the absolute content of Cd, Hg, Pb in caps
of M. procera collected from background (unpolluted) areas
could be considered elevated while sporadic/occasional inges-
tion of this mushroom is considered safe. The multivariate
functional analysis revealed on associated accumulation of
many elements in this mushroom.M. procera seem to possess
some features of a bio-indicative species for anthropogenic Pb
but also for some geogenic metals.

Keywords Foraging . Fungi . Heavymetals . Trace
elements .Mushrooms . Poland

Introduction

Macrolepiota procera (Scop.) Sing., commonly known as
Field Parasol, Parasol Mushroom or Shaggy Parasol, is a
saprobe. It is edible and widely collected in temperate regions
and sub-tropical regions such as India, Thailand, China or
Pakistan and across Europe (Kułdo et al. 2014; Melgar et al.
2016; Stefanović et al. 2016a; Širić et al. 2016; Xiaolan 2009).
The pileus of M. procera are highly valued by locals. This is
because of the taste and aroma of the cooked fresh individ-
uals—sautéed, roasted, fried in butter or grilled, roasted with
eggs or stuffed and broiled. According to some cooking rec-
ipes, the dried caps of M. procera could be resoaked in fresh
water and both; the flesh and macerate (liquid) can be used for
a dish. Frying ofM. procerawith butter or vegetable oil can to
some degree result in leakage of elements out of a fleshy cap
as was observed for fried Cantharellus cibarius and Boletus
edulis and radiocaesium (137Cs) (Steinhauser and Steinhauser
2016). Nevertheless, caps of M. procera before frying are
usually surrounded in flour, then in a drooping egg. Hence,
any serious leakage of bio- or toxic elements out of a cap (or
prepared dish) seems unlikely. Re-soaking of dried caps of
M. procera in fresh water can have a more pronounced influ-
ence on possible leakage out of minerals but no figures are
available. Blanching (parboiling) can decrease content of min-
erals in cooked mushrooms and also pickling, while a fate of a
particular element can be different and highly dependent on its
chemical form, localization within cells and type of chemical
bonds made (Drewnowska et al. 2017a, 2017b; Falandysz and
Drewnowska 2017).
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M. procera prefers lighted and warm places. Especially in
calcareous and sandy soils that are well-drained in forests,
meadows and gardens (Rizal et al. 2015). In Asia,
Macrolepiota species such as M. procera, M. dolichaula
(Berk. & Broome) Pegler & R.W. Rayner, M. gracilenta
(Krombh.) Wasser are consumed by locals (Woźniak 2009).
In Europe, M. procera is mistaken with the deadly Amanita
phalloides (Vaill. ex Fr.) Link., (Death Cap, or Destroying
Angel) and Chlorophyllum molybdites (G. Mey.) Massee
(False Parasol). Because of its popularity and versatility, it is
also cultivated in kitchen gardens. This mushroom, like cer-
tain other macromycetes, when found in its natural habitats in
background (unpolluted) areas, is efficient in accumulating
toxic mercury (Hg), cadmium (Cd), lead (Pb), silver (Ag)
and some micronutrients in fruiting bodies (Falandysz et al.
2001, 2003; García et al. 2009; Krasińska and Falandysz,
2016; Gąsecka et al. 2017; Melgar et al. 2009, 2016; Mędyk
et al. 2017; Mleczek et al. 2013, 2016a, b, 2017; Saba et al.
2016a, b, c; Sar ikurkcu et al . 2015). Due to i ts
bioaccumulating property, many researchers are continuously
investigating Macrolepiota species commonly collected by
locals for their essential microminerals, macrominerals, met-
alloids and toxic metals contents in the fruiting bodies
(Baptista et al. 2009; Falandysz et al. 2007a; Gucia et al.
2012a, b; Řanda et al. 2005).

This study attempts to investigate fruiting bodies of
M. procera for its co-occurrence and associations between
metallic elements and metalloids such as Ag, As, Ba, Be, Bi,
Cd, Co, Cs, Cu, Ga, Ge, Hf, Hg, In, Li, Mo, Nb, Ni, Pb, Rb,
Sb, Sn, Sr, Ta, Th, Ti, Tl, U, V, W, Zn, Zr and rare earth
elements (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho,
Er, Tm, Yb and Lu) accumulated in caps and stipes.

Materials and methods

Fruiting bodies ofM. procerawere collected from 16 different
sites from the lowland areas in northern and central regions of
Poland: Włocławek - outskirts (forests) (52° 39′ 33″N 19° 04′
05″ E) [site 1; Fig. 1]; Pomerania, Lębork (54° 33′ N 17° 45′
E) [site 2]; Warmia land, Olsztyn/Szczytno (53° 47′ N 20° 30′
E/53° 33′ 46″ N 20° 59′ 7″ E) [3]; Trójmiejski Landscape
Park—Gdańsk-Wrzeszcz (54° 22′ 10.1″ N 18° 35′ 47.0″ E)
[site 4]; Augustów Primeval Forest (53° 87′ 28″ 0 N 22° 97′
43″ 0 E) [site 5]; Tuchola Pinewoods, Łuby (53° 42′ 30″N 18°
22′ 53″ E) [6]; Wdzydze Landscape Park (54° 00′ 47″ N 17°
54′ 04″ E) [7]; Warmia land, Sarnówek (53° 39′ 33.78″ N 19°
35′ 16.83″ E) [site 8]; Toruń—outskirts (forests) (53° 01′ 20″
N 18° 36′ 40″ E) [site 9]; Vistula River Sand-bar, Stegna (54°
19′ 35″ N 19° 6′ 44″ E) [10]; Nadwarciańska Forest (52° 12′
00″ N 17° 54′ 00″ E) [site 11]; Warmia land, Jeziorak lake—
island of Gierszak (53° 43′ 23.24″ N 19° 36′ 46.80″ E) [site
12]; Zielonka near Poznań forests (52° 33′ 13″ N 17° 06′ 49″

E) [site 13]; Tuchola Pinewoods, Osie (53° 35′ 57″ N 18° 20′
41″ E) [site 14]; Kukawy/Goreń region (52° 33′ 52″N 19° 11′
42″ E/52° 31′ 50″ N 19° 17′ 22″ E) [site 15] and Bydgoszcz
forests (53° 7′ N 18° 0′ E) [site 16] (Fig. 1, Table 1). The sites
of M. procera collection can be considered as background
(unpolluted) and without local or regional major emitters of
heavy metals in forests of the lowland Poland. A major branch
of metallurgy and ore mining industry is localized in the cen-
tral (iron mill near Warszawa, Fig. 1) and southern regions of
Poland (Brzezicha-Cirocka et al. 2016).

Soils at the forested areas of the lowland Poland are pod-
zolic soils which were formed by pine and mixed/pine forests
and of mesophilic deciduous and coniferous forests in the
zone of warm-temperate climate and are slightly acidic
(Degórski 2004). Typical soils there are podzols,
pseudopodzols and rusty soils poor in nutrients and developed
from fluvioglacial sands with a texture of sands and some-
where in the outskirts of lakes and rivers with peats, peat-
muck soils and vertisols. The tree covers are dominated by
needle trees such as Pinus sylvestris L. and in lower propor-
tion with Picea abies (L.) H. Karst., Larix decidua Mill.,
Betula pendulaRoth, Betula pubescensEhrh.,Alnus glutinosa
(L.) Gaertn., Quercus robur L., Quercus petraea, (Matt.)
Liebl., Fagus sylvatica L. (Statistical Office 2014). Each com-
posite sample of caps and whole fruiting bodies consisted of
10 to 30 individuals.

Fig. 1 Sampling sites of M. procera (site 1: Włocławek—outskirts
(forests), site 2: Pomerania, Lębork; site 3: Warmia land, Olsztyn/
Szczytno; site 4: Trójmiejski Landscape Park—Gdańsk-Wrzeszcz; site
5: Augustów Primeval Forest; site 6: Tuchola Pinewoods, Łuby; site 7:
Wdzydze Landscape Park; site 8: Warmia land, Sarnówek; site 9:
Toruń—outskirts (forests); site 10: Vistula River Sand-bar, Stegna; site
11: Nadwarciańska Forest; site 12: Warmia land, Jeziorak lake—island of
Gierszak; site 13: Zielonka near Poznań forests; site 14: Tuchola
Pinewoods, Osie; site 15: Kukawy/Goreń region and site 16:
Bydgoszcz forests; see also Table 1)
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The fungal biomass dehydrated and grounded into a fine
powder before analysis was dried at a temperature of 65 °C for
12 h and a subsample (about 200-mg samples made in dupli-
cate) was mixed with 3 mL solution of ultrapure concentrated
nitric acid (HNO3, 65%,) and 1 mL of ultrapure hydrofluoric
acid (HF) in a polytetrafluoroethylene tubes (PTFE). Then, the
tubes were screw tightened in stainless steel jackets and placed
in an oven at 150 °C for 78 h. The solutions obtained were
evaporated to dryness at 110 °C, to remove the excess of HF
(Bi et al. 2007). Then, it was dissolved in 1 mL of HNO3 to
make the final volume up to 50 mL, which was then trans-
ferred to a sample tube. As an internal standard, rhodium (Rh)
(10–20μg/L) was added to the samples prior to the Quadruple
ICM-MS analysis (The Quadrupole-ICP-MS ELAN DRC-e;
PerkinElmer, Waltham, MA, USA). In order to achieve good
analytical quality control, quality assurance and blanks of cer-
tain certified reference materials were examined. Each ele-
ment was measured three times and the values of relative
standard deviation (RSD) were within 5% in the samples
and the certified values for certified reference materials
(CRM) (Liang and Grégoire 2000). The CRMs used were
citrus leafs (GBW 10020) and soil (GBW 07405) produced
by the Institute of Geophysical and Geochemical Exploration,
China (Shi et al. 2011).

The computer software Statistica, version 10.0 (Statsoft
Polska, Kraków, Poland), was used for statistical analysis of
data and for graphical presentation of the results of two di-
mensional multiple scatter plot relationships between the
variables.

Results and discussion

Toxic metallic elements and metalloids

Cadmium (Cd), mercury (Hg) and lead (Pb) are common con-
stituents of M. procera and they occurred in caps at
2.1 ± 2.4 mg kg−1 db (arithmetic mean plus standard devia-
tion) (Cd), 2.0 ± 0.5 mg kg−1 db (Hg) and 2.8 ± 1.4 mg kg−1 db
(Pb) (Table 1). If assume that Cd, Hg and Pb remain in the
flesh of caps, when they are sautéed, roasted, fried in butter,
grilled or roasted with eggs, a single mushroom dish (100 to
300 g) certainly will provide an elevated quantity of each
heavy metal (0.021–0.063 mg of Cd per capita, 0.02–
0.06 mg Hg per capita and 0.028–0.084 mg Pb per capita).
Hence, frequent eating of caps of M. procera could be not
recommended. Nevertheless, unknown is the bioaccessibility
of Cd, Pb and Hg contained in caps ofM. procera for humans.

Contamination with toxic Cd and Pb of edible mushrooms
is regulated in the European Union but not in the case of Hg,
As or any other inorganic contaminant. The maximum limit of
Cd established is 0.2 mg kg−1 fresh product (2.0 mg kg−1 in
dried product—assuming moisture content is at 90%) inT
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farmed Agaricus bisporus (J.E.Lange) Imbach, Pleurotus
ostreatus (Jacq.) P. Kumm. and Lentinula edodes (Berk.)
Pegler. This limit for Cd is 1.0 mg kg−1 fresh product
(10 mg kg−1 in dried product) for other fungi (EC, 2006,
2008). In the case of Pb and cultivated mushroomsmentioned,
the maximum allowed limit is 0.3 mg kg−1 fresh product
(3.0 mg kg dried product) (EC, 2006, 2008). M. procera in
this study showed at the average on little contamination with

Cd, i.e., in caps, concentration levels were well below
10 mg kg−1 dried product (Table 1). An exception were indi-
viduals collected from the Augustowska Primeval Forest site
which contained Cd in caps at 9.4 mg kg−1 dry biomass
(Table 1). The Augustowska Primeval Forest region is consid-
ered as pristine (green lungs) and localized faraway of major
emitters of heavy metals. A possible explanation for elevated
concentration level of Cd in mushrooms can be because of a

Table 2 Factor loadings (Varimax normalized)

Eigenvalues 24.25 7.26 4.06 2.31 2.14 2.10 1.40 1.05
Total variance (%) 50.52 15.13 8.46 4.82 4.47 4.37 2.91 2.18
Cumulative % 50.52 65.65 74.11 78.94 83.40 87.77 90.68 92.86
Variables PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Li 0.24 −0.16 −0.08 0.23 0.28 0.72 −0.12 0.09
Be 0.76 0.52 0,08 0.12 0.11 −0.08 0.00 −0.07
Sc 0.58 −0.08 0.18 0.08 0.25 −0.65 −0.07 0.00
V 0.01 0.93 −0.07 −0.09 −0.06 −0.01 −0.05 −0.24
Co 0.04 −0.20 0.23 −0.15 0.19 0.03 0.84 −0.11
Ni 0.02 −0.05 0.32 −0.07 0.79 0.19 −0.04 0.02
Cu 0.08 0.15 −0.07 −0.58 0.52 0.15 0.24 −0.37
Zn −0.01 0.95 0.00 −0.05 0.05 −0.16 −0.12 0.03
Ga 0.94 0.13 0.22 0.10 −0.04 0.06 0.12 −0.03
Ge 0.63 0.74 −0.01 0.01 −0.11 0.10 −0.03 0.13
As −0.15 0.95 0.05 0.16 0.12 −0.03 −0.06 −0.07
Rb −0.11 −0.36 0.33 0.05 0.07 −0.19 0.70 0.23
Sr 0.92 0.08 0.14 −0.11 −0.07 −0.03 −0.19 -0.02
Y 0.97 -0.05 0.17 −0.03 0.03 −0.10 −0.06 0.03
Zr 0.80 0.10 0.23 0.01 −0.10 0.02 0.37 −0.18
Nb 0.92 0.02 −0.18 0.17 −0.12 0.18 0.03 −0.10
Mo −0.02 0.96 0.00 0.06 0.06 −0.15 −0.08 0.09
Ag 0.06 0.97 0.00 −0.06 0.10 −0.01 −0.12 0.05
Cd 0.29 −0.12 0.87 0.01 0.18 −0.15 0.19 −0.10
In −0.30 0.35 −0.12 −0.77 0.07 −0.10 0.11 0.04
Sn −0.05 0.35 −0.13 0.86 0.10 0.05 0.06 0.08
Sb 0.44 0.24 0.81 −0.13 −0.06 −0.06 0.11 0.07
Cs 0.26 −0.08 0.93 0.00 0.08 0.01 0.13 0.13
Ba 0.80 −0.13 0.20 0.02 0.31 −0.27 −0.19 0.04
La 0.92 −0.01 0.26 −0.04 0.00 0.21 0.08 −0.15
Ce 0.92 −0.03 0.19 −0.02 0.01 0.25 0.09 −0.19
Pr 0.92 −0.03 0.22 −0.03 0.01 0.23 0.04 −0.18
Nd 0.94 −0.04 0.15 0.03 0.06 0.22 0.01 −0.15
Sm 0.97 −0.10 0.10 0.05 0.02 0.16 0.03 −0.07
Eu 0.93 0.15 0.12 −0.07 −0.15 0.11 −0.01 −0.12
Gd 0.95 −0.12 0.19 0.04 0.09 0.15 0.04 −0.01
Tb 0.96 −0.07 0.19 0.03 0.06 −0.02 0.00 −0.02
Dy 0.95 −0.08 0.22 0.06 0.09 −0.03 −0.10 0.01
Ho 0.97 −0.03 0.14 −0.05 0.00 −0.10 −0.06 0.05
Er 0.98 0.03 0.08 −0.04 −0.01 −0.11 −0.05 0.09
Tm 0.93 0.25 0.08 −0.05 −0.03 −0.17 −0.01 0.11
Yb 0.97 0.06 0.07 −0.10 −0.07 −0.13 −0.04 0.08
Lu 0.96 0.11 −0.01 −0.05 −0.06 −0.09 0.01 0.20
Hf 0.78 0.06 0.27 0.12 −0.12 0.03 0.37 −0.13
Ta 0.50 −0.33 0.19 −0.11 −0.06 0.62 0.04 0.08
W 0.37 0.77 −0.12 −0.03 −0.24 0.19 0.05 0.32
Tl 0.15 −0.28 0.66 0.04 −0.12 0.20 0.52 0.07
Pb 0.51 0.12 0.73 0.10 0.27 0.02 −0.01 0.09
Bi 0.33 −0.07 −0.19 −0.12 −0.13 −0.12 −0.03 −0.76
Th 0.87 0.05 0.13 0.25 0.13 0.30 0.05 -0.01
U 0.93 0.07 0.08 0.21 0.20 0.07 0.00 0.00
Ti 0.90 0.09 −0.07 0.05 −0.07 −0.01 0.08 −0.21
Hg −0.06 0.16 −0.02 0.06 0.89 −0.13 0.18 0.13

In italics are the significant loadings used for each principal component
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specific geochemistry of a soil parent material there, but this
was not studied.

M. procera from the five sites contained Pb in caps at
concentration level in the range of 3.3–6.1 mg kg−1 dry prod-
uct (Table 1), which exceeded a limit set for farmed mush-
rooms mentioned earlier. Maximum contamination with Pb
was similar to Cd in mushrooms from the Augustowska
Primaeval Forest.

Also, silver (Ag) occurred in caps ofM. procera at content
comparable to what was observed for Cd, Hg, Pb, i.e., at
1.9 ± 2.0 mg kg−1 db. An intake of Ag per capita could be
similar as is for Cd, Hg and Pb. Silver, like Cd, Hg and other
chalcophile elements, has affinity to sulphur. The elements Ag,
Cd and Hg are well bio-concentrated by M. procera and sev-
eral other mushrooms (Chudzyński et al. 2011; Falandysz et al.
1994; Stefanović et al. 2016a, 2016b). Arsenic (As) was in
caps at 1.1 ± 1.3 mg kg−1 db (Table 1), which was at relatively
low concentration level while compounds of As were not stud-
ied. The inorganic compounds of As are most toxic while
much less or almost non-toxic are considered organic arsenic
compounds—they can be found in various (species-specific)
proportion in mushrooms but can be well accumulated by fun-
gi from a soil polluted with As (Falandysz and Rizal 2016;
Falandysz et al. 2017a). There is no other data available on
As in M. procera from background areas of Poland.

Available data on antimony (Sb) and thallium (Tl) in
M. procera are scarce (Falandysz et al. 2001). In this study,
Sb was in caps ofM. procera at 0.017 ± 0.014 mg kg−1 db and
Tl at 0.027 ± 0.017 mg kg−1 db, which are negligible quanti-
ties if compared to other toxic chalcophile elements men-
tioned earlier. In a view of the human consumer, there is a
deficit of information on a possible absorption rate of a par-
ticular metallic elements and metalloids contained in cooked
caps of this mushroom, when ingested. For example, the bio-
availability of Cd from the blanched or pickled mushroom
Cantharellus cibarius is considered to be not greater than
20% (unpublished, JF).

Other elements determined can be considered largely as
natural compounds absorbed from the geochemical back-
ground that occurred at typical but not elevated concentration
levels in M. procera. For example, the chalcophile elements
determined such as gallium (Ga), germanium (Ge), indium
(In), tin (Sn) and bismuth (Bi) were at the small contents in
caps. They contained them (in mg kg−1 db), respectively, at
0.14 ± 0.03 (Ga), 0.030 ± 0.012 (Ge), 0.0029 ± 0.0012 (In),
0.19 ± 0.07 (Sn) and 0.0063 ± 0.0076 (Bi). A chalcophile
copper (Cu) and zinc (Zn) were both the major trace elements
in caps, which contained Cu at 88 ± 17 mg kg−1 db and Zn at
69 ± 26 mg kg−1 db (Table 1). Copper and zinc tend to

�Fig. 2 Principal component analysis of the trace metallic elements,
metalloids and rare earth elements associations in M. procera
mushroom (a–c) in the panorama of the Varimax normalized matrices
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accumulate similarly in the hymenophore and the rest of the
fruiting body of M. procera (Alonso et al. 2003). Regardless
of the contents of toxic elements such as Cd, Pb and Hg, the
caps of M. procera seem a good source of Cu and Zn.

The alkali metals such as lithium (Li), rubidium (Rb) and
caesium (Cs) were in caps at 0.62 ± 0.85 mg kg−1 db (Li),
33 ± 17 mg kg−1 db (Rb) and 0.039 ± 0.020 mg kg−1 db (Cs).
For lithium there was a wide span of values for the sites and
range from 0.012 to 2.7 mg kg−1 db (Table 1). There is no
other data published on the element Li in M. procera to con-
firm observation from this study. Both Rb and Cs (stable
133Cs) were at a small content in M. procera, while much
richer in both elements are mycorrhizal mushrooms
(Falandysz and Borovička 2013). A low status of stable
133Cs (and also Rb) in fruiting bodies of M. procera, when
related to certain other mushrooms, seem to explain a low
susceptibility of this mushroom for contamination with radio-
active caesium (134/137Cs).

The alkali earth metals such as beryllium (Be), strontium
(Sr) and barium (Ba) highly differed in their content in
M. procera . The element Be occurred in caps at
0.014 ± 0.006 mg kg−1 db, the Sr was at 0.88 ± 0.37 mg kg−1

db and the Ba was at 3.9 ± 2.4 mg kg−1 db. Data on Ba in
M. procera provided in this study (Table 1) showed on a greater
content, when compared to results for M. procera obtained by
argon plasma atomic emission spectroscopy (Ouzouni and
Riganakos 2007).

Other elements for which are available a few sets of data on
their occurrence and accumulation by fungi in fruiting bodies
are cobalt (Co), nickel (Ni), thorium (Th), titanium (Ti), ura-
nium (U) and vanadium (V) (Aloupi et al. 2011; Baumann
et al. 2014; Borovicka et al. 2011; Falandysz et al. 2007b;
Vetter and Siller 1997;Řanda et al. 2005). Amongmushrooms
that were studied so far, the Fly Agaric Amanita muscaria (L.)
Lam. was identified as the specific accumulator of vanadium,
while not one specifically efficiently accumulated Co, Ni, Th,
Ti or U. The caps of M. procera contained Co at
0.13 ± 0.09 mg kg−1 db, Ni at 0.31 ± 0.01 mg kg−1 db, Th at
0.029 ± 0.013 mg kg−1 db, U at 0.0091 ± 0.0045 mg kg−1 db,
Ti at 29 ± 9 mg kg−1 db, and V at 1.3 ± 0.6 mg kg−1 db.

The obtained results for elements such as hafnium (Hf),
which occurred in caps at 0.024 ± 0.014 mg kg−1 db, tantalum
(Ta) at 0.016 ± 0.005 mg kg−1 db and wolfram (W) at
0.021 ± 0.009 mg kg−1 db. They all agree with a single result
obtained for a whole fruiting body of M. procera from the
Czech Republic and obtained by neutron activation analysis
(Řanda and Kučera 2004).

�Fig. 3 Principal component analysis of the trace metallic elements,
metalloids and rare earth elements associations in its sampling
localizations (a–c) of M. procera in the panorama of the Varimax
normalized matrices
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Absent in the available literature are data on occurrence in
M. procera of the metallic elements such as molybdenum
(Mo), niobium (Nb) and zirconium (Zr). Those elements oc-
curred in caps at 0.61 ± 0.28 mg kg−1 db (Mo),
0.051 ± 0.023 mg kg−1 db (Nb) and 1.1 ± 0.6 mg kg−1 db
(Zr) (Table 1).

Multivariate analysis of data

A possible relationship between 48 metallic elements (includ-
ing data on rare earth elements) (Falandysz et al. 2017b) and
metalloids accumulated in caps and whole fruiting bodies by
fungus M. procera collected at 16 spatially distributed places
in the northern and central regions of Poland has been exam-
ined using the principal component (PC) analysis
(Wyrzykowska et al. 2001). In this multivariate approach,
the results from examination of possible 48 × 16 data matrix
are summarised in Table 2 (results for 48 × 13 data matrix
obtained separately for caps are not shown). This was possible
to explain up to 93% variability in the 48 × 16 data matrix by
eight factors as well as up to 96% variability in the 48 × 13
data matrix by eight factors for which an eigenvalue value was
≥1. Absolute values of the correlation coefficient were above
0.72 (significance at p < 0.05) for 43 elements in the 48 × 16
data matrix and above 0.70 for 42 elements in the 48 × 13 data
matrix.

The PC1 was under influence by variables associated
with positively correlated Ba, Be, Ce, Dy, Er, Eu, Ga, Gd,
Hf, Ho, La, Lu, Nb, Nd, Pr, Sm, Sr, Tb, Th, Ti, Tm, U, Y,
Yb and Zr, which are largely the lithophile elements that
are characterised by similar chemical properties—alkaline
earth metals (Be, Ba, Sr), which, together with Mg and Ca,
have all a somewhat similar chemical and physical prop-
erties (Tabouret et al. 2010). The Be, Ba and Sr are more
or less alike to Ca in the environment and biological sys-
tems and Sr can displace Ca. In the PC1 associations,
positively correlated were also the rare earth elements
(RREs) which are similar to Ca and all have similar chem-
ical and physical properties and tend to exist together. The
PC1 was also under the influence by variables associated
with positively correlated some other elements (Y, Zr, Nb,
U, Th, Ti) and also Ga. The PC2 was under the influence
by positively correlated Ag, As, Ge, Mo, V, W and Zn, and
PC 3 by variables with positively correlated Cd, Cs, Pb
and Sb. The PC4 was influenced by variables associated
with negatively correlated element indium (In) and posi-
tively correlated Sn, the PC5 was with positively correlat-
ed Ni and Hg, the PC6 was with Li, the PC7 was with Co
and the PC8 with negatively correlated Bi (Table 2). The
associations among the elements determined and places of
mushroom collection in the factor space as a PCA are
presented graphically in Figs. 1 and 2.

M. procera as a decomposer absorbs inorganic compounds
from a digested decaying plant matter in soils and from the
soil solution. Hence, a significant difference in content of the
particular element in mushroom between the sampling local-
ization could be largely associated with geochemistry of the
soil parent material and content of a particular element and
their availability or co-absorption, composition of decaying
plant matter and anthropogenic pollution.

The localization Trzebiesza near Poznań—no. 13 on a map
(associated with PC2) was separated due to significantly ele-
vated content of Ag, As, Mo, Vand Zn inM. procera (Figs 1a
and Fig. 2a). Contrary, the localization Sarnówek in a forested
and agricultural region of the Warmia land—no. 8 on a map
(associated with PC 3) was separated due to small content of
Cd, Cs, Pb and Sb in mushrooms (Fig. 2a and Fig. 3a). The
localization of the Augustów Primeval Forest—no. 5 (associ-
ated with PC3) was characterised by elevated content of Cd,
Pb and Sb, which could be related to known a deep in the
ground deposits of some metal ores there. This localization
was also associated with PC4 by small content of Sn and in
mushrooms.

For the localization near Łuby in the Tuchola Pinewoods
(no. 6) was strong relationship between Hg and Ni (associated
with PC 5). The localization of Kościerzyna (no. 7) because of
Li (PC6); the localization Lębork (no. 2), because of Co (as-
sociated with PC7), and the localization Island Gierszak (no.
12) because of Bi (associated with PC8) (Figs 1 and 2,
Table 2).

Conclusion

M. procera foraged from the background areas could be
characterised by elevated content of toxic Cd, Hg and Pb in
edible caps of the fruiting bodies while less of As, which is a
species-specific feature. Since caps of M. procera are cooked
without blanching, which could, to some degree, reduce the
content of As, Cd, Hg and Pb, a frequent eating of this mush-
room may be not desired. Also, toxic Sb and Tl were in
M. procera at small but probably typical concentrations.
M. procera seem to possess some features of a bio-indicative
species for anthropogenic Pb but also for some geogenicmetallic
elements. The bio-elements Cu and Zn but also several other
elements were inM. procera in a narrow range of concentration
levels that can be explained by a lack of major environmental
problems with heavy metals in the regions examined.

Open Access This article is distributed under the terms of the Creative
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creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
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