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Abstract
Background  Thermoelastic Stress Analysis (TSA) is a contactless technique capable of estimating superficial stresses on 
components subjected to dynamic loads. Surface stresses can be obtained by means of calibration methods that require the 
assessment of the thermoelastic constants. However, these methods can lead to errors in stress evaluation in those materials 
where the effect of the mean stress on the thermoelastic signal cannot be neglected (e.g., titanium).
Objective  The aim is the development of an analytic formulation of error made in first stress invariant amplitude evaluation 
for a biaxial stress state, when neglecting mean stress effect.
Methods  By considering the general theory of thermoelastic stress analysis accounting for the mean stress effect, the formulation 
of the thermoelastic effect in the presence of a biaxial stress state was obtained. The results were compared to those obtained 
by a numerical simulation and the proposed formulation has been validated for titanium by means of experimental tests.
Results  Firstly, the new formulation of thermoelastic temperature variations accounting for mean stress effect in presence 
of a biaxial stress state was provided. Secondly, an error analysis provided an analytical formulation for the error made in 
case mean stress effect is neglected for different case studies.
Conclusions  The error in stress evaluation can be considered as the error originating from the use of an incorrect calibration 
formula (traditional one)”. The new analytical formulation accounting for the general theory of thermoelastic stress analysis 
allows to account for the mean stress on titanium in the presence of a uniaxial and biaxial stress states and to evaluate the 
error made in neglecting such a second order effect when using TSA.
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Nomenclature
Qi,i	� Heat flux through the surface of the body 

whose outward direct normal is ni
T0	� Reference temperature
Ṫ 	� Temperature variation rate
ΔT	� Temperature variation with respect to environ-

ment related to the stress amplitude variation
E	� Young’s modulus
εij	� Strain tensor

𝜀ij	� Strain tensor rate
µ, λ	� Lamé constants
α	� Coefficient of linear thermal expansion
β	� Principal stresses ratio
ρ0	� Density
Cε	� Specific Heat at constant strain
υ	� Poisson’s ratio
σij	� Stress tensor
δij	� Kronecker’s delta
εkk	� First strain invariant
σi	� Principal stress
εi	� Principal strain
�sa, �sa_r	� Absolute and relative errors made in evaluating 

sa,
�a_r	� Relative error between experimental and 

numerical results
𝜎̇i	� Principal stress rate
𝜀̇i	� Principal strain rate
s	� First stress invariant
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ṡ	� First stress invariant rate
R	� Stress ratio
Rf 	� Ratio between �mi∕�ai
σmi	� Mean uniaxial stress along i direction
σai	� Amplitude uniaxial stress along i direction
σim	� Mean component of principal stress along 

i-direction
σia	� Amplitude component of principal stress along 

i-direction
sm	� Mean component of the first stress invariant
sa	� Amplitude component of the first stress 

invariant
a, b	� Thermoelastic parameters
Pmin	� Minimum value of the load
Pmax	� Maximum value of the load
Pmed	� Mean value of the load
ΔP	� Peak-to-peak amplitude of the load
ΔT1	� The first harmonic amplitude provided by a 

thermal signal analysis
f	� Mechanical loading frequency

Introduction

Thermoelastic stress analysis (TSA) is a thermography-
based, contactless, full-field, experimental technique adopted 
to evaluate the surface stress (first stress invariant) of a body 
undergoing a cyclic load under linear elastic conditions [1–3].

In recent years, TSA has been adopted for different applica-
tions ranging from damage monitoring of components [4, 5] to 
non-destructive evaluations to detect and quantify the damage 
phenomena, especially in composites [6, 7]. Moreover, TSA has 
been adopted for assessing changes in material behaviour under 
fatigue regimes by exploiting the loss of adiabaticity [5–7] of the 
process and the consequent thermal signal variation. Further-
more, TSA has showed capability in fatigue limit estimation [8].

In the field of stress analysis, TSA shows a great capac-
ity for validating numerical models or for characterising the 
mechanical behaviour of components/prototypes obtained 
by, for example, 3D printing [9]. Referring to this latter 
application, the role of stress analysis is significant. In fact, 
to quantitatively assess the stresses from thermographic data, 
it is necessary to carry out a specific calibration procedure 
[3, 10], and the more accurate and precise the procedure is 
in assessing stresses, the more the technique is suitable for 
the validation of finite element numerical models.

TSA is also useful in the field of fatigue behaviour assess-
ments for any kind of material (metals and composites). In 
effect, one can use the loss of adiabaticity [11] in the mate-
rial, due to fatigue damage, to indirectly study the beginning 
of significant damage and possibly estimate the endurance/
fatigue limit [11].

As demonstrated by several studies [5, 6, 11, 12], TSA 
can also provide damage parameters, which are useful in the 

field of damage analysis on composite materials. In this way, 
as shown in the pioneering work of Emery et al. [12], and 
in the continuing work by [12, 13], it is possible to directly 
link thermoelastic material response to the degradation of 
mechanical properties (usually in terms of stiffness loss in 
the longitudinal load direction) in order to carry out struc-
tural health monitoring during a material’s lifespan.

In classic thermoelastic theory [3], variations in Young’s 
(E) and Poisson’s (v) moduli with temperature can be 
neglected; hence, the thermoelastic data calibration meth-
odology performed to obtain a stress map involves simply 
the thermoelastic constant. In this case, the thermoelastic 
temperature variations are directly and linearly related to the 
first stress invariant [10, 14].

In the literature, three main procedures for data calibra-
tion have been proposed, all focused on directly or indi-
rectly assessing the thermoelastic constant [10]. However, 
for materials such as titanium, the variations in mechanical 
properties which depend on temperature are significant, and, 
in some circumstances, cannot be neglected in the classic 
thermoelastic formulation [15–19].

This led to the consideration of an extended formulation 
accounting for the mean stress effect that results from this depend-
ence of mechanical properties (E,v) on temperature [15–19].

In the works of Palumbo et al. [20–22], it was demon-
strated that neglecting the mean stress effect can lead to 
errors in the calibration procedure of 20% and more. In par-
ticular, in [22], the revised form of the thermoelastic stress 
analysis theory for a uniaxial stress state was presented on a 
titanium alloy showing a significant sensitivity to mean stress 
effect. If the influence of mean stress is neglected, the tradi-
tional calibration procedure of TSA data may result in errors 
of more than 20% in areas characterized by high stresses. 
Errors in classic TSA calibration can lead to incorrect estima-
tion of the material stress state. This would negatively affect 
the stress evaluation of the designed mechanical components. 
Furthermore, [22] refer to the simple case of uniaxial loading.

Under a more complex stress state of material (i.e., biaxial), 
the neglection of the mean stress can lead to high errors, as 
demonstrated in the work of Di Carolo et al. [23] and Palumbo 
et al. [20, 24], in which errors in estimating the stress inten-
sity factor range under mode I were presented with respect 
to the classic theory. In [20], the thermoelastic equation was 
rewritten with the aim of describing the stress distribution 
around a crack by using more robust formulations: Wester-
gaard’s and Williams’s solutions including high-order terms 
such as T-stress. In that research, the authors demonstrated 
that using a less accurate formulation and without correcting 
the thermoelastic data, errors can range from 10 to 30% in the 
evaluation of the stress intensity factor range.

In the present work, starting from the general theory of 
thermoelastic stress analysis, where the mean stress effect 
is considered, the classic formulation has been extended to 
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the case of biaxial stresses changing with a sinusoidal load-
ing. In particular, it will be shown that the new formulation 
for thermoelastic temperature variations includes a second 
harmonic component running at twice the mechanical fre-
quency, which is a well-established feature of higher order 
thermoelastic theory [18]; therefore, in this regard, this for-
mulation is consistent.

Another interesting finding resulting from the proposed for-
mulation is the presence in the formula of principal stresses, 
both separately and combined, in the first stress invariant, 
which differs from what happens in classic thermoelastic 
theory [3, 10, 14] where just the first stress invariant appears.

The natural consequence of this finding is that the calibra-
tion of thermoelastic temperature variations to obtain stresses 
cannot be possible via typical calibration methods [3].

In view of this, another outcome of the present work 
derives from the development of an analytic formulation of 
the error made in the first stress invariant amplitude evalua-
tion in the presence of a biaxial stress state, when neglecting 
the mean stress effect. The presented error formulation can 
be defined as the error made in using the traditional calibra-
tion methods instead of the new formulation.

Finally, to validate the new formulation, experimental 
tests were carried out on a titanium holed plate and the 
Comsol® software was used to model the specimen and then 
as a reference for the analysis.

A holed sample is an example of a biaxial stress state 
that is of practical interest as they can be found in different 
machine members or components. Accounting for the sec-
ond order effects for materials such as titanium is fundamen-
tal to correctly calibrating the thermoelastic signal in order 
to obtain stress maps as close as possible to real experienced 
stresses. Even if it is limited to the specific application case, 
the approach is useful, not only for its potential for applica-
tion to out-of-laboratory case studies but also for the verifi-
cation of the mechanical design.

The approach has the potential to provide an analytical 
formula to estimate the error in stress evaluation that occurs 
when titanium components are investigated with the TSA 
technique vs. the classical formulation. In this way, it can 
result in improvements in the verification of the quality of the 
design. However, since the presented research focuses only 
on a specific case, further works will be focused on extending 
this approach to other materials and stress states to prove the 
validity of the analytical function in the other cases.

Theory: Classical Thermoelastic Theory

It was since the second half of the last century, that in some pio-
neer works Belgen [25], Machin et al. [15], and Dunn et al. [16] 
demonstrated, for some materials, a linear dependence of the ther-
moelastic signal on the mean stress value. The works of Wong 
et al. [17–19] provided a physical interpretation of this effect and 

a review of thermoelastic theory where a thermoelastic equation 
was derived for an isotropic material, imposing the conservative 
laws that govern the mechanics of small quasi-static deformations 
[3] and the second law of thermodynamics for a reversible pro-
cess. In particular, according to Wong et al. [17–19], the constitu-
tive law derived with respect to the temperature is:

where T is the temperature and Ṫ  its rate of variation, δij is 
the Kronecker delta, εij 𝜀̇ij are the strain tensor and its rate of 
variation, respectively (summing over i, j with i, j = 1–3), α 
is the coefficient of linear thermal expansion, λ and μ are the 
Lamé constants and εkk is the first strain invariant.

In particular, η can be defined as:

while Lamé constants are defined through the mechanical 
properties of material in terms of Young’ and Poisson’ moduli:

The stress can be finally described by:

where ΔT=T-T0. By considering adiabatic conditions and 
expressing the strain as principal ones, it leads:

Substituting equations (2–3) into equation (5), and neglect-
ing the high-order terms and the term (∂η/∂T)ΔT, and express-
ing it in terms of the principal stresses s [18, 19], it is possible 
to obtain the following equation:

where s and ṡ  correspond respectively to the principal 
stresses and their rates of variation:

Thermoelastic Equation in Presence 
of Biaxial Stresses

In order to obtain a general formulation valid also in the 
case of biaxial stresses, the starting point is put in a more 
compact form equation (6) by considering the two material 
constants a, b as discussed in previous works [20–22]:

(1)

T
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(2)� = (3� + 2�)�

(3)� =
E

2(1 + �)
, � =

�E

(1 + �)(1 − 2�)

(4)�ij = 2��ij +
(

��kk − �ΔT
)

�ij

(5)𝜌0C𝜖

Ṫ
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By substituting the equation (8) in equation (6) and 
neglecting the term �v∕�T  , it leads:

Considering now a generic sinusoidal loading in which 
the load changes between maximum and minimum values, 
Pmin and Pmax, the loading ratio R can be defined as follows:

From equation (10), the quantity Rf can be defined as:

The variations of the generic principal stress and first 
stress invariants can be expressed as:

The related time-derivatives are then obtained:

By simply substituting equations (11, 12, 13) in equation 
(9) via simple mathematical operations and after integrat-
ing the temperature from T0 to T and through the time from 
0 to t instants, it is possible to obtain the following general 
form describing thermoelastic temperature variations:

where ΔT is the temperature variation associated to the stress 
amplitude variation.

Equation (14) shows as the thermoelastic material 
response is characterised by the sum of two components: the 
first one varying at the same frequency of imposed mechani-
cal loading while the second one varying at twice the 
mechanical frequency. Moreover, a stress-ratio (Rf) depend-
ence is observed in the first left term of equation (14), it  
translates into a mean-stress dependence of the first compo-
nent of the thermoelastic signal.

Another interesting point to be highlighted for the biaxial 
case is that, unlike uniaxial case, the components of princi-
pal stresses appear both as the first invariant and separately. 
Hence, in this case, the well-known calibration procedures 

(8)a =
�

�C�

, b =
1

E2

�E

�T

1

�C�

(9)Ṫ
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= −(a + 𝜐bs)ṡ + b(1 + 𝜐)
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Pmin

Pmax

=
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, �mi = �ai

1 + R

1 − R
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(11)Rf =
�mi

�ai

(12)
�i = �im + �iasin�t = �ia(Rf + sin�t),

s = sm + sasin�t = sa(Rf + sin�t)

(13)𝜎̇i𝜔𝜎iacos𝜔t, ṡ = 𝜔sacos𝜔t
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{
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}
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+
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1

4

(

�bs2
a
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∑

i
�2

ia
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sin (2�t)

useful to assess the first invariant based on the assessment 
of the thermoelastic constant are no longer useful [3, 10].

Equation (14) can be presented in a more compact form:

where the amplitude of the first right term is

and the second component is represented by:

Analytical Formulation of the Error

The formulation of the absolute error made in assessing the 
first stress invariant during calibration procedures when 
mean stress effect is neglected, starts by considering the 
classic thermoelastic equations [1–3]:

where sa is the first stress invariant amplitude.
On the other hand, considering the first term of the 

revised formulation equation (14) and, in particular, refer-
ring to the f1 term, the corrected form of the thermoelastic 
temperature variations is

The systematic error (εsa) made in evaluating sa using the 
wrong formulation (equation (17)) can be obtained by mak-
ing equation (17) equal to equation (18):

and solving for �sa . The general formulation of the system-
atic error made in evaluating sa when the mean stress effect 
is neglected is shown as

Equation (20) shows that the error depends on the following:

–	 Material properties (b/a e υ);
–	 Loading conditions (Rf);
–	 Square of the stress amplitudes in terms of principal 

stress and first invariant (sa, σia).
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The error is zero in the case of fully reversed loading 
conditions (R = -1, Rf = 0). However, it is worth noting that 
it is not always possible to test components under these latter 
conditions due to the following:

–	 The presence of a preload even if the macroscopic load-
ing condition is fully reversed;

–	 Buckling problems that could arise, so that R = -1 is usu-
ally not adopted for laboratory tests or in-service com-
ponents under operating conditions.

Explicating the principal stress amplitude in the first 
stress invariant and rearranging the terms of the ratio 
between principal stresses β leads to the following:

and

Also, the relative error in the first invariant determination 
can be estimated by dividing the absolute error �sa by the 
first stress invariant amplitude:

Putting equations (21) and (23) in equation (22), the gen-
eral formula for relative error turns into

Depending on the � values, different loading cases can  
be analysed:

–	 Case I: σ2 = 0 → β = 0;
–	 Case II: σ1 ≥ σ2 > 0 → β > 0;
–	 Case III: σ1 > σ2, σ2 < 0 → β < 0.

Figure 1 shows graphically the relative error (in terms of 
absolute values of �sa_r ) made on the first stress invariant ampli-
tude depending on different loading conditions (case studies I, 
II, and III). In Table 1, the thermos-physical and mechanical 
properties are reported for the considered titanium alloy. These 
data have been provided by the supplier of the material.

Considering equations (22) and (24) for absolute and rela-
tive errors respectively, in case I, the absolute error depends 
only on Rf  , the material properties, and the square of the 
amplitude of the first principal stress, while the relative error 
depends on the same quantities and just the amplitude of 
first principal stress:

(21)� =
�2a

�1a

(22)�sa = Rf

b

a
�2

1a

(

2v� − 1 − �2
)

.

(23)�sa_r =
�sa

sa
.

(24)�sa_r = Rf

b

a

�1a

(1 + �)

(

2v� − 1 − �2
)

.

Figure 1(a) shows the percent errors that can be made 
in the case β = 0. In this case, the error has been evaluated 
depending on principal stress amplitude, and it is possible 
to observe that, for a specific stress value, the amount of 
error increases with increasing Rf. Instead, for a fixed Rf 
value, the error increases as the principal stress amplitude 
increases. Therefore, low errors (below 5%) in the calibra-
tion procedure are possible only if the imposed loading 
stress is very low.

Obviously, the loads the component or structure withstands 
while remaining in the elastic range are not always so low; 
hence, the error made in the calibration could be unacceptable.

In the case of a biaxial stress state (case II), and for �1a
=100 MPa, the error formulations are a little more complex. 
In particular, for case II ( 𝛽 > 0 ), both the absolute and rela-
tive errors also depend on the Poisson ratio.

The | �sa_r | curves are represented in Fig. 1(b) and depend 
on the stress ratios R and Rf.

The value of | �sa_r | ranges between less than 5% in the 
case of a fully reversed load to 15–25% for higher stress 
ratios. This error value is due to the mean stress effect: the 
higher the mean stress, the higher the error. By observing 
Fig. 1(b), it can be seen that each curve presents a minimum, 
while | �sa_r | is the highest in each condition when β = 0.

Case II, where a biaxial stress state is present in the mate-
rial (due, as an example, to the presence of a hole), is of 
practical interest as it can be found in different machine 
members or components. Accounting for the second order 
effects for those materials such as titanium is fundamental 
to correctly calibrating the thermoelastic signal in order to 
obtain stress maps as close as possible to real experienced 
stresses. In this way, according to Fig. 1(b), tolerable errors 
(under 5%) are possible only if β is higher than 0.1 and R is 
in the range 0–0.2.

For negative β-values (case III, �1a=100 MPa, Fig. 1(c)), rel-
ative error could theoretically tend to −∞ for β = 1. Of course, 
β close to -1 or 1 is theoretically impractical (being outside the 
conditions of applicability of the thermoelastic technique) or 
difficult to realise under an operating point of view. In fact, the 
maximum and minimum values represented in Fig. 1(b), (c) are 
respectively 0.9 and -0.9, for the two case studies.

Also, for case III, the | �sa_r | dependence on β can also 
be investigated. In particular, the higher the stress ratio, 
the higher the error will be. At a fixed R value, the | �sa_r | 
increases as the second principal component increases 
(higher | � | values). A maximum | �sa_r | of 60% is theoreti-
cally achievable when β = -0.9 and R = 0.7, when neglecting 
the mean stress effect.

(25)�sa_r = Rf

b

a
�1a.
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The curves of Fig. 1 demonstrate the potential of the 
proposed formulation (particularly for the case of a biaxial 
stress state) to assess the error that could arise in the first 
stress invariant estimation.

A smaller error would mean a more reliable calibration 
procedure and, therefore, less uncertainty in the estimation 
of the stresses. This information will, in turn, be useful in 
the validation of the FEA (finite element analysis) of the 
component or more complex structures made from the same 
material and undergoing operating loads. In this sense, the 
presented approach can be a tool to support the verification 
of the mechanical design.

Materials and Methods

In the present section, the numerical analysis and experi-
mental campaign are shown. An overview of the methods 
and workflow of the activities is depicted in Fig. 2. In par-
ticular, material geometry, stress components, and mechani-
cal properties are defined together with the mesh proper-
ties of the model as input to set the numerical model. Two 
approaches are implemented in this research:

1.	 Numerical analysis by finite element method to estimate 
the stress behaviour of the material.

2.	 Experimental tests to validate the theoretical formulation 
and numerical model. Experimental tests were carried 
out both on a unnotched sample under uniaxial stress 
state in order to assess material constants (a,b) and on a 
sample with a hole to reproduce bi-axial stress state.

The outputs have been represented by stress maps from 
FEA (finite element analysis) that were compared to those 
experimentally obtained, and the error theoretically esti-
mated that was compared to the error estimated using 
experimental data.

Finite Element Analysis

The material investigated in the present study is a titanium 
alloy: Ti6Al4V. Titanium mixed with other metals (e.g., 
aluminium) exhibits relatively high sensitivity to the mean 
stress [15, 20, 22]. It is worth highlighting that, even if the 
inputted load values or the properties of the selected material 
are not very precise, these ‘mismatches’ would introduce 
small errors in the evaluation of stresses if compared with 
ones we expect to arise from using a wrong formulation 
(around 20–30%) [22].

It is also worth noting that the model could be affected by 
typical errors related to the following:

–	 The convergence of the solution;
–	 The material properties (that could not match those in the 

software database);
–	 The adopted mesh.

However, considering that this is a very simple case study 
involving the application of a mechanical load that mono-
tonically varies from zero to a pre-set value in linear elastic 
conditions, it can be considered a valid tool for obtaining 
an indication of the state of stress, since there are no closed 
solutions for the case of 'holed plate on a finite half-plane’ 
in the literature.

In Fig. 3(a), the geometry of the holed specimen is rep-
resented. The geometry was used to build the 2D numerical 
model in the Comsol Multiphysics® software.

To check the validity of the model from a geometric point 
of view, the stress concentration factor (Kt) was calculated 
according to the Peterson’ analytical formula for the case of a 
finite-width element having an eccentrically located circular 
hole under tension [26]. This resulted in a stress concentration 
factor with the nominal stress based on gross area Ktg = 3.18, 
and we compared such a value with the one obtained from 
the analysis of stress maps from FEM analysis (imposed load 
5kN): Ktg = 142 MPa/45 MPa = 3.16. Therefore, it is possible 
to conclude that the model is geometrically consistent.

To model the material behaviour, linear elastic con-
ditions have been assumed. For the mesh, the elements 
geometry was triangular (specifically, free tetrahedral), and 
it consisted of pyramids to match the tetrahedral mesh to 
any existing quadrilateral mesh on adjacent faces. In total, 
293,682 elements were used.

The generated mesh was finer in the regions close to the 
hole and coarser in the more distant areas (Fig. 3(b)).

In fact, each element presented a generic dimension of 
0.4 mm (far away from the hole) and 0.01 mm in proximity  
to the hole. In particular, the maximum–minimum dimen-
sion of elements of the coarser mesh was 3.4–0.034 mm 
with a growth factor of 1.3 and a curvature factor of 0.2. 
Referring to the refined mesh in the hole region, the 
element’s dimension ranged from 1 to 0,01 mm, with a 
growth factor of 1 and a curvature factor of 0.15.

The presented model is a simple, static structural FE 
analysis where the stress is imposed, statically ranging 
from 0 to the value of ΔP (Table 2). It only simulates 
mechanical effects, and the aim of carrying out the model 
was only to have a reference of the expected stress state 
(in particular, the first scalar stress invariant) in the holed 
specimen. We used this latter value as a reference for 
evaluating the error obtained when adopting the classical 
calibration procedure with experimental data.

Fig. 1   |�sa_r | values for (a) Case I (equation  25), (b) Case II ( �1a 
=100 MPa) (equation  24), and (c) Case III ( �1a=100 MPa), (equa-
tion 24). �sa_r is the relative errors made in evaluating sa,

◂
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Experimental Campaign

The material investigated in the present study was Ti6Al4V, 
as already discussed in "Finite Element Analysis".

The use of only one material (the titanium alloy 
Ti6Al4V) was mainly due to two motivations. The first 
one was the availability of material, and on the other hand, 
the possibility to investigate higher errors than Aluminum 
(which exhibits the same sensitivity to average stress) as 
already demonstrated elsewhere [23].

The experimental campaign was carried out on an 
unnotched sample (Fig. 4) that underwent an annealing 
thermal process to eliminate residual stresses, and on a 
holed sample (Fig. 3) that was also annealed after the hole 
was made [22].

The unnotched sample was tested to obtain thermoelastic 
constants, while the holed sample was tested to validate the 
proposed novel formulation.

The tests consisted of the application of a cyclic load with 
a sine wave in an elastic regime. Table 2 reports the assigned 
loadings for both types of samples. For the unnotched sam-
ple, the loading program involved four loading levels of mean 
stress with a fixed imposed amplitude. Table 2 reports both 
loads and stresses in terms of mean values and amplitudes. 
These values have been selected to achieve a significant ther-
moelastic signal variation to detect the mean stress effect.

Three loading levels were adopted for the holed sample, 
characterized by a fixed amplitude and a variable mean load, 
in order to obtain three different conditions: Rf value equal 
to 9, 11, and 13, respectively.

The mechanical frequency was 10 Hz to ensure adiabatic 
test conditions. The adopted loading frame was an Instron 
Schenck with a capacity of 250 kN.

In order to obtain the stress maps from the thermoe-
lastic stress analysis, the tests were monitored by a Del-
tatherm 1560 infrared camera with a focal plane array of 

Fig. 2   Adopted approaches and workflow of the research
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320*256 pixels, and a noise equivalent temperature differ-
ence (NETD) less than 18 mK. Thermal sequences were 
acquired at a frame rate of 153 frames per second for 2 min,  
setting the value of the “pixel integration time” equal to 
75% [22]. The setup allowed a geometrical resolution of 
0.27 mm/pixel.

In order to improve the surface emissivity, the surface 
of the samples was painted matt black (Dupli-color, Spe-
cial Thermo 800 °C), while a first surface mirror with an 
enhanced aluminium coating was adopted to investigate the 
signal of the opposite sides of the specimens in order to detect 
and possibly compensate for spurious bending due to grips 

Fig. 3   (a) Holed Sample geom-
etry. Dimensions expressed in 
mm, (b) mesh in Comsol
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misalignment [22]. In effect, as described in [22], to assess 
out-of-plane bending due to a possible imperfect alignment 
of the clamps of the loading machine, or to a non-perfectly 
planar specimen, data from the front and rear surfaces of the 
specimen were simultaneously acquired using a mirror. Two 
symmetric regions of interest were considered to evaluate the 
average signal in each area. Finally, the averaged value of the 
signal was calculated using these two signals.

The overall setup is represented in Fig. 5.

Data Processing

The thermal signal analysis was performed by acquiring the 
thermal response coming from the samples.

undergoing dynamical loads. The application of a sinu-
soidal load with a sufficiently high frequency made the heat 
transfer negligible. In particular, thermoelastic data were 
acquired according to the classic procedure [3, 22] involving 

the acquisition of a load reference signal from the load cell 
of the loading frame.

Thanks to a lock-in amplifier, the software DeltaVision 
[27] was able to process the data in real-time and to provide 
the thermoelastic temperature variation that can be described 
by the following [5, 8, 14]:

where the right-hand-side term represents the first harmonic 
component temperature variation induced by the thermoelas-
tic effect and varying at the same angular frequency as the 
imposed load. It is characterized by the amplitude ΔT1 and 
the phase φ that represents the delay between the load and 
the thermal response that is assumed to be constant through-
out the sample, under adiabatic conditions. If the adiabatic 
condition is no longer respected, φ changes. This could be 
the case for high stress gradients, which lead to conduction 
effects [2, 3] or heat generation due to local plasticity [24, 
28].

The software also provides a map of the mean tempera-
ture of the sample T0.

In this paper, we were interested in studying ΔT1, which 
is the amplitude, and T0 as a reference for the normali-
sation of the thermoelastic temperature values (ΔT1/T0). 
Once the ΔT1 maps of each frame of the sequence were 
acquired, the parameter (ΔT1/T0) was processed according 
to the following Fig. 6.

The analysis of tests on unnotched samples provided the 
assessment of the two thermoelastic constants (a, b) accord-
ing to the procedure described in [22], while the analysis of 
the holed sample provided the first stress invariant maps via 
thermoelastic data calibration equation (19).

(26)Tthe(t) = ΔT1sin(�t + �)

Fig. 4   Unnotched sample. Dimensions expressed in [mm]

Fig. 5   Setup and equipment
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In this work, the tests carried out in [22] were adopted 
for evaluating the proposed approach. In particular, the TSA 
data acquired in [22] were used for obtaining the thermoe-
lastic constants on the unnotched sample and the stress maps 
on the holed sample. In this regard, the authors refer to [22] 
for a more detailed description of the processing procedure.

A 2D spatial smoothing was used to filter out noise from 
raw ΔT1 signals from the front and backside (reflected in 
the mirror) of the unnotched specimen and holed speci-
men. The data smoothing was necessary to reduce the 
signal noise by producing slow changes in value so that 
it would be easier to observe trends in the processed data 
[29]. It was adopting a 3 × 3 gaussian kernel that ensured 
a good quality in the resulting signal without affecting 
the signal behaviour. Therefore, while errors from the 
mathematical filtering procedure might have occurred, 
these were surely negligible compared to the benefit in 
the analysis [29].

Further, a selection of a region of interest in the ΔT1 
maps was performed to focus the investigation on an area 
coinciding with the gauge length of both unnotched and 
holed specimens.

The signals from manually selected regions of interest 
(ROIs), on both the front and reflected surfaces, respec-
tively ΔT1_front and ΔT1_back, were manually assessed to 
verify the presence of spurious bending [22]. Finally, each 
pixel of the ΔT1_front map was normalised by T0 in order 
to obtain the ratio ΔT1_front /T0, which was the ‘parameter’ 
considered for the analysis. For the sake of simplicity, 

the subscript ‘front’ in the previous formula expression is 
hereafter neglected.

The calibration procedure to obtain stresses was carried 
out using equation (20).

Results and Discussion

Assessment of Thermoelastic Constants for Signal 
Calibration

In this work, the thermoelastic parameters a and b were 
evaluated by applying the experimental approach pro-
posed by Palumbo et al. [22], briefly described in the 
present section.

The procedure required cyclic tests on an unnotched 
sample (geometry reported in Fig. 3) made of the same 
material as the holed test sample, with uniaxial and known 
stress distribution in the gauge length.

In this case, for the considered unnotched plate, σa2 is 
null and the first harmonic amplitude of the thermoelastic 
signal becomes

Dividing by σa1, and expressing in terms of σm1 gives

(27)
ΔT1

T0
= −a�a1 + bRf�a1

2

(28)Snorm =
ΔT1

T0�a1
= −a + b�m1

Fig. 6   Flowchart of the procedure used for data processing
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where Snorm is the normalized temperature signal to the 
amplitude stress.

The outputs of the calibration procedure are the param-
eters a and b that represent the intercept and slope of the 
linear relation expressed by equation (28) and that can be 
evaluated by linearly fitting the experimental data.

The considered values [22] are reported in Table 3 and 
Fig. 7 where it is also possible to see the 95% confidence 
bounds of the coefficients of the linear fitting. In particu-
lar, in Fig. 7, the markers represent the experimental data 
according to the loading conditions reported in Table 2, 
the solid red lines are confidence bounds while the dashed 
black line is for the linear regression).

The coefficients experimentally obtained are consistent 
with previously published values for Ti6Al4V, i.e. the b/a 
ratio is very close to the value reported by Machin et al. [15].

Stress Assessments Via Classic TSA Formulation, 
Error Estimation and Validation

In the present section, the results obtained by the finite ele-
ment analysis were used as a reference for evaluating the 
error in the first invariant estimation that can be commit-
ted if the classic thermoelastic formulation and calibration 
methods are used.

As it is well-known, the classic approach for calibrat-
ing the thermoelastic data is based on the assessment of the 
thermoelastic constant (constant a in this work) and it can be 
performed by adopting three different approaches [3, 8, 22]:

1.	 Direct evaluation of a using radiometric properties of 
the detector, the system setting, the surface emissivity, 
and the thermoelastic constant of the material,

2.	 evaluation of a against a measured stress,
3.	 evaluation of a against a calculated stress.

As already explained in the previous sub-section, the first 
invariant was assessed by adopting the third method.

Figure  8a shows the map of the first stress invari-
ant obtained by the numerical model, compared with the 
experimental maps obtained by imposing the three loading 
conditions in Table 2. Figure 8a proves under a qualitative 
point of view the acceptability of the model; in fact, it is 
possible to see that the first stress invariant maps from TSA 
data calibration and FEM analysis coincide up to the edge 
of the hole. The main differences between numerical and 
experimental data can be observed in the proximity of the 
hole due to the well-known [30, 31] edge effects and other 
effects related to the experimental measurement, such as the 
presence of a slight in-plane bending due to imperfect align-
ment in the loading machine and/or a non-perfect alignment 
of the IR camera.

In Fig. 8b, the behaviour of principal stresses and the 
first invariant, together with β for the black dashed profile 
of Fig. 8a, is reported. As expected, the first principal stress 
and the first invariant were maxima near the hole edge while 
the second principal stress reached the zero value.

Before showing the quantitative comparison between 
the FEM analysis and experimental results, it is worth 
noting that the comparison between the data has been 
limited to an area in proximity to the hole edges avoid-
ing the well-known edge effects affecting the acquired 
thermal signal in the presence of motion effects and/or 
material plasticization [30, 31]. The adopted test condi-
tions (Table 2) involved an applied stress that laid in the 
elastic regime, while in correspondence with the hole the 
stress state could obviously be higher, and as such, it could 
determine a local plastic behaviour. That, of course, is not 
the case in the present research.

In Fig. 9, experimental data obtained using the classi-
cal formulation and calibration method given by equation 
(17), and after the signal processing procedure explained in 

Fig. 7   Assessment of thermoe-
lastic constants (black circled 
markers represent the experi-
mental data, while confidence 
bounds are in red and linear fit-
ting line is the black dashed one)
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"Materials and Methods", have been compared to numeri-
cal data considering a profile along a transverse direction 
through the centre of the sample (black dashed line, Fig. 8a). 
To perform a point-by-point comparison between experi-
mental and numerical data, the latter were interpolated by 
means of a second-order polynomial function to obtain the 
missing points. Figures 9(a)–(c) refer to three different load-
ing conditions, Rf = 9, 11, and 13, respectively.

As expected, the experimental data of the first stress 
invariant amplitude obtained using the classic thermoelastic 
formulation were affected by the mean stress, and a differ-
ence is observed between the experimental and FEM data, 
that the difference is likely due to the mean stress effect. In 
particular, the effect of the mean stress produced an over-
estimation of the measured stresses that was more evident 

in the proximity of the hole edges and increased as the Rf 
value increased.

Finally, in order to validate the proposed analytical for-
mulation, for case study II (loading condition indicated in 
Table 3 for holed specimen), the measured error εexp esti-
mated using data from experimental analysis and data from 
the numerical model, has been compared to the theoretically 
predicted error εsa_r, equation (24).

The measured relative error has been calculated as follows:

where sa_exp is the amplitude of the first invariant assessed 
with the classical TSA approach and sa_FEM refers to the 

(29)�exp =
sa_exp − sa_FEM

sa_FEM

Fig. 8   (a) First stress invariant 
map from FEA corresponding a 
specific loading case (σm = 253 
[MPa] and Δσ = 46 [MPa], 
Table 2) and related (b) values 
of stresses and � (� =

�2a

�1a
) from 

the black dashed profile
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value assessed by FEM simulation and considered as a refer-
ence for the expected stress data.

The results are reported in Fig. 9(a)–(c) and show a good 
correlation between the two errors for each loading condi-
tion, Rf = 9, 11 and 13. Of course, red squared markers rep-
resenting εexp are noisier than εsa_r due to the characteristic 
noise that characterises the TSA measurement, but the error 

values are roughly similar, confirming the validity of the 
formulation for the specific case study.

Again, it is worth noting that both εexp and εsa_r data start 
some millimetres far away from the hole edges, due to dis-
regarding plastic and boundary effects, in error comparison.

It is worth noting that the field of validity of the present 
approach is limited to those materials whose thermoelastic 

Fig. 9   (a), (c) and (e) values of stresses and � from black dashed profile (the data refer to the profile depicted in Fig. 8(a)). (b), (d) and (f) com-
parison between εexp and εsa_r for three loading conditions, Rf = 9, 11 and 13

Table 1   Thermophysical and mechanical properties of investigated Titanium alloy

a Specific heat at constant deformation was assumed equal to the specific heat at constant pressure Cε = Cp

Material α (K−1) ρ (Kg/m3) Cp (J/KgK) Cε a (J/Kg·K) E (GPa) υ ∂E/∂T (MPa/K) Rp0.2 (MPa) b/a
(MPa−1)

Ti6Al4V 8.6 × 10−6 4.43 × 103 560 560 114 0.34  − 48 1100 4.31E-04
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response is sensitive to the mean stress effect. In this work, 
titanium in its largely used alloy (Ti6Al4V) has been con-
sidered since it presents a significant “mean stress” effect. 
However, the proposed approach can be extended to alu-
minium alloys even if these experience less sensitivity to 
the mean stress [3, 23]. In other words, the ratio between 
the thermoelastic constants (b/a) is less in aluminium than in 
titanium and this means that the error committed in stresses 
evaluation in aluminium alloys, for a given loading condi-
tion, will be less as well.

Moreover, it is important to highlight that the proposed 
equation has been verified only for case II (case I has already 
been investigated [22]). It is interesting to point out that for 
the biaxial stress state, unlike with the uniaxial case, the com-
ponents of principal stresses appear both as the first invariant 
and separately. Hence, in this case, the well-known calibra-
tion procedure used to assess the first invariant based only on 
the assessment of material constants (a, b) is no longer use-
ful. In this regard, further work will be dedicated to covering 
other cases involving both the stress state and the material, 
with the intention to export this approach to out-of-laboratory 
applications on components undergoing operating loads.

It is worth noting that the application of the proposed 
approach requires the following:

–	 The possibility to record the thermal signal by placing 
the detector in situ;

–	 The thermoelastic constants of the material (a, b) having 
been previously assessed.

Finally, it is important to remark that the knowledge 
of the error that could be committed represents an impor-
tant guideline to understanding whether or not the classic 
calibration procedure can provide a good estimation of the 
stresses, depending on the loading conditions, and whether 
or not this estimation can be retained as acceptable.

Conclusions

In the present study, the effect of the mean stress on tita-
nium in the presence of uniaxial and biaxial stress states 
was studied using an analytical approach accounting for 
the general theory of thermoelastic stress analysis.

The first result was a formulation to model thermoelas-
tic temperature variations accounting for the mean stress 
effect in the presence of a biaxial stress state.

Second, an error analysis provided an analytical for-
mulation for the error made in case the mean stress effect 
is neglected for different case studies (involving uni- and 
biaxial stress states).

The analytical formulation of the error shows that 
neglecting the mean stress effect for titanium involves 
significant errors in stress evaluation, depending on the 
material properties, loading conditions, and the square of 
the first principal stress and first invariant amplitude.

Another interesting point to be highlighted for the 
biaxial stress state is that unlike with the uniaxial case, 
the components of principal stresses appear both as the 
first invariant and separately. Hence, in this case, the 
well-known calibration procedure used to assess the first 

Table 2   Loading table Unnotched sample Holed sample

Loading 
conditions

Pm
[N]

ΔP
[N]

σm
[MPa]

Δσ
[MPa]

R Pm
[N]

ΔP
[N]

σm
[MPa]

Δσ
[MPa]

Rf

1 15000 2500 139 22 0.800 22500 5000 207 46 9
2 5000 44 0.833 27500 5000 253 46 11
3 7500 66 0.857 32500 5000 299 46 13
4 10000 88
5 30000 2500 263 22
6 5000 44
7 7500 66
8 10000 88
9 45000 2500 395 22
10 5000 44
11 7500 66
12 10000 88

Table 3   Thermoelastic constants obtained by fitting the thermoelastic data

Unnotched sample

Constants Values Standard error 95% Conf. bounds 
(lower–upper)

a [1/MPa] 2.80 10−4 1.77 10–6 2.77 10–4– 2.84 10–4

b [1/MPa2] 1.22 10−7 6.25 10–9 1.09 10–7 – 1.35 10–7
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invariant based only on the assessment of material con-
stants (a, b) is no longer useful.

Finally, the error equation was validated using experi-
mental data in terms of thermoelastic temperature variations 
acquired during an experimental test on a holed sample. As 
expected, the experimental data of the first stress invariant 
amplitude obtained using the classic thermoelastic formu-
lation were affected by the mean stress, and a difference is 
observed between the experimental and FEM data, which is 
likely due to the mean stress effect. In particular, the effect 
of the mean stress produced an overestimation of the meas-
ured stresses that was more evident in the proximity of the 
hole edges and increased as the Rf value increased.

However, since the presented research focuses only on a 
specific case, further studies will be focused on extending 
this approach to other materials and stress states to prove 
the validity of the analytical function in other cases.

Funding  Open access funding provided by Università del Salento within 
the CRUI-CARE Agreement. The activities have been financed by the 
European Union – NextGenerationEU (National Sustainable Mobility 
Center CN00000023, Italian Ministry of University and Research Decree 
n. 1033 - 17/06/2022, Spoke 11 - Innovative Materials & Lightweight-
ing). The opinions expressed are those of the authors only and should 
not be considered as representative of the European Union or the Euro-
pean Commission's official position. Neither the European Union nor the 
European Commission can be held responsible for them.

Data Availability  The authors declare that the data supporting the find-
ings of this study are available within the paper.

Declarations 

Conflict of Interests  The authors have no relevant financial or non- 
financial interests to disclose. The authors have no competing interests to 
declare that are relevant to the content of this article. All authors certify 
that they have no affiliations with or involvement in any organization or 
entity with any financial interest or non-financial interest in the subject 
matter or materials discussed in this manuscript. The authors have no 
financial or proprietary interests in any material discussed in this article.

Open Access   This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Dulieu-Barton JM, Stanley P (1998) Development and applica-
tions of thermoelastic stress analysis. J Strain Analysis 33:93–104

	 2.	 Pitarresi G, Patterson EA (1999) A review of the general theory 
of thermoelastic stress analysis. J Strain Analysis 35:35–39

	 3.	 Harwood N, Cummings WM (1991) Thermoelastic Stress Analy-
sis, National Engineering Laboratory, Adam Hilger, Bristol, Phila-
delphia, New York

	 4.	 Tighe RC, Dulieu-Barton JM, Quinn S (2016) Identification of 
kissing defects in adhesive bonds using infrared thermography. 
Int J Adhesives and Adhesion 64:168–178

	 5.	 De Finis R, Palumbo D, Ancona F, Galietti U (2017) Fatigue 
Behaviour of Stainless Steels: A Multi-parametric Approach, 
Residual Stress, Thermomechanics and Infrared Imaging, Hybrid 
Techniques and Inverse Problems, Volume 9, Proceedings of the 
2016 Annual Conference on Experimental and Applied Mechan-
ics, pp. 1–8, ISBN: 978-3-319-42254-1. https://​doi.​org/​10.​1007/​
978-3-​319-​42255-8_1

	 6.	 Ruiz-Iglesias R, Ólafsson G, Thomsen OT, Dulieu-Barton JM 
(2023) Identification of Subsurface Damage in Multidirectional 
Composite Laminates Using Full-Field Imaging. In: Tighe, R.C., 
Considine, J., Kramer, S.L., Berfield, T. (eds) Thermomechanics 
& Infrared Imaging, Inverse Problem Methodologies and Mechan-
ics of Additive & Advanced Manufactured Materials, Volume 6. 
SEM 2022. Conference Proceedings of the Society for Experimen-
tal Mechanics Series. Springer, Cham. https://​doi.​org/​10.​1007/​
978-3-​031-​17475-9_6

	 7.	 Cappello R, Pitarresi G, Catalanotti G (2023) Thermoelastic stress analy-
sis for composite laminates: a numerical investigation. Comp Sci Tech 
241:110103. https://​doi.​org/​10.​1016/j.​comps​citech.​2023.​110103

	 8.	 Krapez JK, Pacou D, Gardette G (2000) Lock-In Thermography 
and Fatigue Limit of Metals. In Proceedings of the Quantitative 
Infrared Thermography (QIRT), Reims, France, 18–21 July 2000

	 9.	 Allevi G, Cibeca M, Fioretti R, Marsili R, Montanini R, Rossi G 
Qualification of additively manufactured aerospace brackets: a 
comparison between thermoelastic stress analysis and theoretical 
results. Measurement 126:252–258

	10.	 Dulieu-Smith JM (1995) Alternative calibration techniques for 
quantitative thermoelastic stress analysis. Strain 31:9–16

	11.	 De Finis R, Palumbo D, Galietti U (2023) A new procedure for 
fatigue life prediction of CFRP relying on the first amplitude har-
monic of the temperature signal. Int J Fatigue 168:107370. https://​
doi.​org/​10.​1016/j.​ijfat​igue.​2022.​107370

	12.	 Emery TR, Dulieu-Barton JM (2010) Thermoelastic stress analysis of 
damage mechanisms in composite materials. Compos A 41:1729–1742

	13.	 Emery T, Dulieu-Barton J, Earl J, Cunningham P (2008) A gen-
eralised approach to the calibration of orthotropic materials for 
thermoelastic stress analysis. Compos Sci Technol 68:743–752

	14.	 Dulieu JM, Stanley P (1990) Accuracy and precision in the 
thermoelastic stress analysis technique. Applied stress analysis. 
Springer, Netherlands, pp 627–638

	15.	 Machin AS, Sparrow JG, Stimson MG (1987) Mean stress depend-
ence of the thermoelastic constant. Strain 23:27–30

	16.	 Dunn SA, Lombardo D, Sparrow JG (1989) The Mean Stress Effect 
in Metallic Alloys and Composites. Proc SPIE 1084:129–142

	17.	 Wong AK, Jones R, Sparrow JG (1987) Thermoelastic constant 
or thermoelastic parameter ? J Phys Chem Solids 48:749–753

	18.	 Wong AK, Sparrow JG, Dunn SA (1988) On the revised theory 
of the thermoelastic effect. J Phys Chem Solids 49:395–400

	19.	 Wong AK, Dunn SA, Sparrow JG (1988) Residual stress measure-
ment by means of the thermoelastic effect. Nature 332:613–615

	20.	 Palumbo D, De Finis R, Di Carolo F, Vasco Olmo J, Diaz FA, 
Galietti U (2021) Influence of Second-Order Effects on Thermoe-
lastic Behaviour in the Proximity of Crack Tips on Titanium. Exp 
Mech 62:521–535

	21.	 Di Carolo F, De Finis R, Palumbo D, Galietti U (2021) Investiga-
tion of the residual stress effect on thermoelastic behaviour of a 
rolled AA2024. Proc SPIE - Int Soc Opt Eng 11743:117430I

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-319-42255-8_1
https://doi.org/10.1007/978-3-319-42255-8_1
https://doi.org/10.1007/978-3-031-17475-9_6
https://doi.org/10.1007/978-3-031-17475-9_6
https://doi.org/10.1016/j.compscitech.2023.110103
https://doi.org/10.1016/j.ijfatigue.2022.107370
https://doi.org/10.1016/j.ijfatigue.2022.107370


1351Experimental Mechanics (2023) 63:1335–1351	

	22.	 Palumbo D, Galietti U (2016) Data correction for thermoelastic 
stress analysis on titanium components. Exp Mech 56:451–462

	23.	 Di Carolo F, De Finis R, Palumbo D, Galietti U (2019) A ther-
moelastic stress analysis general model: study of the influence of 
biaxial residual stress on aluminium and titanium. Metals 9(6):671

	24.	 Palumbo D, De Finis R, Di Carolo F, Galietti U (2021) Consid-
erations on the Thermoelastic Effect in proximity of crack tips on 
Titanium and Aluminium: a new formulation. 26th International 
Conference on Fracture and Structural Integrity May 26–28, 2021, 
Turin (Italy) & Web

	25.	 Belgen MH (1968) Infrared Radiometric Stress Instrumentation 
application range study, NASA contractor report, NASA CR-1067

	26.	 Peterson’s stress concentration factors (1997) 2nd Edition. W.D. 
Pilkey. JOHN WILEY & SONS, INC

	27.	 DeltaTherm, Manual (2004) Stress Photonics Inc., 3002 Progress 
Road Madison, WI 53716 USA

	28.	 Tomlinson RA, Patterson EA (2011) Examination of Crack Tip 
Plasticity Using Thermoelastic Stress analysis, Thermomechanics 

and Infra-Red Imaging, in: Proceedings of the Society for Experi-
mental Mechanics Series Vol. 7, Springer, New York, NY

	29.	 Kendall G, Maurice G, Stuart A, Ord JK (1983) The Advanced 
Theory of Statistics, Vol. 3: Design and Analysis, and Time-
Series. 4th Ed. London: Macmillan.

	30.	 Dulieu-Barton JM, Quinn S (1999) Thermoelastic stress analysis 
of oblique holes in flat plates. Int J Mech Sci 41:527–546

	31.	 Galietti U, Metta N, Pappalettere C (2000) Thermoelastic Stress 
Analysis: numerical automatic shape reconstruction for stress sep-
aration. Proceedings of SEM International Congress on Experi-
mental Mechanics, Orlando, Florida, ISBN: 0912053690

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Thermoelastic Stress Analysis in the Presence of Biaxial Stresses in Titanium: Effect of the Mean Stress on Errors in Stress Evaluation
	Abstract
	Background 
	Objective 
	Methods 
	Results 
	Conclusions 

	Introduction
	Theory: Classical Thermoelastic Theory
	Thermoelastic Equation in Presence of Biaxial Stresses
	Analytical Formulation of the Error

	Materials and Methods
	Finite Element Analysis
	Experimental Campaign
	Data Processing

	Results and Discussion
	Assessment of Thermoelastic Constants for Signal Calibration
	Stress Assessments Via Classic TSA Formulation, Error Estimation and Validation

	Conclusions
	References


