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Abstract The widespread mobile phone use raises concerns
on the possible cerebral effects of radiofrequency electromag-
netic fields (RF EMF). Reactive astrogliosis was reported in
neuroanatomical structures of adaptive behaviors after a single
RF EMF exposure at high specific absorption rate (SAR, 6W/
kg). Here, we aimed to assess if neuronal injury and functional
impairments were related to high SAR-induced astrogliosis. In
addition, the level of beta amyloid 1–40 (Aβ 1–40) peptide
was explored as a possible toxicity marker. Sprague Dawley
male rats were exposed for 15 min at 0, 1.5, or 6 W/kg or for
45 min at 6 W/kg. Memory, emotionality, and locomotion
were tested in the fear conditioning, the elevated plus maze,
and the open field. Glial fibrillary acidic protein (GFAP, total

and cytosolic fractions), myelin basic protein (MBP), and
Aβ1–40 were quantified in six brain areas using enzyme-
linked immunosorbent assay. According to our data, total
GFAP was increased in the striatum (+114 %) at 1.5 W/kg.
Long-term memory was reduced, and cytosolic GFAP was
increased in the hippocampus (+119 %) and in the olfactory
bulb (+46 %) at 6 W/kg (15 min). No MBP or Aβ1–40 ex-
pression modification was shown. Our data corroborates pre-
vious studies indicating RF EMF-induced astrogliosis. This
study suggests that RF EMF-induced astrogliosis had func-
tional consequences on memory but did not demonstrate that
it was secondary to neuronal damage.

Keywords Electromagnetic fields . Astrogliosis . Glial
fibrillary acidic protein . Myelin basic protein . Beta amyloid
1–40 . Fear conditioning . Elevated plusmaze . Open field

Introduction

With the widespread use of mobile phones, the possible neu-
robiological effects of radiofrequency electromagnetic fields
(RF EMF) have become a crucial question.

Glial reactivity was reported after an acute RF EMF expo-
sure to the rat brain at an averaged specific absorption rate
(SAR) of 6 Watts/kg (W/kg). Mausset-Bonnefont et al.
(2004) showed an increase in glial fibrillary acidic protein
(GFAP) staining in the hippocampus, the striatum, and the
cortex 3 days after exposure. This data was reproduced by
Brillaud et al. (2007) who showed GFAP staining increase in
the striatum and the frontal cortex 2 to 3 days after the same
exposure. Whether RF EMF leads to gliosis is an important
matter of debate as data from the literature are contradictory.
Mausset et al. (2001), Mausset-Bonnefont et al. (2004),
Brillaud et al. (2007), Ammari et al. (2008a, b), Maskey
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et al. (2010, 2012), and Lu et al. (2014) looked at the link
between SAR and GFAP increase using acute or repeated
RF EMF exposures and reported positive effects. Fritze et al.
(1997), Thorlin et al. (2006), Grafstrom et al. (2008),
Watilliaux et al. (2011), Bouji et al. (2012), Court-Kowalski
et al. (2015), Bouji et al. (2016), and Petitdant et al. (2016) did
not show any positive effect. Astrocytes insure a variety of
functions in the brain. Neurologic function could be altered in
some important respects if RF EMF mobile phone exposures
did cause astrocytic reaction. This question needs new
insights.

Astrogliosis is a nonspecific consequence of many insults.
It aims at protecting the brain against deleterious processes as
excitotoxic glutamate neurotransmitter excess, neuron lesions,
oxidative stress, neuroinflammation, or toxicity of the beta
amyloid peptide (Aβ). Increased staining of GFAP, the main
intermediate filament of astrocytes, is the hallmark of reactive
astrogliosis (Eng 1985; Schiffer et al. 1986). Mechanisms of
this response are rearrangements of the intermediate filament
network, including breakdown of F-actin stress fibers, poly-
merization of upregulated GFAP, and vimentin and nestin
overexpression. Increased GFAP staining is not always linked
to significant rise in protein content, but may be correlated to
cytoskeleton organization changes, usually detectable by var-
iations in GFAP detergent solubility (Boran and Garcia 2007).
The consequent cell morphology modifications, as processes
hypertrophy, reflect metabolic activation, as shown by in-
creased organelles number or size, and release of chemical
factors (cytokines) in the case of mild to moderate astrogliosis
(Schmidt-Kastner and Szymas 1990; Sofroniew 2009).

Astrogliosis can be secondary to demyelinating lesions.
Progenitor cell differentiates into myelinating oligodendro-
cytes to reestablish myelination in the demyelinated zones
(Nishiyama et al. 2009; Zhao et al. 2009). Oligodendrocytes
selectively express myelin basic protein (MBP). The transito-
ry decrease in brain MBP expression was shown after expo-
sure to several environmental contaminants (chemicals,
plants, medicines, or metals) (Coria et al. 1984; Schang et al.
2013; Bhasker et al., 2014;Ma et al. 2015).MBP increase was
also shown within 2 to 3 days post-injury in toxicological
conditions.

In healthy organisms, astrocytes are involved in neuronal
electrical activity regulation through reciprocal communica-
tions in the tripartite synapses (Wenzel et al. 1991; Rapanelli
et al. 2011). Astrocytes are in a symbiotic relationship with
neurons to optimize neural information processing, to modu-
late synaptic transmission and neuronal activity (Hewett
2009). Neuronal electrical activity in the subcortical structures
(as the striatum and the hippocampus) and in cortical regions
participates to generate mental functions: memory, emotional-
ity, and novelty perception. Astrocyte-released pro-inflamma-
tory molecules may affect these functions and adaptative be-
haviors (Eddleston and Mucke 1993; Rothstein et al. 1996).

Severe astrogliosis may induce collateral neurotoxicity on bio-
markers and cognitive functions by exacerbating the deleteri-
ous processes (Sofroniew and Vinters 2010; Middeldorp and
Hol 2011). Memory performances have been shown to be
impaired by lipopolysaccharide-induced inflammatory (Lee
et al. 2009; Spitzer et al. 2010). Some authors indicated that
long-term RF EMF exposures impaired memory perfor-
mances and modified the levels of Aβ (Arendash et al.
2010; Dragicevic et al. 2011). Amyloidogenesis has been the
endpoint of recent studies in health assessments of environ-
mental contaminants. Aβ synthesis was shown to be stimulat-
ed by several neurotoxic agents including medications, metal
mixtures, hormones, or ozone (Blasko et al. 2008; Ma and Liu
2015; Ashok et al. 2015; Deng et al. 2015; Hernandez-
Zimbron and Rivas-Arancibia 2015).

Because of the important neurological consequences if RF
EMF mobile phone exposures did cause memory impair-
ments, this question needs new insights. Up to date, there
are no consensual conclusions on the possible effect of RF
EMF exposure on memory. Both positive (Preece et al.
1999; Koivisto et al. 2000; Krause et al. 2000; Maier et al.
2004; Keetley et al. 2006; Nittby et al. 2008; Arendash et al.
2010) and negative reports (Sienkiewicz et al. 2000; Dubreuil
et al. 2002; Haarala et al. 2007; Ammari et al. 2008a, b;
Petitdant et al. 2016; Bouji et al. 2016) were published.

Here, we aimed to reproduce the neurotoxicity of an acute
high SAR RF EMF exposure (Mausset-Bonnefont et al. 2004;
Brillaud et al. 2007). Rats were exposed at 0 and 1.5 W/kg for
15 min, 6 W/kg for 15 min, or 6 W/kg for 45 min. Responses
to a single exposure aimed to assess mechanisms for RF EMF
and nervous tissue interaction, which are not necessarily de-
tectable using intermittent exposures due to habituation or
sensitization processes of the organism. The exposure dura-
tions of 15 and 45 min are compatible with the duration of
daily calls in moderate and intensive mobile phone users
(INTERPHONE group 2010; Hardell and Carlberg 2013). In
order to test if biological responses would be in the direct ratio
of the total absorbed energy, four rising levels were tested by
increasing the brain averaged SAR (BASAR) and the expo-
sure duration of the highest BASAR (to 45 min). We evaluat-
ed emotional memory, anxiety-like behavior, and locomotor
activity. Tests were performed in the fear conditioning para-
digm, the elevated plusmaze (EPM), and the open field. Three
days after RF EMF exposure, markers were assessed using
enzyme-linked immunosorbent assay (ELISA). Previous stud-
ies indicated that the increase of GFAP and Aβ peptide as well
as the decrease ofMBPwas rapidly observed, 2 to 3 days after
a toxic stimulation (Morin-Richaud et al. 1998; Ma and Liu
2015). Two phenotypes of astrogliosis were quantified: the
total GFAP expression and the (soluble monomeric GFAP)/
(total GFAP content) ratio (Eng et al. 2000; Tseng et al. 2006;
Maskey et al. 2010; Watilliaux et al. 2011; Lu et al. 2014), as
well as MBP and Aβ 1–40. Six brain structures involved in
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mental functions were exanimate: the cortex (anterior and
posterior), the striatum, the hippocampus, the olfactory bulb,
and the cerebellum).

Material and methods

Animals

Sixty-eight 6-week-old Sprague Dawley male rats (OFA Iffa
Credo, France) were daily weighed and handled for 1 week
before the start of experiments. We used male rats to be con-
sistent with previous studies from our laboratory on dosime-
try, behavioral paradigms, and restraint effect. The rats were
housed two per cage in controlled environmental conditions
(room temperature 22 °C; 12-h light/dark cycle) with food and
tap water ad libitum. The cage environment was enriched with
a plastic tube identical in size, shape, and appearance to RF
EMF exposure rockets (Brillaud et al. 2005). The rats were
free to explore, and move in and out of the tube from their
arrival in the vivarium until sacrifice. INERIS Use Committee
and French State Council guidelines were followed for the
care and use of laboratory animals (Decree no. 87–849,
October 19, 1987).

Experimental groups

The rats were randomly assigned to four independent
groups (n = 14–20 rats/group) exposed to SAR doses:
0 W/kg for 45 min, 1.5 W/kg for 15 min, 6 W/kg for
15 min, and 6 W/kg for 45 min. Restraining in the expo-
sure rocket lasted 45 min for all the groups. On the first
day, the rats were subjected to fear conditioning training,
immediately followed by an acute RF EMF exposure. The
contextual memory test was performed 3 h after the end of
the training session (and 3 h after the beginning of RF EMF
exposure). On the second day, cue memory test was per-
formed in the morning (21 h after the beginning of RF
EMF exposure) and the 24 h contextual memory test in
the afternoon (25 h after the beginning of RF EMF expo-
sure). The 24-h contextual memory test was performed
24 h following the end of the 3-h contextual memory test
during which there was a recall of the context/tone/electri-
cal shock presentation. On the third day, the rats were test-
ed in the open field in the morning (45 h after the begin-
ning of RF EMF exposure) and in the elevated plus maze
(EPM) in the afternoon (50 h after the beginning of RF
EMF exposure). The open field and the EPM tests were
applied at the same day as in previous study from
Petitdant et al. (2016). The rats were sacrificed on the
fourth day (72 h after the beginning of RF EMF exposure).

Exposure system

Exposure setup was previously described (Mausset et al.
2001; Dubreuil et al. 2002). A radio frequency power source
(900–64 type, radio frequency power amplifier, France) emit-
ting a 900 MHz RF EMF (1/8 duty factor) pulse modulated at
217 Hz was connected to a four-output divider. Each output
was connected to a loop antenna allowing local exposure of
four animal’s head simultaneously in an anechoic chamber.
During exposure, each animal was placed in a Plexiglas rocket
capped with a truncated cone containing an individual loop
antenna. The rocket body was lined with air holes to facilitate
breathing and minimize the rise in body temperature. SAR
calculations were made with homogeneous phantoms
(Leveque et al. 2004).

Behavior

Fear conditioning

Fear conditioning is a Pavlovian conditioning, in which a
neutral conditioned stimulus (a sound) is paired with an aver-
sive unconditioned stimulus (a footshock). It occurred in two
standard fear conditioning apparatus purchased from Bioseb
(France). Two freezing boxes (25.5 × 27 × 26 cm) were each
located inside a larger, insulated plastic chamber that provided
protection from outside light and noise. The boxes were made
with black methacrylate walls and a transparent front door.
The floor consisted of 20 stainless steel rods through which
a shock could be delivered. The rods were connected to a
high-sensitivity weight transducer system that measured ani-
mal movements. The conditioning apparatus was controlled
by the experimenter with specific software (Panlab,
Barcelona). Freezing response was defined as complete im-
mobilization of the rat, except for respiration (Blanchard and
Blanchard 1972). It was measured in response to stimuli pre-
sentation (context and tone) by amplitude of movement of the
animal and was scored as percentage of time spent freezing.
At the end of each session, the animals were returned to their
home cages, and the boxes were cleaned with non-alcohol
disinfectant.

The training phase began with a 2-min habituation period
(no auditory or aversive stimulus), followed by five training
cycles (28 s of sound (2 kHz, 100 dB); 2 s of sound + electrical
shock (0.25 mA); a 30-s exploration period (no auditory or
aversive stimulus)). To test contextual memory, the animals
were introduced for 3 min in the boxes used for the training.
To avoid extinction, the 3-h contextual memory test ended
with two training cycles. To perform the cue memory test,
the animals were introduced in boxes with modified environ-
ment (different box size, wall color, and floor texture) for
2 min and were exposed to the sound for 3 min.
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Open field

The open field test was performed according to previously
described methods (Prut and Belzung 2003). Movements
were monitored for 30 min using an automated apparatus
consisting of four Plexiglas boxes (60 × 60 × 40 cm) equipped
with 16-bottom and 8-top (for vertical activity evaluation)
infrared beams located along two adjacent sides of one cham-
ber (Imetronic, France). Activity was measured by the number
of counts, i.e., the number of infrared beam interruptions.
Anxiety-related behavior was assessed by the time spent in
the central area of the apparatus.

Elevated plus maze

The EPM test was performed according to previously de-
scribed methods (Daniels et al. 2004). The apparatus was
composed of a plus shaped acryl maze with two opposite open
arms and two opposite closed arms (50 cm in length, 10 cm in
width, and 31 cm in height), extending out from a central
platform (10 × 10 cm) and elevated 50 cm above the floor.
The rats were placed in the center of the maze, the head facing
an open arm, and were allowed to explore for 5 min. The maze
was cleaned after each test to prevent influences of previously
tested rat. Two paws had to be inside the entrance line to each
arm, which signaled the start of the time spent in the specific
arm, and then the end time was recorded when all four paws
were outside the line again. Tests were recorded and the time
spent in the different arms was analyzed using Smart software
(Panlab). Data were presented as percentage of time spent in
the open arm compared to the time spent in the four arms
during the first 30 s of the test.

Brain sample preparation

Animals were anesthetized with isoflurane. Intra-cardiac per-
fusion was performed with 0.9 % NaCl solution. Following
decapitation, the brainswere immediately removed and placed
on a cold plate. The brains were divided in two hemispheres.
The striatum, the hippocampus, the cortex, the olfactory bulb,
and the cerebellum were dissected from one hemisphere with
curved forceps. The third ventricle was the landmark to dissect
the anterior and the posterior cortex. Samples of brain tissue
were snap-frozen on a bed of dry ice and then grounded into a
powder. Tissue was stored at −80 °C.

Enzyme-linked immunosorbent assay

Total protein assay

Total protein was assayed by the method of Bradford. Bovine
serum albumin (BSA, Sigma-Aldrich) was used as standard.
Absorbance was read at 595 nm using a Molecular Devices

UV Max microplate reader (Infinite M200 TECAN, Menlo
Park, CA, USA) coupled to a Macintosh computer running a
Soft Max (Molecular Devices, Menlo Park, CA, USA)
program.

GFAP

The method was slightly modified from O’Callaghan (1991).
Brain samples were weighed and homogenized using an ho-
mogenizing vessel in hot (90–95 °C) 1 % SDS in PBS sup-
plemented with 1× protease inhibitor cocktail (1/25, Roche) to
obtain the total cell fraction. Part of the total cell fraction was
centrifuged (15 min 15,000g) to obtain the cytosolic fraction.
Both total and cytosolic fractions were analyzed for their
GFAP content. Standard curve samples were prepared with
human GFAP (Merck) in sample buffer at dilutions 0.0075,
0.015, 0.03, 0.06, 0.1, 0.25, 0.5, and 1.0 μg/100 μl. Immulon-
2 flat-bottom microtiter plates (Greiner Bio-One) were coated
with the rabbit polyclonal anti-GFAP (Dako Cytomation)
(1.0 μg/100 μl in PBS) for 1 h at 37 °C and then overnight
at 4 °C. Blocking was performed with BSA 2 %. Standards
and samples were incubated for 1 h in duplicates (100 μl/
well). Monoclonal mouse anti GFAP (Abcam) (1:500 in
BSA containing Triton ×100) was then added (for 1 h).
Finally, rabbit polyclonal to mouse IgG horseradish peroxi-
dase (HRP)-conjugated (Abcam) (1:3000 in BSA containing
0.5 % Triton ×100) was incubated for 30 min. Revelation was
performed by adding 3,3′,5,5′-tetramethylbenzidine (TMB)
(Interchim) and was stopped 10 min later with H3PO4 1 M
(Uptima). Optical densities were read at 450 nm.

MBP

ELISA assay was performed using commercialized kits for rat
MBP (USCN Life Science Inc.). Tissue samples were diluted
in PBS 1× supplemented with protease inhibitor cocktail.
MBP standard curve was prepared in standard diluent at
0.156, 0.312, 0.625, 1.25, 2.5, and 5 ng/ml. Blank, standard
dilutions and samples were incubated for 2 h at 37 °C in
duplicate in the pre-coated plate. Detection reagent containing
the primary antibody anti-MBP was added (for 1 h at 37 °C).
After washing, detection was performed using the reagent
containing the HRP-conjugated secondary antibody (30 min
at 37 °C). Finally, the substrate solution was added to each
well (15–25 min at 37 °C) before stopping the reaction.
Optical densities were read at 450 nm.

Amyloid β 1–40

Aβ 1–40 concentration was measured using commercialized
kits allowing Aβ 1–40 detection with a 0.049 pmol/l sensitiv-
ity (Wako Chemicals, GmbH, Germany) and based on the
sandwich ELISA method (Silverberg et al. 2010). Tissue
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samples were prepared with tissue powder extracted by soni-
cation with 70% formic acid and centrifugation (100,000g for
1 h). The supernatant was removed and neutralized with 20
volumes of Tris Base (1 mol/l). Samples and standards (0, 1,
2.5, 5, 10, 25, 50, and 100 pmol/l) were diluted with the kit
diluent and added in duplicate to the monoclonal antibody
anti-Aβ11–28 (BNT77)-pre-coated 96-well microtiter plate
(for 2 h at room temperature). Then, HRP-conjugated anti-
body solution was incubated for 2 h at 4 °C. Finally, TMB
was added to each well, and reaction was terminated 30 min
later using the kit stop solution. Total Aβ 1–40 concentrations
(pg/mg total protein) were expressed as percentages of sham
group. Optical densities were read at 450 nm.

Statistical analysis

Statistical analyses were performed using SPSS 17 software
(Inc., Chicago, IL, USA). Values are given as mean ± standard
error of mean per group. Control for normal distribution was
performed using Levene’s test. Analyses were performed
using two-way analysis of variance (ANOVA) (for time ×
SAR level, time × exposure duration) and one-way ANOVA
(for SAR level or exposure duration effect). SAR level effect
was assessed by comparing the 0, 1.5, and 6 W/kg groups
exposed for 15 min, while exposure duration effect was
assessed by comparing the 0 and 6 W/kg 15 min, and 6 W/
kg 45 min groups. Main effects were analyzed using
Bonferroni’s post hoc corrected t test. Time was analyzed as
within-subject factors while exposure doses were analyzed as
between-subject factors. Significant effects were found when
p < 0.05. The p value was one-tailed for total GFAP increase,
MBP decrease, and Aβ increase and two-tailed for behavioral
tests and cytosolic GFAP. Linear models and correlations
(Pearson) were performed using R statistical environment.
The linear model aimed to explain long-term memory by
Aβ in the hippocampus and in the striatum and by their inter-
actions with RF EMF exposure.

Results

Effect of RF EMF on total GFAP

Figure 1 shows total GFAP in the six cerebral structures 3 days
following RF EMF exposure. ANOVA performed on each
structure showed significant SAR level effect in the striatum
(p = 0.03), but no exposure duration effect. There was no
exposure duration or SAR level effect in the other structures
(p > 0.05). Bonferroni’s post hoc corrected t test showed sig-
nificant GFAP increase in the striatum in the 1.5 W/kg-ex-
posed rats when compared to the sham-exposed group
(p < 0.05).

Effect of RF EMF on cytosolic GFAP

Figure 2 shows cytosolic GFAP. ANOVA performed on the
each structure showed a significant SAR level effect in the
striatum (p = 0.01) and the hippocampus (p = 0.02). Both
SAR level and exposure duration effects were obtained in
the olfactory bulb (p = 0.04 and p = 0.05), while no sig-
nificant SAR level or exposure duration effect was obtain-
ed in the other structures (p > 0.05). Post hoc Dunnett’s-
corrected t test showed that soluble GFAP was significant-
ly decreased in the 1.5 W/kg-exposed group when com-
pared to the sham group in the striatum (p = 0.05) and
significantly increased in the 6 W/kg–15 min-exposed
group when compared to both the sham and the 1.5 W/
kg–15 min-exposed groups in the hippocampus
(p = 0.05) and in the olfactory bulb when compared to
the sham group (p < 0.05).

Effect of RF EMF on MBP

Figure 3 shows MBP in the six cerebral structures 3 days
following RF EMF exposure. ANOVA performed on MBP
for each structure did not show any SAR level effect
(p > 0.07) or exposure duration effect (p > 0.09).

Effect of a post-conditioning RF EMF exposure
on emotional memory

Figure 4a–c shows time spent freezing in response to the
context 3 and 24 h after the conditioning, and to the tone,
respectively. Figure 5d shows the comparison between the
3- and 24-h tests. ANOVA performed separately on the
three tests (Fig. 4a–c, respectively) showed significant
t ime e f f e c t (F (35 , 2240 ) = 4 .7 , p < 0 .001 ; F
(35,2240) = 10, p < 0.001; and F (35,2240) = 15.9,
p < 0.001), but no SAR level effect (F (2,45) = 0.6,
p = 0.6; F (2,45) = 0.9, p = 0.4; and F (2,45) = 1,
p = 0 . 4 ) , t i m e × SAR l e v e l i n t e r a c t i o n ( F
(70,1575) = 1.1, p = 0.4; F (70,1575) = 1.1, p = 0.3; and
F (70,1575) = 0.8, p = 0.9), exposure duration effect (F
(2,51) = 0.7, p = 0.5; F (2,51) = 0.4, p = 0.7; and F
(2,51) = 0.4, p = 0.6), and exposure duration × time inter-
action (F (70,1785) = 0.8, p = 0.9; F (70,1785) = 0.9,
p = 0.7; and F (70,1785) = 0.8, p = 0.8). ANOVA per-
formed to compare contextual memory at 3 and 24 h
showed no significant test delay × SAR level interaction
(F (3,64) = 0.4, p = 0.7) or SAR level effect (F (3,64) = 0.9,
p = 0.5) but a significant test delay effect (F (1,64) = 4.1,
p = 0.04). Bonferroni’s post hoc corrected t test showed
that contextual memory was significantly decreased at 24 h
when compared to the test at 3 h in the 6 W/kg (15 min)-
exposed group (p = 0.03) (Fig. 4d). Exploration of the data
using a linear model indicated that long-term memory was
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Fig. 2 Cytosolic GFAP in the
striatum (a), the hippocampus (b),
the olfactory bulb (c), the
posterior cortex (d), the anterior
cortex (e), and the cerebellum (f)
in the sham- and RF EMF-
exposed rats. Cytosolic striatal
GFAP in the 1.5 W/kg-exposed
rats was significantly decreased
compared to that in the sham-
exposed group (*p < 0.05).
Cytosolic GFAP in the
hippocampus and the olfactory
bulb in the 6 W/kg (15 min)-
exposed rats was significantly
increased compared to that in the
sham-exposed group (*p < 0.05).
N = 8/group
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Fig. 1 Total GFAP in the
striatum (a), the hippocampus (b),
the olfactory bulb (c), the
posterior cortex (d), the anterior
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exposed rats. Total striatal GFAP
in the 1.5 W/kg-exposed rats was
significantly increased compared
to that in the sham-exposed group
(*p < 0.05). N = 8/group

25348 Environ Sci Pollut Res (2016) 23:25343–25355



explained by the level of GFAP in the striatum and by its
interaction with RF EMF exposure (1.5 W/kg). The calcu-
lation of the Pearson coefficient indicated that long-term

memory scores correlated with total striatal GFAP
(r = −0.38, p = 0.047) and with short-term memory
(r = 0.38, p = 0.0013).
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Effect of RF EMF exposure on anxiety-like behavior
and locomotor activity

Figure 5a shows the percentage of time spent in the open arm
of the EPM. No effect was detected with ANOVA comparing
SAR level (F (2,43) = 0.8, p = 0.4) or exposure duration (F
(2,49) = 1.6, p = 0.2). Figure 5b, c shows vertical and hori-
zontal locomotor activities measured in the open field.
ANOVA performed on vertical activity showed significant
time effect (F (5,105) = 26.1, p < 0.001) but no SAR level
effect (F (2,21) = 0.2, p = 0.8), exposure duration effect (F
(2,21) = 0.01, p = 0.9), time × SAR level interaction (F
(10,105) = 0.5, p = 0.9), or time × exposure duration interac-
tion (F (10,105) = 0.4, p = 0.9) (Fig. 5b).

ANOVA performed on horizontal activity, comparing SAR
levels or exposure durations, showed significant time effect (F
(5105) = 85.7, p < 0.001 and F (5105) = 79.4, p < 0.001,
respectively) but no SAR level effect (F (2,21) = 0.2,
p = 0.8), exposure duration effect (F (2,21) = 0.04, p = 0.9),
time × SAR level interaction (F (10,105) = 0.9, p = 0.5), or
time × exposure duration interaction (F (10,105) = 1.0,
p = 0.4) (Fig. 5c). Similarly, there was a significant time effect
(p < 0.05) but no SAR level effect, exposure duration effect,
time × SAR level interaction, or time × exposure duration
interaction (p > 0.05) for the time spent in the central area of
the open field (Fig. 5d).

Effect of RF EMF on Aβ 1–40

Figure 6 shows Aβ 1–40 quantities in the six cerebral struc-
tures 3 days following RF EMF exposure. ANOVA performed
on Aβ 1–40 for each structure did not show any SAR level or
exposure duration effect (p > 0.2). Exploration of the data
using a linear model indicated that long-term memory was

explained by the level of Aβ 1–40 in the striatum and by its
interaction with RF EMF (1.5W/kg). Long-term memory was
explained by the interactions of RF EMF exposure with Aβ
(in the striatum, p = 0.022 and in the hippocampus, p = 0.047).
Long-term memory was explained by Aβ in the striatum (es-
timate −0.74, standard error 0.31, p = 0.02), by its interactions
with RF EMF exposure (at 1.5 W/kg, estimate 1.38, standard
error 0.64, p = 0.04 and at 6 W/kg 15 min, estimate 1.38,
standard error 0.64, p = 0.04), and by the interaction Aβ in
the hippocampus × RF EMF exposure (at 6 W/kg 15 min,
estimate −1.66, standard error 0.64, p = 0.02). Multiple R-
squared was 0.38 and adjusted R-squared was 0.18 (p = 0.10).

Discussion

This study aimed to investigate the neurobiological effect of
an acute RF EMF exposure at high SARs. Results showed a
+114 % GFAP increase in the striatum following RF EMF
exposure at 1.5 W/kg. At 6 W/kg (15 min), GFAP cytosolic
fraction was increased in the hippocampus (+119 %) and the
olfactory bulb (+46 %), and long-term contextual memory
was decreased (−21 %). No MBP or Aβ 1–40 expression
modification was shown.

Astrocytes insure a variety of functions in the brain. Thus,
neurologic function could be altered in some important re-
spects if RF EMF mobile phone exposures did cause astrocyt-
ic reaction. Here, we afforded new insights to this question,
which is still an important matter of debate. Several previous
investigations using acute and repeated RF EMF exposures
looked at the link between SAR and GFAP increase. Mausset
et al. (2001), Mausset-Bonnefont et al. (2004), Brillaud et al.
(2007), Ammari et al. (2008a, b), Maskey et al. (2010, 2012),
and Lu et al. (2014) showed positive effects. Fritze et al.
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Fig. 5 Anxiety-like behavior (a)
and locomotor activity (b, c, d) in
the sham- and RF EMF-exposed
groups. No RF EMF effect was
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(1997), Thorlin et al. (2006), Grafstrom et al. (2008),
Watilliaux et al. (2011), Bouji et al. (2012), Court-Kowalski
et al. (2015), Bouji et al. (2016), and Petitdant et al. (2016) did
not show any positive effect. There is no clear explanation for
these discrepancies. Contradictory data were shown with sim-
ilar experimental designs: local (to the brain) acute exposure
(Brillaud et al. 2007; Bouji et al. 2012) or intermittent
(Ammari et al. 2008a, b; Petitdant et al. 2016), whole body
continuous exposure (Grafstrom et al. 2008; Fragopoulou
et al. 2012), high SAR (Brillaud et al. 2007; Bouji et al.
2012), environmental SAR (Watilliaux et al. 2011;
Fragopoulou et al. 2012), mice (Maskey et al. 2010; Kim
et al. 2008), or rats (Brillaud et al. 2007; Bouji et al. 2012).
Similar data were obtained with Sprague Dawley and Wistar
male rats (Bouji et al. 2012, 2016). The method of immuno-
histochemistry or ELISA may detect differently cytoskeletal
protein redistribution and GFAP overexpression (Boran and
Garcia 2007). Variability may also be caused by contention
used to perform local brain exposures. However, there was no
behavioral effect of restraint stress (Petitdant et al. 2016).

Here, total GFAP quantity was increased in the striatum of
the 1.5 W/kg-exposed group, and cytosolic fraction of GFAP
was increased in the hippocampus and the olfactory bulb in
the 6 W/kg (15 min)-exposed group. Total GFAP levels did
not increase in the direct ratio of the total absorbed energy. We
may hypothesize that GFAP response was modified by

activation of thermoregulatory processes or occurred with a
different kinetic in the 6W/kg-exposed group compared to the
1.5 W/kg-exposed group. In the 1.5 W/kg-exposed group, the
decrease of the ratio cytosolic/total fraction of GFAP in the
striatum is explained by the increase of the total GFAP, while
cytosolic fraction remained unchanged. In the hippocampus
and the olfactory bulb, the increased ratio cytosolic/total frac-
tion of GFAP suggested either increased synthesis of soluble
monomeric GFAP or reduction of its conversion to insoluble
GFAP filament. There was no effect of exposure duration or
proximity to the RF EMF source. Effect may have occurred in
a SAR window in the more vulnerable cerebral structures.

The present study is the first to assess the effect of RF EMF
exposure on MBP. There was no impact of RF EMF on MBP
quantities in the six brain regions. In addition, there was no
correlation between MBP and total or cytosolic GFAP levels.
This data suggests that RF EMF-induced GFAP variation in
the striatum, the hippocampus, and the olfactory bulb may not
have been secondary to oligodendrocytes reactivity and/or
myelin injury.

Aβ was largely studied because of its central role in
Alzheimer disease neurobiochemical impairment (Silverberg
et al. 2010). However, its physiological role state is not clear.
In healthy young animals, Aβ peptide seems implicated in
activity-dependent regulation of synaptic vesicle release, and
in learning and memory (Abramov et al. 2009; Morley et al.
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2010). Here, our exploratory linear model suggests that the
level of Aβ 1–40 in the striatum explains long-term memory.
This exploratory data corroborates a possible role of Aβ 1–40
in memory processes.

The present study is the first quantification of endogenous
Aβ 1–40 following acute RF EMF exposure. Our data did not
indicate any RF EMF effect on cerebral Aβ 1–40 3 days fol-
lowing an acute exposure. In addition to the absence of RF
EMF biological effect on MBP and Aβ 1–40 in the present
experimental design, further time points and neurotoxicity
markers should be assessed to prove the absence of RF
EMF-induced injury. In another study, neuronal damage and
cell loss in the hippocampus (CA area) were shown after long-
term and repeated RF EMF exposures at 900 MHz (Bas et al.
2009).

Meanwhile, an exploratory linear model indicated that the
interaction between the levels of Aβ 1–40 in the striatum and
RF EMF (1.5 W/kg) explained long-term memory. This ex-
ploratory data should be tested in a separated experiment. One
can expect Aβ 1–40 changes to be more likely to occur fol-
lowing long-term exposures.

Up to date, there is no consensus regarding the possible
effect of RF EMF on memory. Both positive (Preece et al.
1999; Koivisto et al. 2000; Krause et al. 2000; Maier et al.
2004; Keetley et al. 2006; Nittby et al. 2008; Arendash et al.
2010) and negative (Sienkiewicz et al. 2000; Dubreuil et al.
2002; Haarala et al. 2003; Haarala et al. 2007; Ammari et al.
2008a, b) reports were published. RF EMF exposures in freely
moving rodents also gave contradictory behavioral effects.
Nittby et al. (2008) indicated deleterious effect on episodic
like memory with no effect on the open field. Lai (2004)
showed alteration of spatial learning and memory. Cassel
et al. (2004) and Cosquer et al. (2005) showed no alteration
of spatial working memory in free-moving rats. Here, we
brought new insights to this question by assessing the effect
of RF EMF on retrograde memory using post-training RF
EMF exposure in the fear conditioning paradigm. We studied
only one type of memory, which was not shown from the
literature to be basically affected by RF EMF comparing to
other types of memory (spatial, recognition). The asset of this
paradigm is to produce rapid, robust, and enduring (for
months) learning to assess hippocampal and amygdala func-
tions (Quinn et al. 2008). The 6W/kg (15 min)-exposed group
showed decreased long-term memory compared to short-term
contextual memory. In a previous study, 6 W/kg (15 min)-
exposed adult rats displayed lower and slower freezing re-
sponse to context compared to middle age rats (Bouji et al.
2012). RF EMF may be perceived as an external cue (a
distracter), which may disturb memory. Perception of RF
EMF as a cue was also suggested in previous studies showing
that EMF improved cognition and modified glutamatergic and
electrophysiological responses (Lai et al. 1990; Eulitz et al.
1998; Lee et al. 2003; Krause et al. 2004). In addition, the

correlation between striatal GFAP and long-term memory
may suggest that impaired long-term emotional memory was
secondary to astrogliosis in the striatum. Moreover, striatal
GFAP and its interaction with RF EMF exposure were shown
to explain long-term memory in a linear model. Conversely,
memory decline was not correlated with the increase of cyto-
solic fraction of GFAP in the hippocampus or in the olfactory
bulb.

Our experimental data indicates that striatal markers
(GFAP and Aβ 1–40) as well as the interactions RF EMF
(1.5 W/kg) × striatal GFAP and RF EMF (1.5 W/kg) × striatal
Aβ 1–40 explain long-term environmental emotional memo-
ry. This data support the involvement of striatum in neuroanat-
omy of emotional memory and the particular sensitivity of the
striatum to RF EMF exposure at high SARs. Previous studies
showed that contextual fear conditioning was impaired after
the selective ablation of striatal neurons and in striatum-
specific dopaminergic receptor D1R knockout mice
(Ikegami et al. 2014). Moreover, a previous study reported
strong RF EMF effects in the striatum on the expression of
N-mehyl d-aspartate receptors subunits at the synaptic plasma
membrane and on GFAP levels (Mausset-Bonnefont et al.
2004). This structure may be of particular sensitivity due to
RF EMF-induced cellular stress through the synthesis of heat
shock proteins or molecular pathways of excitotoxic events.

Our data suggests no effect of RF EMF exposure on anx-
iety and locomotor activity. It confirms Mausset-Bonnefont’s
study showing no impairment immediately and 24 h after a
single RF EMF exposure. Overall, there was no correlation
between GFAP levels in the six structures and locomotion or
anxiety-related behavior.

Conclusion

The transposition of our results to human is not straightfor-
ward as the SARs (1.5 and 6 W/kg averaged on the whole
brain) are higher than in the brain of mobile phone users
(0.9 W/kg averaged on 10 g of tissues) and as controlled
exposures with loop antennas in rodents differ from cell phone
use in human. Our experimental design aimed at explaining
biological effects of high SARs. Overall, our data corroborates
previous studies indicating RF EMF-induced astrogliosis.
This study suggests that RF EMF-induced astrogliosis had
functional consequences on memory but did not demonstrate
that it was secondary to neuronal damage.
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