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Abstract
Background Calibrating material models to experimental measurements is crucial for realistic computational analysis of com-
ponents. For complex material models, however, optimization-based identification procedures can become time-consuming, 
particularly if the optimization problem is ill-posed.
Objective The objective of this paper is to assess the feasibility of using machine learning to identify the parameters of a 
Chaboche-type material model that describes copper alloys. Specifically, we apply and analyze this identification approach 
using short-term uniaxial relaxation tests on a C19010 copper alloy.
Methods A genetic algorithm forms the basis for identifying the parameters of the Chaboche-type material model. The 
approach is accelerated by replacing the numerical simulation of the experimental setup by a neural network surrogate. The 
neural networks-based approach is compared against a classic approach using both, synthetic and experimental data.
Results The results show that on the one hand, a sufficiently accurate identification of the material model parameters can be 
achieved by a classic but time-consuming genetic algorithm. On the other hand, it is shown that machine learning enables a 
much more time-efficient identification procedure, however, suffering from the ill-posedness of the identification problem.
Conclusion Compared to classic parameter identification approaches, machine learning techniques can significantly acceler-
ate the identification procedure for parameters of Chaboche-type material models with acceptable loss of accuracy.

Keywords Chaboche-type model · Copper alloy · Genetic algorithm · Ill-posed problem · Machine learning · Parameter 
identification · Neural networks · Relaxation test

Introduction

Motivation

Copper alloys play a central role in electronic components, 
which are increasingly demanded due to the ongoing digital 
transformation in industry and the upcoming transformation 
towards a green economy. Often, copper-based electric 
components (e.g. plug connectors) suffer harsh loading 

conditions, like cyclic and long-term thermo-mechanical 
loading. To analyze, design, and assess components in 
such environments, it is essential to take into account the 
time- and temperature-dependent behavior of copper alloys 
in component simulations. For this purpose, a visco-plastic 
material model of Chaboche-type can be used, as it is 
described, for example, in [1–3].

Calibrating the parameters of Chaboche-type material 
models to represent real material behavior is both, experi-
mentally and computationally expensive. The present paper 
primarily focuses on the latter by analyzing the usage of 
machine learning methods. Specifically, neural networks are 
used to accelerate the identification procedure. In particular, 
the identification problem at hand is ill-posed in terms of 
the sensitivity of the parameters of the Perzyna term used 
in the Chaboche-type model. We will show that a perfect 
identification of the parameters of the Perzyna term is chal-
lenging and requires a highly accurate prediction model. For 
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evaluation, we use a large set of synthetic data as well as 
experimental data obtained from short-term uniaxial relaxa-
tion tests on a C19010 copper alloy.

Related Work

Identifying parameters that fit material model responses to 
experimental measurements is a common task in mechani-
cal engineering and has been investigated widely in litera-
ture. Such parameter identification problems are typically 
approached by formulating an optimization problem. These 
optimization problems are inverse problems, which are 
often ill-posed and therefore challenging to solve. Typically, 
optimization problems are addressed by using optimization 
algorithms that explore the space of material model param-
eters to find suitable parameter combinations that match 
experimental observations [4]. Gradient-based optimization 
algorithms, for example, aim to minimize an objective func-
tion by using its gradient with respect to the material model 
parameters. This objective function represents a measure of 
the difference between experimental observations and the 
result of a simulated experiment. For an extensive overview 
of optimization methods, we refer to [5].

In complex identification problems, such as ill-posed and 
high-dimensional problems, the number of required func-
tion evaluations performed by gradient-based optimization 
algorithms and the quality of the solution depends strongly 
on the chosen starting points. Alternatively, gradient-free 
genetic algorithms can be used for complex identification 
problems. These algorithms aim to find a global solution by 
combining parameter vectors (so-called individuals) using 
operations, such as mutation, recombination and crossover  
(c.f. [6]). Yet, the number of function evaluations required by 
genetic algorithms is typically larger. Both, gradient-based 
optimization approaches and genetic algorithms, are fully 
deterministic, which means that only a limited number of 
solutions can be identified. To overcome this issue, Bayesian  
inference can be used to identify probability distributions 
for parameters fitting the material model to experimental  
measurements [7].

Regarding Chaboche-type material models, several 
parameter identification strategies have been developed and 
applied so far. Recently published approaches use Bayesian 
inference for identifying parameter distributions for given 
experimental measurements [8–10]. In [8], parameter dis-
tributions are identified at high-temperature cyclic loading 
tests of copper alloys. In [9], parameter distributions of a 
Chaboche-type material model including a damage for-
mulation are identified at tensile and creep tests. In both 
works, [8, 9], it is pointed out that having knowledge about 
the prior parameter distribution is essential for identifying 
the posterior parameter distribution correctly. In addition, 
in [10], the authors compare several methods for updating 

probability distributions to estimate parameter values of a 
Chaboche-type material model with a damage formulation. 
The methods are evaluated using synthetic data obtained 
from one-element tests.

In contrast to Bayesian inference, the use of determinis-
tic optimization approaches for identifying Chaboche-type 
material model parameters has been investigated since dec-
ades. In the present paper, we focus on such methods and 
therefore, in the following, we present approaches that have 
been described in literature so far. For example, in [11], gra-
dient-based optimization algorithms and genetic algorithms 
are analyzed for fitting a visco-plastic material model to 
monotonic and cyclic loading tests. The results show that 
gradient-based optimization algorithms require fewer func-
tion evaluations than genetic algorithms. The starting points, 
however, need to be chosen appropriately. Particularly, 
the identification of the parameters of the recovery terms 
of Chaboche-type material models depend heavily on the 
defined starting points, as is shown in [12]. This indicates 
that the identification problem is ill-posed and emphasizes 
the need for a careful consideration of the optimization algo-
rithm and starting points.

For such reasons, several publications provide heuristics 
for determining starting points for gradient-based optimiza-
tion algorithms used to identifying parameters of Chaboche-
type material models, see [13, 14]. Moreover, the approach 
published in [13] describes a staggered parameter identifica-
tion scheme, in which subsets of the material model param-
eters are identified step-by-step on the basis of different 
experiments (cyclic, relaxation and creep tests). In contrast, 
in [14], all model parameters are identified in one step on 
the basis of cyclic tests. In terms of copper alloys, a step-by-
step gradient-based optimization procedure was developed 
in [1] using low cycle fatigue and stress relaxation tests. 
Even an interactive tool for automatic parameter identifica-
tion for visco-plastic material models has been developed 
and described in [15].

In contrast to the above described gradient-based 
approaches, genetic algorithms are often impractical since 
they typically need a larger number of function evalua-
tions. To overcome this issue, machine learning can be 
applied in order to replace the numerical simulation by a 
faster data-driven surrogate model. In terms of parameter 
identification, surrogate modeling has widely been used 
for surrogate-based optimization (c.f. [16]). For example, 
in [17], surrogate-based optimization is used to identify 
elastic and plastic material model parameters on the basis 
of load-displacement curves measured in nano-indentation 
tests. In contrast, in the present publication, we aim to train 
a global surrogate to completely replace the numerical sim-
ulation in order to accelerate the optimization approach. 
This enables us to efficiently solve the parameter identi-
fication problem for measurements of different materials, 
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and thus, for variable objective functions. An example for 
such an approach is given in [18] for a complex materials 
design problem.

As an alternative to optimization-based approaches, also, 
the use of direct inverse models needs to be mentioned. 
In this approach, machine learning techniques are used 
to directly learn the inverse relation between the material 
model response and material model parameters [4]. This 
idea has been introduced originally in [19] at the example of 
identifying parameters of a Chaboche-type material model. 
Further, in [20, 21], for example, neural networks are used to 
identify parameters of a finite deformation plasticity model 
on the basis of spherical indentation tests. In [22], a neural 
network is used to identify parameters of an elasto-plastic 
material model for a composite material under cyclic load-
ing. Also on the basis of cyclic loading tests, in [23], a neural 
network is used to identify parameters of a Chaboche-type 
material model for shape memory alloys. However, when 
inverse problems are ill-posed, neither state-of-the-art 
machine learning methods can be applied to learn inverse 
relations nor sampling can be done in a goal-directed man-
ner, see [24] as well as [25, 26]. For these reasons, direct 
inverse models are not addressed in the present publication.

Contribution

When identifying the parameters of Chaboche-type material 
models, the success of parameter identification approaches 
using gradient-based optimization algorithms depends 
heavily on the starting points. This can be overcome by 
using computationally expensive genetic algorithm-based 
approaches. These can be made efficient with the use of 
machine learning-based surrogate models. In this regard, 
the present work analyzes

• the general ability of identifying parameters of a 
Chaboche-type material model using a genetic algorithm, 
with an emphasize on the ill-posedness of the inverse 
identification problem.

• the advantages and disadvantages of accelerating the 
parameter identification procedure using neural networks 
by comparing the approach to a classic approach that 
does not rely on machine learning.

• the general capability for parameters of Chaboche-type 
material models to be identified correctly.

We would like to emphasize that for short-term uniaxial 
relaxation tests, accelerating the identification procedure is 
typically not necessary, as classic approaches already per-
form well. However, when dealing with long-term relaxa-
tion tests or experiments with a more complex geometry 
that have to be modeled using for example the Finite Ele-
ment Method, the acceleration of parameter identification 
approaches becomes inevitable. Therefore, the present 
paper aims to study the parameter identification problem 
for Chaboche-type material models and the application of 
a surrogate model at the example of short-term uniaxial 
relaxation tests. It should be noted that the challenges in 
parameter identification remain similar regardless of the 
specific type of experiment conducted.

Methods

Parameter Identification Strategies

The basis for identifying material model parameters are 
experimental measurements that show significant charac-
teristics of the material behavior and a numerical simula-
tion of the conducted experiment (c.f. Fig. 1). The output 
of the numerical simulation, denoted as C ∈ ℝ

k , needs to 
correspond to the discretized experimentally measured 
material response, denoted as Cexp ∈ ℝ

k , for a given set 
of material model parameters, denoted as p ∈ ℝ

l . Here, k 
refers to the number of discrete measurements and l refers 
to the number of material model parameters. C and p are 
related using the numerical simulation, represented as an 
operator g in the following:

Fig. 1  Comparison between 
experiment and numerical simu-
lation including the relevant 
input and output parameters
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To identify optimal material model parameters p∗ for 
given measurements Cexp , optimization methods minimize 
a distance measure between the experimental measurement 
and the calculated response. The distance measure can be 
defined for example by the root mean squared error:

In this case, the values of Cexp

i
 and Ci are weighted equally. 

In the following, we refer to this approach (incorporating the 
numerical simulation g directly) as classic optimization approach.

Alternatively, machine learning models can be used to 
replace the time-consuming numerical simulation in the 
classic optimization approach. For this accelerated optimi-
zation approach, a machine learning surrogate g̃ is trained 
aiming to replace g in equation (1):

where CML ∈ ℝ
k denotes the predicted simulation response, 

and � denotes the trainable parameters of the machine learn-
ing model. Consequently, in equation (2) Ci is replaced by 
CML
i

.
By replacing g with its machine learning surrogate g̃ , the 

classic optimization strategy is accelerated, as the learned 
model typically executes faster than the numerical simula-
tion. This advantage grows with the complexity and, accord-
ingly, the duration of the numerical simulation. However, it is 
important to note that the surrogate model is not as accurate as 

(1)C = g(p).

(2)p∗ = argmin
p

√√√√1

k

k∑

i=1

(C
exp

i
− Ci)

2.

(3)CML = g̃(p,�),

its simulation counterpart, and, therefore, its use comes with 
the cost of numerical accuracy. Illustrations of the accelerated 
optimization approach and the classic optimization approach 
are depicted in Fig. 2.

To solve the identification problem (equation (2)), in this 
study, we use the genetic algorithm Differential Evolution [27] 
as it is implemented in Python package SciPy [28]. Differential 
Evolution aims to find a global minimum by, in this imple-
mentation, consecutively performing the operations mutation, 
crossover and selection, see [29] for details.

Visco‑Plastic Material Model for Copper Alloys

In the following, we describe the used visco-plastic material 
model for copper alloys in its one-dimensional form based on 
the description in [2]. Particularly, the model is a modified 
plasticity model that accounts for the rate-dependent behavior 
using a Perzyna multiplier. It also includes a yield-function of 
von Mises-type as well as isotropic and kinematic hardening. 
Consequently, it can be classified as a Chaboche-type model.

In the elastic regime, the linear stress-strain relation is 
defined by the Young’s modulus:

The elastic strain �el is derived from � = �el + �p , with the 
plastic strain �p . The yield function, which describes the onset 
of plastic deformation, is given as

where �eq denotes the von-Mises equivalent stress and �y the 
actual yield stress. The yield stress is defined by an isotropic 
hardening model:

(4)� = E�el.

(5)f = �eq − �y ≤ 0,

Fig. 2  The classic optimization 
approach minimizes a distance 
measure between the experi-
mentally measured material 
response and the simulated one 
(top). In the accelerated optimi-
zation approach, the numerical 
simulation is replaced with a 
machine learning surrogate 
(bottom). In its basic form, this 
figure originates from [30]
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in which R0 is the initial yield stress and R describes the 
hardening behavior [31]. R is defined by

The individual terms Ri can be calculated by

in which �̇�p is the plastic strain rate and �i , �i , �i are material 
dependent parameters. While the parameters �i and �i are 
mostly responsible for the hardening behavior, the param-
eter �i is part of the recovery term and affects the long-term 
plastic behavior of the material [32].

In this study, the number of hardening terms is set to 
i = 2 in order to describe the hardening behavior of rolled 
copper sheets [3]. These typically show a nonlinear harden-
ing behavior at comparably low plastic strain and a slowly 
increasing linear hardening behavior for higher plastic 
strains. To describe this behavior, we set the parameters of 
the second hardening term to �2 = 1 MPa and �2 = 0.

The influence of the strain rate on the yield stress is 
applied with the approach according to Perzyna [33]:

where � is the temperature dependent viscosity and m the 
rate sensitivity exponent. The parameter r is a constant, 
which is set to 1 MPa in order to ensure that f/r remains 
dimensionless. The angular brackets in equation (9) repre-
sent the Macaulay brackets (i.e. ⟨x⟩ = �x�+x

2
).

On the whole, the material model contains eight mate-
rial dependent parameters, which are E, R0 , � , m, �1 , �1 , �1 , 
and �2 . The main effect of these parameters on the material 
behavior is illustrated in Fig. 3 at the example of a stress-
time curve typically originating from uniaxial relaxation 
tests. The temperature dependence of copper material can be 
controlled indirectly by varying the above mentioned param-
eters. Investigations in literature assume that the influence of 
temperature on the variation of the material model param-
eters follows approximately a linear relation, see [3, 34].

Simulating Uniaxial Relaxation Tests

Within this study, short-term uniaxial relaxation tests 
were conducted to measure characteristics of the material 
response of C19010 copper alloy. The relaxation tests under 
consideration consist of a loading step followed by a holding 
period at a fixed temperature. During loading, a strain rate 
of �̇� = 0.001 s −1 is applied for 20 seconds to apply a total 

(6)�y = R0 + R,

(7)R =
∑

i

Ri.

(8)Ṙi(�̇�p,Ri) = 𝛾i�̇�p − (𝛽i�̇�p + 𝛼i)Ri,

(9)�̇�p =
1

𝜂

⟨ f
r

⟩m

,

strain of 2% . After that, a holding step is applied for 7100 
seconds. Figure 4 depicts experimentally measured stress-
strain curves and the corresponding stress-time curves that 
follow from these conditions.

For the purpose of this work, a numerical simulation 
of the above described experiment was set up. To get the 
one-dimensional time-dependent stress response, we solve 
the initial value problem described by equations (4) to (9) 
numerically using the LSODA solver implemented in Python 
package scipy.integrate [28]. LSODA uses a combination of 
Adams-Moulton methods and backward differentiation for-
mulas with an automatic switching approach, as it is described 
in detail in [35, 36]. Using the numerical simulation, we  
calculate stress values at defined time points �i resulting in a 
discretized stress-time curve �(�i) for a given set of material 
model parameters p:

The time discretization �i for the LSODA solver is chosen 
to be fine when plastic deformation starts until the beginning 
of the holding period and coarser in the elastic regime and 
during holding. In total, time is discretized via 300 integra-
tion points, of which 150 are located in the loading and 150 
in the holding period.

In order to fit the simulation response to the obtained 
measurements, optimal material model parameters

need to be identified. Alternatively, the parameters E and 
R0 can be identified in beforehand on the basis of quasi-
static tension tests. However, the identification of the yield 
strength R0 can turn out to be challenging for this type 
of material, as there is typically no sharp transition point 
between elastic and plastic behavior.

The parameter ranges inside which we operate are 
described in Table 1. Note that instead of limiting the 
range for �1 , we limit the range of �1

�1
 as this relation defines 

(10)�(�i) = g(p).

(11)p∗ = (E∗,R∗
0
, �∗,m∗, �∗

1
, �∗

1
, �∗

1
, �∗

2
)

Fig. 3  Main effect of the parameters on the material model behavior 
at the example of a stress-time curve typically originating from uni-
axial relaxation tests. The figure originates from [30]



 Experimental Mechanics

the value at which the hardening terms saturate, see [25]. 
A test set of 10000 data points (including material model 
parameters p and corresponding simulated stress-time 
curves �(�i ) is generated using random parameter varia-
tions within the defined parameter range. For training the 
neural network model, an additional set of one million 
data points is generated based on random parameter vari-
ations. This large amount of training data was generated 
to ensure that the trained model is not affected by a lack 
of data.

To evaluate the deviation between the fitted curve and 
the experimentally measured curve, we define the mean 
relative error ΔC between the target curve �exp(�i) and the 
curve which is reconstructed using the identified parameters 
�(�i) = g(p∗) . We define the mean relative error as being the 
mean absolute error

normalized by the maximum stress value occurring at the 
end of the loading phase:

(12)ΔCabs =
1

t1 − t0 ∫
t1

t0

|�exp(t) − �(t)| dt

(13)ΔC =
ΔCabs

max(�exp(t))
.

Results

Identifying Parameters Using the Classic 
Optimization Approach

Due to limited computation resources, we used only 100 
test data points to validate the classic optimization-based 
parameter identification approach (corresponding to 100 
optimization runs conducted). For the Differential Evolu-
tion algorithm, a population size of 60 was chosen with a 
recombination factor of 0.7, and a mutation factor randomly 
drawn from a uniform distribution between 0.0 and 1.0 in 
every iteration. The objective function was defined based on 
the root mean squared error (c.f. equation (2)). In total, the 
Differential Evolution algorithm performed 1200 iterations 
per optimization run, for the purpose of this study. This num-
ber has shown to be adequate to identify the material model 
parameters correctly in most of the runs.

The results for identifying parameters using the above 
described settings are depicted in Fig. 5, presented as parity plots 
(true vs. identified material model parameters). The identified 
parameters (except for � and m) are almost exactly on the identity 
line, which means that the parameters are identified correctly. 
The parameters � and m, in contrast, do not always lie on the 
identity line indicating that the algorithm was not able to identify 
them correctly in all the cases. Nevertheless, the mean relative 
errors ΔC are close to zero, as can be seen in the histogram in 
Fig. 6. Even the worst ΔC values are remarkably small.

Surrogate Model Training

In order to replace the numerical simulation that was used 
in the previous section, we trained a surrogate model on the 
corresponding inputs and outputs. The purpose of the sur-
rogate model is to predict the discretized stress-time curve 
for a given set of material model parameters:

(14)�̂�(𝜏i) = g̃(p,�).

Fig. 4  Experimentally measured 
stress-strain curves (left) and 
corresponding stress-time 
curves (right) obtained from the 
conducted uniaxial relaxation 
tests of C19010 copper alloy at 
20, 100 and 150 ◦ C. The data 
originates from [30]

Table 1  Parameter ranges 
adopted from [37] and adjusted 
for the purpose of this study

parameter min max unit

E 100 140 GPa
R
0

80 320 MPa
� 1050 1075 s
m 25 65 -
�
1 10−6 10−3 s−1

�
1

500 3000 -
�
1
∕�

1
50 220 MPa

�
2

500 2500 MPa
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To adjust the trainable parameters � , the surrogate model 
is trained on the set of one million samples. Specifically, we 
use a feed forward neural network to learn the mapping (see 
[38] for a general introduction).

The neural network model was trained by minimizing 
the mean squared error loss function using ADAM opti-
mizer [39]. To avoid overfitting, L2 regularization [40] and 
early stopping [41] were applied. For the mapping to learn, 
a neural network with two hidden layers turned out to be 
adequate. The architecture of the trained neural network is 
illustrated in Fig. 7. The neural network used ReLU activa-
tion functions. The hyperparameters of the neural network 
(i.e., number of neurons in the hidden layers and the L2 
regularization parameter) were optimized using Bayesian 
hyperparameter optimization on the basis of Gaussian pro-
cesses [42]. We used the Python package scikit-optimize [43] 
for this purpose.

Beforehand, we studied the prediction quality of the 
neural network models in relation to the number of training 
samples. To do so, we optimized the hyperparameters and 
trained several models on random subsets of the original 
data base. We use the mean relative error ΔC in the test set 
as performance measure. In particular, we trained ten models 
on different random subsets for a predefined sample number 
and evaluated their performance. Figure 8 shows the average 
mean relative error of the models as well as the individual 
errors for each of the trained models. For the full training 
set, only one model was trained.

Fig. 5  Parity plots for parameters identified by the Differential Evolution algorithm incorporating the numerical simulation. The mean relative 
error ΔC is color coded

Fig. 6  Histogram showing the mean relative errors ΔC after identify-
ing parameters using the Differential Evolution algorithm incorporat-
ing the numerical simulation ΔC

Fig. 7  Architecture of the trained feed forward neural networks with 
two hidden layers containing n and m neurons, respectively. The 
inputs of the neural network are the material model parameters p , and 
the outputs are the discretized stress-time curve �̂�(𝜏

i
)
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As was to be expected, the prediction quality increases 
with the number of training samples. Also, the fluctuation 
of prediction quality withing the models trained with the 
same number of samples decreases. Some exceptions can 
be observed, which can be due to the random choice of 
samples in the training set. The mean relative error ΔC in 
the test set, however, converges only slowly with a growing 
number of samples. It is therefore hard to get the model as 
accurate as the numerical simulation. The neural network 
model used for the accelerated optimization was the one 
trained on the full dataset. The neural network consisted 
of two hidden layers with 241 and 87 neurons, respec-
tively. For L2 regularization a regularization parameter of 
� = 1.01e−5 was applied.

Identifying Parameters Using the Accelerated 
Optimization Approach

To facilitate comparison with the results from the clas-
sic optimization approach, we used the same setting for 
the Differential Evolution algorithm in the accelerated 
optimization approach. 1200 iterations were performed 
with a population size of 60, optimizing the root mean 
squared error (c.f. equation (2)).

The results obtained are depicted in Fig. 9 as parity plots. 
Similar to the results from the classic optimization approach, 
the figure shows that all parameters can be identified almost 
correctly except for � and m. Although, the parameters � and 
m cannot be identified correctly, the mean relative errors 
ΔC are relatively low. This can also be seen in the histo-
gram depicted in Fig. 10 showing the mean relative errors 
ΔC in the test set. The mean relative errors ΔC , however, 

Fig. 8  Performance of neural network models trained on different 
datasets: Range of reached mean absolute errors ΔC vs. number of 
samples in the training sets

Fig. 9  Parity plots for parameters identified by the Differential Evolution algorithm incorporating the surrogate model. The mean relative error 
ΔC is color coded

Fig. 10  Histogram showing the mean relative errors ΔC after iden-
tifying parameters using the Differential Evolution algorithm incor-
porating the surrogate model. The black lines mark ΔC of individual 
samples
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are one magnitude higher compared to the ones from the 
classic parameter identification approach. In contrast, on 
average, the execution speed was about 5.1 times higher (by 
using only one CPU) compared to the classic approach (by 
using 28 of the same CPUs). However, we have to remark 
here that this can only be understood as a rough estimate, 
as we did not optimize and benchmark the execution speed 
systematically.

Application to Experimental Data

As a further study, we apply the accelerated optimization 
approach to identify parameters on the basis of experimen-
tally measured short-time relaxation curves of C19010 cop-
per-alloy specimens. For this purpose, tests at three different 
temperatures ( T = 20◦ C, T = 100◦ C and T = 150◦ C) have 
been conducted with the conditions described in the “Simu-
lating Uniaxial Relaxation Tests” section. For comparison, 
we additionally applied the classic optimization approach. 
The parameters identified by the classic optimization 
approach are listed in Table 2, the ones identified by accel-
erated optimization are listed in Table 3. The corresponding 
mean absolute and relative errors, ΔCabs and ΔC , are also 
shown in both tables.

A closer look at Tables  2 and 3 reveals that both 
approaches yield similar parameters. The identified param-
eters � , m and �1 are identical for 100◦ C and 150◦ C. For 20◦ C, 
m and �1 are identical. The identified values for the Young’s 
modulus are identical across all temperatures except for 
small differences in the decimal places. All other identified 
parameters are similar to one other. For this reason, the mean 
absolute and relative errors, Cabs and ΔC , are similarly low 
from an engineering point of view. The slightly higher errors 
obtained when fitting the curve at T = 150◦ C is caused by 
measurement inaccuracies that occured at the beginning and 
at the end of the holding period. These inaccuracies can be 
seen clearly in Fig. 11, which shows the measured relaxa-
tion curves together with the curves reconstructed from 

the parameters identified by the accelerated optimization 
approach.

Finally, we want to remark that the values identified for 
model parameter � all lie at the upper bound of the defined 
parameter space. While it is possible that the true values lie 
above this bound, we did not observe significant changes in 
the material behavior with increasing � values (which is mainly 
compensated by increasing m values). Furthermore, since the 
identification approaches already yield sufficiently accurate 
results, the parameter space was not adjusted in this study.

Discussion

The results from the classic optimization approach show that 
the global optimizer Differential Evolution is able to identify 
parameters of the Chaboche-type material model for copper 
alloys. This can be seen in Fig. 5, as the true and identified 
parameters match for the majority of the test samples. Even 
if parameters are not identified correctly, the mean relative 
errors ΔC are remarkably small, what indicates the presence of 
a sensitivity problem. It is to be expected, however, that given 
a sufficiently large population size and enough run time, the 
parameters for all of the test samples can be identified cor-
rectly. In this study, even by using 28 CPUs per run, only 100 
of the 10000 test samples could be used for evaluating the 
classic optimization approach due to limited time resources.

In contrast, the accelerated optimization approach allowed 
us to evaluate all 10000 test data points in an adequate period 
of time using only one CPU per run. The accelerated optimiza-
tion approach was able to identify the material model param-
eters, resulting in small deviations between the true and recon-
structed curves ( ΔC < 1% ). These results are considered to be 
sufficiently accurate from an engineering point of view. More-
over, most of the parameters (E, R0 , �1 , �1 , 

�1

�1
 and �2 ) were 

identified correctly, see Fig. 9. In addition, Fig. 9 reveals that 
particularly the identification of the parameters � and m is 

Table 2  Parameters identified 
by the classical optimization 
approach and the corresponding 
errors ΔC

abs
 and ΔC

T [ ◦C] E [GPa] R
0
 [MPa] � [s] m [-] �

1
 [s−1] �

1
 [-] �1

�1
 [MPa] �

2
 [MPa] ΔC

abs
 [MPa] ΔC [%]

20 126.7 287.3 1e75.0 32.4 1e-4.6 1664.7 98.5 1393.5 0.4 0.1
100 133.2 192.6 1e75.0 30.5 1e-4.3 1725.3 103.9 1432.7 1.0 0.2
150 135.7 117.1 1e75.0 28.5 1e-4.0 1758.9 82.6 1559.3 4.2 0.8

Table 3  Parameters identified 
by the accelerated optimization 
approach and the corresponding 
errors ΔC

abs
 and ΔC

T [ ◦C] E [GPa] R
0
 [MPa] � [s] m [-] �

1
 [s−1] �

1
 [-] �1

�1
 [MPa] �

2
 [MPa] ΔC

abs
 [MPa] ΔC [%]

20 126.7 314.6 1e64.2 28.2 1e-4.6 1427.5 91.4 1304.9 0.4 0.1
100 133.2 184.5 1e75.0 30.5 1e-4.3 1895.6 109.0 1502.6 0.9 0.2
150 135.9 106.6 1e75.0 28.5 1e-4.0 1976.7 89.6 1565.4 4.1 0.7
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challenging and the optimization strategy gets stuck in local 
optima. This is, however, not only due to the ill-posedness of 
the identification problem, but also due to the inherent inac-
curacy of the neural network predictions compared to the 
numeric solution. These deviations, along with the sensitivity 
problem, pose a challenge for the accelerated optimization 
approach to uniquely identify the material model parameters � 
and m. In this study, this problem is intensified for parameter 
sets containing large m values and is, therefore, also depending 
on the defined parameter space.

Nevertheless, when applying the accelerated optimization 
approach to experimental data, the sensitivity problem has 
only a minor effect due to measurement inaccuracies. In 
addition, it is not possible to investigate this issue fundamen-
tally, because the true parameters are unknown and we have 
to rely solely on the error measure ΔC . Thus, we analyzed 
only the similarity between the parameters identified by the 
classic and the accelerated optimization approach. By doing 
so, it can be seen that both approaches are equally effective 
for identifying the material model parameters for the given 
experimental curves, as the identified parameters are similar 
to each other. Moreover, trends can be observed for the iden-
tified parameters such as an increasing Young’s modulus and 
a decreasing initial yield stress with increasing temperature. 
All of the parameters identified by the accelerated optimiza-
tion approach exhibit similar trends, except for �1

�1
 (however, 

the identified values for �1
�1

 are quite close to each other). As 
the latter is the case for both, the classic and the accelerated 
optimization approach, we assume that this is due to meas-
urement inaccuracies. Furthermore, we do not expect the 
Young’s modulus to vary significantly within the applied 
temperature range, which is why we trace this observation 
back to measurement inaccuracies, also.

In addition, as can be seen in Fig. 11, both approaches are 
robust against experimental noise, in contrast to direct inverse 
modeling approaches (c.f. [25]). Compared to the classic opti-
mization approach, the accelerated optimization approach is 
much faster and thereby allows for a broad scale search for opti-
mal material model parameters in an adequate period of time.

Summary and Outlook

The results of the present study demonstrate that a nearly perfect 
fit of parameters of Chaboche-type material models to short-term 
uniaxial relaxation tests can be achieved by using genetic algo-
rithms. Although only a one-dimensional model formulation was 
considered, genetic algorithms in combination with numerical 
solvers requires significant computation time. In contrast, param-
eter identification approaches can be applied efficiently when 
replacing the numerical simulation of the experiment with a fast 
machine learning surrogate. Using feed forward neural networks, 
for example, the identification procedure can be accelerated with 
acceptable loss of accuracy from an engineering point of view. 
However, it is shown that even if the response of the Chaboche-
type material model can be fitted accurately, the parameters of 
the used Perzyna approach cannot be identified uniquely using 
the neural network model presented in this study. To address this 
type of uncertainty, the application of Bayesian inference could 
be investigated in future work.

Indeed, it is important for material models used in industry 
to meet the long-term relaxation behavior, which is not captured 
in the short-time relaxation tests conducted within this study. 
However, long-term relaxation tests usually involve more elabo-
rate test setups, such as cantilever tests, which require complex  
modeling techniques, such as Finite Element simulation models, 
to identify material model parameters. Therefore, it is crucial  
to assess the applicability of parameter identification strategies 
for Chaboche-type material models in simpler use cases before-
hand, what was the aim of the present study.
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