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Abstract
Background There are several techniques to characterize the mechanical properties of soft materials, such as the indentation 
method and the method based on the application of a spherical object placed inside the sample. The indentation systems usu-
ally yield the elastic properties of materials and their mathematical models do not consider the inertia of the sample involved 
in motion and radiation damping, while placing an object inside the sample is not practical and this procedure can alter the 
mechanical properties of the sample for the method based on the application of a bubble/sphere placed inside the sample.
Objective A new approach for the identification of the viscoelastic properties of soft materials using the dynamic response 
of a spherical object placed at the sample interface was proposed.
Methods The spherical object placed at the sample interface was pressed using an electromagnet and the dynamic response 
of the spherical object was tracked using a high-speed camera, while the dynamic response of the spherical object placed 
at the sample interface was estimated using a comprehensive analytical model. The effects of the shear modulus, viscosity, 
Poisson’s ratio and density of the soft sample, the radius and density of the spherical object and the damping due to radia-
tion were considered in this mathematical model. The shear modulus and viscosity of the soft sample were determined by 
matching the experimentally identified and theoretically estimated responses of the spherical object.
Results The shear moduli and viscosities of the three phantoms with the gelatin mass ratios of 0.20, 0.25 and 0.29 were 
measured to be 3450, 4300 and 4950 Pa and 12.5, 14.0 and 15.0 Pa⋅s, respectively. The shear modulus and viscosity of the 
phantom increases as the gelatin mass ratio increases. The frequency of oscillations of the hemisphere placed at the phantom 
interface increases as the gelatin mass ratio increases due to stiffness increase.
Conclusions After matching the experimental and theoretical steady-state displacements and amplitudes of oscillations of 
the hemisphere at the sample interface, the comparison of the experimentally identified and theoretically predicted frequency 
of oscillations further confirmed the identified material properties of the samples. The approach presented here is expected 
to provide valuable information on material properties in biomedical and industrial applications.
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Introduction

Viscoelastic materials such as tissue, tissue-mimicking 
materials and gels exhibit both viscous and elastic character-
istics when exposed to a dynamic force, and the viscoelastic 

properties of soft materials are needed in many applications 
[1–5]. The indentation method [6–11], rheometry/viscom-
etry [12–14] and atomic force microscopy [15–17] are often 
used for the assessment of the mechanical properties of soft 
materials. In addition, the method based on the application 
of a bubble or sphere placed inside the soft material or a 
bubble placed at the interface of the soft sample has been 
used for the evaluation of soft materials in recent years 
[18–20]. Among these methods, the indentation method is 
quite common for the characterization of the mechanical 
properties of soft materials. However, the traditional inden-
tation systems can be quite complicated [21], they usually 
yield only the determination of the elastic properties of 
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materials [22–25], and the mathematical models used for 
the indentation tests do not consider the inertia of the soft 
material involved in motion and the damping due to radia-
tion [24, 26]. For the method based on the application of 
a spherical object placed inside the soft material [18–20], 
placing or creating an object inside the soft material is not 
practical and this procedure can alter the mechanical proper-
ties of the soft material.

There is a big number of studies for the identification of 
viscoelastic properties of soft materials using rheometry/
viscometry, indentation method, and atomic force micros-
copy (AFM). Dakhil et al. [12] determined the storage and 
loss moduli of cells using a rheometer and Peng et al. [13] 
identified the dilute solution viscosities of some cellulose 
nanocrystal dispersions by using a capillary viscometer. A 
spherical object at the sample interface is forced in indenta-
tion methods and AFM. For example, Nayar et al. [7] deter-
mined the storage and loss moduli of some samples of agar 
(being a representative material for biological tissues) and 
Boyer et al. [21] evaluated the stiffness and damping of skin 
via the dynamic indentation method. Chim et al. [2] meas-
ured the viscoelastic properties of living cells and Darling 
et al. [27] determined the elastic and viscoelastic properties 
of porcine chondrocytes using AFM.

Some advanced mathematical models for the dynamic 
response of a sphere placed at the interface of the sample 
have been proposed in recent years [28–31]. An advanced 
analytical model for the dynamic response of a sphere placed 
at the elastic material (without damping) interface was pro-
posed in 2021 [30] and this model was used to identify the 
elastic properties of some soft materials in 2022 [32, 33]. 
In addition, by exploiting an equivalent viscous damping 
ratio for the soft sample in the analytical model for an elas-
tic medium (without damping) in [30], the equivalent vis-
cous damping ratios of some soft materials were identified 
[32, 33]. However, this approach produces an equivalent 
viscous damping ratio for the system (i.e., for the system 
consisting of a sphere placed at the sample interface), and 
the exact damping of the soft sample could not be identified. 
Therefore, first, different mathematical models for the static 
response of a sphere placed at the sample interface were 
evaluated and an improved mathematical model for the static 
response of a sphere placed at the sample interface was pro-
posed [31]. Then, a comprehensive mathematical model for 
the dynamic response of a sphere placed at the viscoelastic 
material interface was developed [31]. In addition to the 
shear modulus of the sample and the radius of the spheri-
cal object, this mathematical model takes into account the 
density, Poisson’s ratio and viscosity of the sample, the mass 
of the spherical and the damping due to radiation, and the 
model can be used for both small and large deformations of 
the sample [31]. This model is believed to be the most com-
prehensive model for the dynamic response of a spherical 

object placed at the interface of the sample. However, this 
model proposed in 2022 has not been used in any applica-
tions yet. Therefore, a new approach for the characterization 
of the viscoelastic properties of soft materials based on this 
model was proposed in this current study.

Gelatin phantoms are widely used as tissue mimicking 
materials in practice [14, 34–37]. Therefore, several soft 
samples prepared using gelatin powder and boiling water 
were used in this study. The spherical object placed at the 
sample interface was pressed using an electromagnet and the 
dynamic response of the spherical object was tracked using a 
high-speed camera. The displacement of the spherical object 
as a function of time was determined by processing the cap-
tured video. The dynamic response of the spherical object 
placed at the sample interface was estimated using the afore-
mentioned comprehensive mathematical model, after revis-
ing the mathematical model for a trapezoidal pulsed force. 
Overall, the shear modulus and viscosity of the soft sample 
were determined by matching the experimentally identi-
fied and theoretically predicted responses of the spherical 
object. The results showed that the period of oscillations of 
the hemisphere placed at the phantom interface decreases (or 
its frequency of oscillations increases) and the shear modu-
lus and viscosity of the phantom increase with the increas-
ing gelatin mass ratio, as expected. Thanks to the simple 
experimental system and the comprehensive mathematical 
model that takes into account different system parameters 
including the shear modulus, density and viscosity of the 
soft sample, the mass and radius of the spherical object and 
the damping due to radiation, the approach used in this study 
can be exploited to determine the viscoelastic properties of 
soft materials in biomedical and industrial applications, such 
as optimization of process conditions and determination of 
end-product requirements of materials.

Procedure

Mathematical Model

In addition to the shear modulus of the sample and the 
radius of the sphere, the effects of the density and viscosity 
of the sample, the mass of the sphere and the damping due 
to radiation on the response of a spherical object placed at 
the sample interface can be significant when the loading 
is dynamic. Therefore, the mathematical model that takes 
into account the shear modulus, viscosity, Poisson’s ratio 
and density of the soft sample, the radius and density of 
the sphere and the radiation damping proposed by Koruk in 
2022 [31] was used to predict the dynamic response of the 
spherical object placed at the sample interface (Fig. 1) in this 
study. This model is based on the Kelvin-Voigt model and it 
was shown to be valid for both small (u << R) and large (u 
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> R/5) deformations of the sample [31]. It should be noted 
that the Kelvin-Voigt model is widely used in the literature 
to simulate soft materials, such as gelatin phantoms [1, 18, 
20, 38–40]. The model was formulated for a rectangular 
pulse with an amplitude of f

0
 and a duration of � shown in 

Fig. 2(a) in [31]. Hence, the time-domain response of the 
spherical object placed at a viscoelastic material interface 
exposed to a rectangular pulse can be estimated using [31]:

where u(t) shows the displacement of the sphere at any time 
t , and F(�) is the Fourier transform of the rectangular pulse 
given by:

Here, G , � , � and v are the shear modulus, density, viscosity 
and Poisson’s ratio of the sample, R and �s are the radius and 
density of the spherical object, respectively, � = 0.5 , j =
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 is the static displacement of the spherical 

object. Here, E∗ represents the reduced Young’s modulus pre-
dicted as 1∕E∗ =

(
1 − �2

sphere

)
∕Esphere +

(
1 − �2

)
∕E where 

Esphere and vsphere are the Young’s modulus and Poison’s ratio 
of the sphere material, respectively. It is worth remembering 
that  the reduced Young’s modulus becomes 
Ẽ∗ = 2(G − j��)(1 + �)∕

(
1 − �2

)
 for a homogeneous iso-

tropic sample and a rigid spherical object. Interested readers 
may refer to [31] for the derivation and other details of the 
mathematical model. Due to the magnetic force created using 
an electromagnet and a small magnet fixed to the spherical 
object placed at the sample interface, it is difficult to stabilize 
the spherical object and prevent its unwanted rotations. There-
fore, a hemisphere was used in this study. It should be noted 
that, as long as the correct density and radius of the spherical 
object are used in the mathematical model, a hemisphere can 
be used in the mathematical model proposed in [31].

Fig. 1  The schematic picture 
for a sphere placed at the 
sample interface

Fig. 2  Rectangular (a) and 
trapezoidal (b) pulsed force



24 Experimental Mechanics (2024) 64:21–32

It is worth noting that the nonlinear relationship between 
the force and displacement was linearized around the 
steady-state displacement using the Taylor’s expansion in 
this mathematical model. This approach was evaluated and 
validated (e.g., using finite element models) in the literature 
[30, 31, 41]. This model produces an approximate solution 
for a dynamic Hertz model. The mathematical model was 
explained in Appendix A. Readers may refer to references 
[30, 31, 41] for further details about the mathematical mod-
elling of a spherical object located at the interface of elastic 
and viscoelastic media.

In practice, obtaining an ideal rectangular pulse shown in 
Fig. 2(a) is not possible. The temporal evolution of the mag-
netic force is described by a trapezoidal pulse with a finite 
ramp or rise time ( �a ) as shown in Fig. 2(b) [18]. It is known 
that, although the steady-state displacement remains the 
same, the amplitudes of oscillations (especially the ampli-
tude of the first peak) decrease as the rise time increases 
[42–44]. The Fourier transform of a trapezoidal pulsed force 
shown in Fig. 2(b) is given by [18]:

Therefore, we updated the mathematical model for a trap-
ezoidal pulsed force here, by substituting the expression of 
F(�) given in equation (3) in equation (1).

Experimental Setup

A hemisphere (with a radius R ) placed at the interface of 
the sample (with a uniform shear modulus G , density � , 

(3)F(�) = −
f
0

�a�
2

(
ej�� − 1

)(
ej��a − 1

)

viscosity � and Poisson’s ratio v ) was pressed using a mag-
netic force ( f  ) and the displacement of the hemisphere u(t) 
was tracked using a high-speed camera. The schematic pic-
ture for the experimental setup and the picture of the hemi-
sphere placed at the phantom surface are shown in Fig. 3. 
A small cylindrical magnet (radius: 12.3 mm and thickness: 
5 mm) was fixed (glued) to the top surface of the hemi-
sphere to be able to apply a force by an electromagnet (KK-
P50/30 DC12V, Yueqing Kaka Electric Co. Ltd., China) 
to the hemisphere placed at the sample interface. A power 
supply (GPS-3303, GW Instek, Taiwan) was used to run 
the electromagnet in the experiments. The electromagnet 
was fixed to the frame using the electromagnet holder. The 
hemisphere holder was used to prevent the unwanted rota-
tion of the hemisphere. The hemisphere holder was a thin-
walled cylinder with an inner radius of around 24.8 mm, 
and the diameter of the magnet was 24.6 mm. The magnet 
fixed to the hemisphere could easily slide through the thin-
walled cylinder. The videos were captured at 240 fps and 
the resolution was around 0.06 mm/pixel. The displacement 
of the hemisphere from the videos as a function of time ( t  ) 
was tracked using the Matlab software (MathWorks, Natick, 
MA, USA). The sensitivity of the load cell used to measure 
the force amplitude was 0.1 mN. 

The hemisphere, hemisphere holder and electromag-
net holder were designed using the SolidWorks software 
(Dassault Systemes SolidWorks Corporation, Chicago, IL, 
USA) and these components were manufactured using a 3D 
printer (Ultimaker 2 Extended+, Utrecht, Netherlands) and 
PLA filaments. The layer resolution for the 3D printing was 
0.06 mm. After the hemisphere was manufactured, it was 
grinded for further smoothening. The radius and mass of 

Fig. 3  The schematic picture 
for the experimental setup and 
the picture of the hemisphere 
placed at the phantom surface 
(the radius of the hemisphere 
was 12.15 mm, and the height, 
width and length of the phan-
tom were 30, 100 and 170 mm)
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the hemisphere was 12.15 mm and 4.11 g, respectively. The 
mass of the magnet was 10.92 g. The equivalent density 
of the spherical object was calculated to be 2000.5 kg/m3. 
Hence, the inertial effects of the hemisphere and magnet 
were taken into account. It should be noted that the inertial 
effects of the spherical object and the mass of the medium 
involved in motion were investigated in detail in [31]. As 
the gelatin phantoms are widely used as tissue mimicking 
materials in practice, we prepared soft samples using gelatin 
powder and boiling water. It should be noted that phantoms 
with different mechanical and physical components can be 
prepared by controlling the amount of components in the 
phantom and duration for cooling and leaving to set at work-
ing temperature [45]. In this current study, after the solution 
of the gelatin and water was prepared, it was stored in the 
refrigerator (4 °C) for 240 minutes and then it was left to 
set at room temperature (25 °C) for 30 minutes before the 
experiments. Here, three different gelatin phantoms with 
different viscoelastic properties were prepared by using 
different amount of gelatin powder. The properties of the 
three phantoms are listed in Table 1. The dimensions of the 
phantoms were around 30 mm × 100 mm × 170 mm. The 
densities of the soft samples were computed by using their 
measured masses and dimensions. The phantom with a gela-
tin mass ratio of 0.25 was tested for three different force 
levels (i.e., for 240.2, 270.2, and 291.5 mN) to explore the 
effect of loading.

The experiments were performed as follows. The test 
sample was placed on the load cell and the hemisphere (fixed 
to the magnet) was inserted inside the hemisphere holder. 
The electromagnet and the high-speed camera were activated 
at the same time. Once the electromagnet was activated, it 
applied a force to the hemisphere, and the hemisphere started 
to deform the gelatin phantom. The electromagnet applied 
a force to the hemisphere for a duration of � . The duration 
was � = 0.4 s in this study. The rise time for the electronic 
circuit in this study was around �a = 50 ms. The sample nor-
malized force (i.e., the force divided by the maximum force) 
measurements for the electromagnet in this study presented 
in Fig. 4 showed that the rise time was �a = 47.3 ± 0.5 ms. 
It should be noted that three experiments were repeated for 
each test case to calculate the average as well as the standard 

deviations (e.g., Figs. 6, 7, 8). The frames from a sample 
captured video at the beginning (the left panel), the maxi-
mum deformation (the middle panel) and the steady-state 
position (the right panel) for the hemisphere placed at the 
interface of a gelatin phantom are shown in Fig. 5. Here, a 
piece of paper with a black marker was glued on the magnet 
to be used as the template for accurate tracking the motion 
of the hemisphere via image processing. 

Extraction of Viscoelastic Properties

The theoretical response of the spherical object placed 
at the sample interface was determined by solving equa-
tion (1); noting that the expression for a trapezoidal pulse 
given in equation (3) was used in the calculations. For this 
purpose, the excitation duration τ was discretized with N 
(e.g., 500) points and the calculations were repeated at all 
points using the Matlab software (Mathworks, Natick, MA). 
The captured video was processed to find the experimental 
dynamic response of the spherical object. For this purpose, 
a template (see the left panel in Fig. 5) was determined and 
the MATLAB normxcorr2 function was used to track the 
motion of the spherical object. The Poisson’s ratio of the 
soft samples was assumed to be 0.45 in this study, as it is 
done in practice [6, 46, 47]. It should be noted that there 
is no effect of the viscosity of the sample on the steady-
state displacement of the hemisphere located at the phantom 
interface. (a) Therefore, the shear modulus of the sample 
was determined as following. i) Using an initial value for 
the shear modulus of the material (e.g., G = 2 Pa) in the 
analytical model, the response of the hemisphere was pre-
dicted and the difference between the experimental and 
predicted steady-state displacements was calculated. ii) 
Using a higher value for the shear modulus of the material 
(e.g., G = 4 Pa) in the analytical model, the response of the 
hemisphere was calculated and the difference between the 
experimental and predicted steady-state displacements was 

Table 1  The properties of the three phantoms (the height, width and 
length of the phantom were 30, 100 and 170 mm)

Phantom Gelatin Mass Ratio Phantom 
Density (kg/
m3)

Sample 1 0.20 1043.8
Sample 2 0.25 1084.2
Sample 3 0.29 1099.7 Fig. 4  The sample normalized force (i.e., the force divided by the 

maximum force) measurements for the electromagnet
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determined. iii) The calculations in the previous step were 
repeated for different (higher) values of the shear modu-
lus of the sample (e.g., G = 8, 16, 32, …, 9600 Pa). The 
error reached a minimum value at a specific value of the 
shear modulus (e.g., G = 4096 Pa) and then it increased. 
iv) Based on the minimum value of the error, a narrower 
range for the shear modulus (e.g., G = 2000 – 9000 Pa) 
was determined. v) The calculations in the previous step 
were repeated by changing the value of the shear modu-
lus (e.g., G = 2050, 2100, …, 9000 Pa) in the analytical 
model to refine the estimate of the shear modulus. vi) The 
value of the shear modulus producing the minimum error 
was determined to be the shear modulus of the sample. The 
identified value of the shear modulus of the sample matched 
the experimental and theoretical steady-state displacements. 
(b) Next, by comparing the experimental and theoretical 
amplitudes of oscillations, the viscosity of the sample was 
determined. Overall, the viscosity of the sample was deter-
mined by minimizing the error between the experimentally 
identified amplitudes of oscillations and the amplitudes of 
oscillations predicted by varying the value of the viscosity 
of the material in the analytical model, using least-squares 
fitting. (c) The comparison of the experimentally identi-
fied and theoretically predicted frequency of oscillations 
would further confirm the identified material properties of 
the sample.

Results and Discussion

The average of the experimentally identified responses of 
the hemisphere placed at the phantom interfaces with gelatin 
mass ratios of 0.20 and 0.25 for three repeated experiments 
for each sample and their deviations are shown in Fig. 6. 
The magnitude of the force input was 270.2 ∓ 1.3 mN for the 
experiments in Fig. 6. It is seen that the experiments were 
repeatable for both samples (the average standard deviations 
were 0.022 and 0.008 mm for the phantoms with the 0.20 
and 0.25 gelatin ratios, respectively). The results show that 
the steady-state displacement of the hemisphere decreases 
when the gelatin mass ratio increases from 0.20 to 0.25. 
As the shear modulus of the phantom increases with the 
increasing gelatin ratio, the hemisphere placed at the inter-
face of the phantom with the gelatin ratio of 0.25 is expected 
to have smaller displacements. It is seen that the period of 
oscillations of the hemisphere placed at the sample inter-
face decreases from 66.7 ms to 62.5 ms when the gelatin 
mass ratio increases from 0.20 to 0.25. Again, the period of 
oscillations of the hemisphere placed at the interface of the 
phantom with the gelatin mass ratio of 0.25 is expected to 
be lower due to the stiffness increase.

In conclusion, by matching the experimental and pre-
dicted steady-state displacements and the amplitudes of 
oscillations of the hemisphere placed at the interface of the 

Fig 5  The frames from a sample 
captured video at the beginning 
(the left panel), the maximum 
deformation (the middle panel) 
and the steady-state position 
(the right panel) for the hemi-
sphere placed at the interface of 
a gelatin phantom

Fig. 6  The average of the exper-
imentally identified responses 
of the hemisphere placed at the 
phantom interfaces with the 
gelatin mass ratios of 0.20 and 
0.25 for three repeated experi-
ments for each sample and their 
deviations (the magnitude of the 
force input is 270.2 ∓ 1.3 mN)
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gelatin phantom as explained before, the shear modulus and 
viscosity of the phantoms with the gelatin mass ratios of 0.20 
and 0.25 were determined. The shear modulus and viscosity 
of the phantom with the gelatin ratio of 0.20 were found to be 
to be G = 3450 Pa and � = 12.5 Pa⋅s, respectively. Similarly, 
the shear modulus and viscosity of the phantom with the 
gelatin ratio of 0.25 were identified to be to be G = 4250 Pa 
and � = 14.0 Pa⋅s, respectively. The experimental and esti-
mated responses of the hemisphere placed at the interface of  
the phantoms with the gelatin mass ratios of 0.20 and 0.25 
using the identified material properties are overlaid in Fig. 7. 
It is seen that the experimental and the theoretical results are 
quite similar. The results showed that the experimentally 
identified and theoretically predicted frequency of oscilla-
tions are almost the same.

The experimentally identified responses of the hemisphere  
placed at the interface of the phantom with the 0.25 gelatin 
ratio for two other force levels (i.e., 240.2 ∓ 0.4 and 291.5 ∓ 
2.7 mN) are shown in Fig. 8. The experiments were highly 
repeatable, with average standard deviations of 0.015 and 
0.029 mm for 240.2 ∓ 0.4 and 291.5 ∓ 2.7 mN, respectively 
(Fig. 8). By matching the experimental and theoretical steady-
state displacements and the amplitudes of oscillations of the 
hemisphere placed at the interface of the gelatin phantom, the 
shear modulus and viscosity of the phantom were found to  
be to be G = 4400 Pa and � = 14.0 Pa⋅s when the force was 
240.2 mN, and G = 4150 Pa and � = 14.0 Pa⋅s when the force 
was 291.5 mN. The estimated responses of the hemisphere 
placed at the interface of the phantom for these two force 

levels using the identified material properties are included 
in Fig. 8. The results show that the amplitude of oscilla-
tions and the steady-state displacement of the hemisphere 
located at the phantom interface decrease with decreasing 
force amplitude, as expected. The shear modulus of the 
phantom for the force 240.2 - 291.5 mN was determined 
to be 4150-4400 Pa (the average being around 4300 Pa),  
while the viscosity was around 14.0 Pa∙s. There was no sig-
nificant change in the material properties for the soft gel for  
the force range covered here.

Overall, the identified material properties of the three 
phantoms with the gelatin mass ratios of 0.20, 0.25 and 0.29 
are listed Table 2. The relaxation time ( �∕E ) for each sam-
ple is included in Table 2. The material properties listed 
in Table 2 were identified using the averaged experimen-
tal responses of the sphere located at the phantom inter-
face. However, as presented before, the deviations in the 
measured displacements of the hemisphere located at the 
phantom interface were quite small for the phantoms listed 
in Table 2 (i.e., the deviations in the measured displace-
ments were less than 0.03 mm for all the phantoms). The 
frame rate of the camera was 240 fps, hence the deviation 
in the identified period of oscillation was around 2.2 ms. It 
is clear that the shear modulus and viscosity of the phantom 
increase as the gelatin mass ratio increases. As expected, the 
phantom becomes softer and less viscous as the gelatin mass 
ratio decreases. Similarly, the period of oscillations of the  
hemisphere placed at the phantom interface decreases (or its  
frequency of oscillations increases) as the gelatin mass  

Fig. 7  The average of the 
experimentally identified and 
estimated response of the hemi-
sphere placed at the interface of 
the phantoms with the gelatin 
mass ratios of 0.20 (left) and 
0.25 (right) using the identified 
material properties

Fig. 8  Experimental and theo-
retical responses of the hemi-
sphere placed at the interface 
of the phantom with the gelatin 
mass ratio of 0.25 exposed to 
240.2 ∓ 0.4 mN (left) and 291.5 
∓ 2.7 mN (right)
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ratio increases due to stiffness increase when the external force  
is the same. For example, the period of oscillations of the 
hemisphere located at the phantom interface was 66.7, 62.5 
and 58.3 ms for the phantoms with the 0.20, 0.25 and 0.29  
gelatin ratios, respectively, when the force was around 270 mN.  
The period of oscillations decreases from 66.7 to 62.5 ms 
for the phantom with the 0.25 gelatin ratio when the force 
was increased from 240.2 to 291.5 mN. This is expected, 
because the stiffness of the system consisting of a spheri-
cal object located at the sample interface (hence, its natural 
frequency) increases with the increasing external load. There 
was no change in the period of oscillations when the force 
increased from 270.2 to 291.5 mN for the phantom with the 
0.25 gelatin ratio. However, the uncertainty in the measured 
period of oscillation was 2.1 ms. The frame rate of the cam-
era was not sufficient to capture this minute change in the 
period of oscillations.

After the response of the hemisphere placed at the inter-
face of the phantom with the 0.29 gelatin ratio was meas-
ured, we cut a test sample with a cross-section of 25 mm x 
25 mm (or A = 6.25x10-4  m2) and a height of 30 mm (or L 
= 0.03 m) using the same sample. We then applied a force 
of around F = 1.57 N to this sample and we measured the 
amount of sample compression. It should be noted that it 
was not possible to detect the deformation of the sample as 
a function of time, and we could determine only the initial 
and final lengths of the sample under the applied load in 
this experiment. Overall, we determined that the sample 
was compressed by around 5.5 mm (or δ = 0.0055 m) when 
a force of 1.57 N was applied to the sample. It is well 
known that the Young’s modulus can be calculated using 
E =

FL

A�
 [48]. Based on these values, the Young’s modulus 

of the sample was determined to be E = 13700 Pa. The 
shear modulus was calculated to be G =

E

2(1+v)
= 4700 Pa. 

It should be noted that the shear modulus was calculated to 
be 4950 Pa using the response of the hemisphere located at 
the same gelatin phantom (Table 2). It is seen that the dif-
ference is less than 5%.

The value of the shear modulus that matched the experi-
mental and theoretical steady-state displacements of the 
hemisphere located at the sample interface was seen to 

simultaneously match the experimental and theoretical 
frequencies of oscillations. This further confirmed the 
validity of our method.

Using the expression for the shear wave speed, 
vs =

√
G∕� [49], the time of reflection of the wave along 

the height (30 mm), width (100 mm) and length (170 mm)  
of the phantom was calculated to be around 28-33 ms, 
94-111 ms and 160-188 ms, respectively. As seen in 
Table 2, the period of oscillations for the phantoms was 
around 58-67 ms in this study. The radiation damping due 
to shear waves for similar material properties and phantom 
dimensions was theoretically shown to be non-negligible 
using a non-viscous material [30] and a viscous material 
[31]. By including and ignoring the radiation damping 
in the analytical model, the responses of the hemisphere 
located at the interface of the phantom with the 0.25 gelatin 
ratio (force amplitude = 291.5 mN) were calculated. Oscil-
lation amplitudes of the first three peaks were 3.12, 2.86, 
and 2.74 mm, when the radiation damping was ignored. 
The amplitudes of oscillations of the first three peaks were 
3.02, 2.71, and 2.64 mm, when the radiation damping was 
included. The amplitudes of the first three peaks decreased 
by 3.2, 5.2 and 3.7%, respectively, when the radiation damp-
ing was included. Although the contribution of the radiation 
damping was not dominant, it was not negligible.

Before and after the experiment, we measured the con-
stant force applied by some masses (e.g., 5 g), and the 
forces measured by the load cell were the same as the 
weights of these masses. In this work, we did not calibrate 
the load scale for dynamics forces. In future work, we aim 
to calibrate the setup with loads of known properties, to 
evaluate the effect of compliance and damping.

Based on a number of finite element analyses, the error 
for a ratio of the maximum displacement of the spherical 
object to the radius of the spherical object of 0.6 was shown 
to be less than 0.7% [30, 31]. It should be noted that the ratio 
of the maximum displacement of the spherical object to its 
radius is less than 0.3 in our study.

Although the experimental and theoretical results are 
quite similar, there are some discrepancies between them. 
The reasons for these discrepancies are evaluated here. In 

Table 2  Material properties  
of the three phantoms with  
the gelatin mass ratios of  
0.20, 0.25 and 0.29 (the 
deviations in the measured  
force levels, displacements  
and periods of oscillations  
were less than 4 mN, 0.03  
mm, and 2.2 ms, respectively)

Gelatin Mass Ratio Force (mN) Period of 
Oscillations (ms)

Shear 
Modulus (Pa)

Viscosity (Pa⋅s) Relaxation 
Time (ms)

0.20
(ρ = 1043.8 kg/m3)

270.2 66.7 3450 12.5 1.25

0.25
(ρ = 1084.2 kg/m3)

240.2 66.7 4400 14.0 1.10
270.2 62.5 4250 14.0 1.14
291.5 62.5 4150 14.0 1.16

0.29
(ρ = 1099.7 kg/m3)

265.7 58.3 4950 15.0 1.04
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the experiments, the electromagnetic force acts on the hemi-
sphere after the sample is deformed by the weight of the 
hemisphere, while in the mathematical model it is assumed 
that the entire force is applied to the hemisphere simulta-
neously. This problem can be eliminated by revising the 
experimental setup or the mathematical model in the future. 
There may be some friction between the magnet and the 
hemisphere holder. Similarly, there may be an effect of fric-
tion between the hemisphere and phantom and the friction 
between the moving body and air. It should be noted that 
the mathematical model does not take into account these 
effects. In general, compared to other parameters such as 
elastic properties, the accurate modelling and experimentally 
identification of damping for all kind of materials is always 
challenging, because there are many factors that affect the 
damping of a system [5, 50–52].

The procedure proposed here for the characterization of 
the viscoelastic properties of soft materials is very versa-
tile. As the frequency of oscillations of the spherical object 
placed at the sample interface depends on the mass and 
radius of the spherical object, experiments using spherical 
objects with different masses and/or radii can be performed 
to find the viscoelastic properties at different frequencies. 
The dependency of the viscoelastic properties of the soft 
material to the force level can be determined by just match-
ing the experimentally identified and the theoretically pre-
dicted responses of the spherical object placed at the sample 
interface exposed to different forces. The spherical object 
and the test sample can be of any size, as long as an external 
force is applied to the sample and the response of the spheri-
cal object to the external force is measured. This means even 
the in-situ viscoelastic properties of structures can be meas-
ured using the method proposed in this manuscript. Further-
more, the spherical object can be pushed using any method 
such as ultrasonic and magnetic excitation and the response 
of the spherical object can be measured using various meth-
ods such as optical and ultrasonic imaging. In contrast to the 
atomic for microscopy [12] and indentation systems [17, 22], 
our method considers the inertia of the medium involved in 
motion and the radiation damping as well as the inertia of 
the spherical object located at the sample interface. Further-
more, the mathematical model used in our technique can 
simulate the change of the stiffness (hence, the change of 
the natural frequency) of the system consisting of a spherical 
object located at the sample interface with the altering exter-
nal load, including the weight of the indenter and auxiliary 
parts. Compared to other methods in the literature [12, 21, 
27], all these advantages of our method can provide a more 
accurate determination of material properties. On the other 
hand, our method needs to be revised to include various 
sources of friction. Overall, thanks to the simple experimen-
tal system and the comprehensive mathematical model that 
takes into account different system parameters including the 

shear modulus, density and viscosity of the soft sample, the 
mass and radius of the spherical object and the damping 
due to radiation, it is believed that the procedure used in 
this study would be used by many researchers for the identi-
fication of the viscoelastic properties of soft materials. The 
application of this method for the characterization of the vis-
coelastic properties of different tissues and tissue-mimicking 
materials and spheres with different masses and radii is con-
sidered as our future studies. In future work, we plan to use 
a high speed-camera with higher frame rate, achieve a finer 
image resolution and further reduce the effect of friction 
or alternatively take into account the effect of friction in the 
mathematical model. In addition to the Kelvin-Voigt model 
used in this study, we plan to evaluate different models (e.g., 
Maxwell model and standard linear solid model), and use 
different solution strategies in future work.

Conclusions

In this paper, a new approach for the identification of the 
viscoelastic properties of soft materials using the dynamic 
response of a spherical object placed at the sample inter-
face was proposed. The spherical object placed at the sam-
ple interface was pressed using an electromagnet and the 
dynamic response of the spherical object was captured using 
a high-speed camera. The captured video was processed to 
identify the dynamic response of the spherical object. The 
dynamic response of the spherical object placed at the sam-
ple interface was estimated using a comprehensive analytical 
model. This model takes into account the shear modulus, 
viscosity, density and Poisson’s ratio of the soft sample, the 
radius and density of the spherical object and the damping 
due to radiation. The shear modulus and viscosity of the soft 
sample were determined by matching the measured and pre-
dicted responses of the spherical object. The shear moduli of 
the phantoms with the gelatin mass ratios of 0.20, 0.25 and 
0.29 were determined to be G = 3450, 4300 and 4950 Pa, 
respectively. The viscosities of the phantoms with the gelatin 
mass ratios of 0.20, 0.25 and 0.29 were identified to be � = 
12.5, 14.0 and 15.0 Pa⋅s, respectively. The comparison of 
the experimentally identified and theoretically predicted fre-
quency of oscillations further confirmed the identified mate-
rial properties of the samples. The period of oscillations of 
the hemisphere placed at the phantom interface decreases (or 
its frequency of oscillations increases) and the shear modu-
lus and viscosity of the phantom increase with the increasing 
gelatin mass ratio, as expected. Thanks to the uncomplicated 
experimental system and the comprehensive mathematical 
model that considers different system parameters including 
the shear modulus, density and viscosity of the medium, 
the mass and radius of the spherical object and the damping 
due to radiation, it is believed that the procedure used in 
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this study would be used by many researchers for the iden-
tification of the viscoelastic properties of soft materials in 
practical applications.

Appendix A: Summary of The  
Mathematical Model

The equation of motion of a spherical object located at an 
elastic interface was written as following in [30]:

where fe is the external force applied to the spherical object, 
fi is the inertia force, fs is the force related to the system 
stiffness, and fr shows the component related to the damping 
of the oscillations of the spherical object due to the radiation 
of shear waves. A linear relationship between force ( fs ) and 
displacement ( u ) was obtained by defining an equivalent 
stiffness coefficient or using the Taylor’s expansion around 
the steady-state displacement as following [30]:

where the numerical value of the steady-state displacement 
can be calculated using u

0
=
�

3f0

4E∗
√
R

�2∕3

 . Here, the reduced 

Young’s modulus for a homogeneous isotropic material is 
given by E∗ = 2G(1 + �)∕

(
1 − �2

)
 , where G and � are the 

shear modulus and Poisson’s ratio of the medium material, 
respectively. By considering the external force as a rectan-
gular pulse with the amplitude of f

0
 and a duration of �  

(i.e., the constant force f
0
 is applied for a short time � and 

then is removed), the equation of motion of the spherical 
object located at an elastic medium interface became as  
following [30]:

where � and �s are the densities of the medium material and 
spherical object, respectively, � = 0.1 , and � = 0.5 . The ana-
lytical solution of equation (A3) was determined and given 
in equation (13) in [30]. This model was corrected for the 
Poisson’s ratio of the medium of � = 0.45 . Later, this math-
ematical model was updated in [31] to work for all practical 
Poisson’s ratios (i.e., � = 0.25 − 0.49 ) of an elastic medium 
(no viscosity), given as following:
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The analytical solution for the dynamic response of the 
spherical object located at an elastic medium (no viscosity) 
interface (equation (A3) or (A4)) is straightforward. On the 
other hand, it is common in the literature to write the equa-
tion of motion in the frequency domain, include the viscosity 
effect in the frequency domain, and then solve the equation 
of motion using the inverse Fourier transform for systems 
containing viscoelastic media. This methodology has been 
widely used to calculate the dynamic response of a bubble or 
a non-deformable sphere placed inside a viscoelastic medium 
for the identification of the shear modulus and viscosity of  
tissues and tissue-mimicking materials [e.g., 1, 18, 20, 38–40].  
Using this approach in the literature, the equation of motion 
for the spherical object located at an elastic medium interface 
in the time domain (i.e., equation (A4)) was first written in the 
frequency domain, and then the effect of the viscosity of the 
medium ( � ) was considered by replacing G with G − j�� in 
[31]. Overall, the equation of motion for the spherical object 
located at a viscoelastic medium interface in the frequency 
domain was obtained as following [31]:

where Ẽ∗ = 2(G − j��)(1 + �)∕
(
1 − �2

)
 , U is the Fourier 

transform of the displacement, � represents the frequency, 
and j =

√
−1 . The time-domain response of the spherical 

object located at a viscoelastic interface can be found by 
using the inverse Fourier transform which was given in equa-
tion (1) in the main text of this study. Interested readers may 
refer to [30, 31] for more details on the derivations of the 
mathematical models for a spherical object located at the 
interface of elastic and viscoelastic media.
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