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Abstract
Background  The design of compliant mechanisms requires detailed knowledge about the stiffness properties of their flexible 
segments. However, there are no standardized test methods for flexure hinges, and therefore the influence of manufacturing-
specific effects, such as anisotropy, on the stiffness properties cannot be quantified.
Objective  This paper presents novel test methods for variable cross-section flexure hinges subjected to large deformations 
and pure bending loading, which determine the bending stiffness of flexure hinges over their entire deflection range using 
a universal testing machine.
Methods  The novel test methods for flexure hinges are based on the tensile test, the four-point bending test (FPBT), and 
the column bending test (CBT). These test methods were initially formulated for constant cross-section specimens, but are 
adapted in this study to examine variable cross-section specimens. The derived test methods are validated by using isotropic 
materials with well-known properties and by comparing the calculated deflections with deflections measured by means of 
image processing.
Results  The deflection validation shows that the adapted CBT (aCBT) is accurate over the entire deflection range, achiev-
ing curvature of up to � = 0.40 mm−1 , whereas the maximum curvature in the adapted FPBT (aFPBT) is limited by the test 
methodology to about � = 0.15 mm−1 . At small strains, the flexural modulus determined in the aCBT and aFPBT agrees 
well with the Young’s modulus determined in the tensile test, as would be expected for isotropic materials.
Conclusion  The aCBT proves to be a suitable test method for flexure hinges at large deflections, whereas the stiffness charac-
terization at small deflections can be performed with both the aCBT and the aFPBT. The presented test methods validated on 
isotropic materials form the basis for characterizing anisotropic flexure hinges with geometry-dependent stiffness properties.

Keywords  Compliant mechanism · Pseudo-rigid-body model · Four-point bending · Column bending test · Machine 
compliance · Gauge length

Introduction

Compliant mechanisms offer great advantages compared 
to conventional rigid-body mechanisms. The advantages 
include reduced part count, increased precision and reliabil-
ity, predictable backlash-free motion, reduced maintenance 
and wear, and lightweight designs. However, compliant 
mechanisms are much more difficult to design than con-
ventional mechanisms because the movement results from 
a deformation of the structure.

A simple method to design and analyze compliant mecha-
nisms subjected to large deflections are pseudo-rigid-body 
models (PRBM) [1]. PRBM predict the deflection path and 
the force–deflection relationship of flexible segments by 
replacing them with rigid links connected by discrete pin 
joints. One way to allow motion in compliant mechanisms is 
through small-length flexural pivots (SLFP), which describe 
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flexible segments small in lengths and bending stiffness 
compared to the segments to which they are attached [2]. 
As shown in Fig. 1, the SLFP is modeled by torsion springs 
attached to the pin joints with the equivalent stiffness 
K = EI∕L0 , where EI is the bending stiffness and L0 the 
length of the flexural pivot. The application of this equation 
requires detailed knowledge about the material properties 
and the geometry of the flexible segments.

The design of compliant mechanisms requires materials 
with a high ratio of strength to modulus R/E [1] or squared 
strength to modulus R2

∕E [3, 4]. Fiber reinforced plastics 
(FRP) feature high values of R2

∕E compared to other engi-
neering materials, which makes them particularly suitable 
for use in high-performance compliant mechanisms. How-
ever, the manufacture of compliant mechanisms from FRP 
is particularly challenging due to the large difference in wall 
thickness between the rigid and flexible segments. The inte-
gral manufacturing of cellular FRP structures consisting of 
rigid cell walls connected by SLFP is possible by using a 
weaving process that combines terry and spacer weaving [4, 
5]. However, manufacturing constraints require a transition 
region between both segments, resulting in a variable cross 
section of the flexural pivots. Additionally, the weaving 
process induces anisotropy due to manufacturing-specific 
effects such as asymmetrical layups, fiber undulations, 
matrix-rich transition regions with ply drop-offs, and local 
compaction in fiber arrangement. Both anisotropic material 
properties and variable cross sections must be given special 
consideration when modeling flexure hinges as SLFP using 
PRBM. Since these properties strongly depend on manu-
facturing, they can hardly be considered by an analytical 
approach. Therefore, an experimental test method is required 
to directly determine the bending stiffness of flexure hinges.

There are no standardized test methods for characterizing 
flexure hinges. Existing bending test methods involve the 
use of specimens with a constant thickness along the entire 
specimen length. However, the mechanical properties of 
constant cross-section specimens are not representative of 
the mechanical properties of thin-walled, anisotropic flexure 
hinges with a high thickness ratio and a transition zone. Few 
studies exist on the testing of flexure hinges. Smith et al. [6] 

experimentally investigated circular notch and elliptical flex-
ure hinges. The hinge stiffness was determined by applying 
a dead weight loading and measuring the deflection with a 
laser interferometer. The maximum angular deflection was 
set to 0.17° to limit the error caused by geometric effects. 
Similar experimental setups were used by Lobontiu et al. [7] 
investigating elliptical corner-filleted flexure hinges and by 
Linß et al. [8] studying semi-circular and corner-filleted 
flexure hinges. Zhu et al. [9] conducted fatigue tests on cir-
cular flexure hinges, while Dirkens and Lammering [10] 
determined natural frequencies of rectangular, circular and 
parabolic flexure hinges using laser scanning vibrometry. 
Valori et al. [11] examined injection-molded, corner-filleted 
flexure hinges in a test bench that applies a lateral force 
by pushing with a linear actuator. The test setups for flex-
ure hinges presented in the literature are limited to small 
deflections or do not apply pure bending loading. There is 
therefore a need for test methods that can capture the large 
deformation bending properties of flexure hinges.

New test methods for flexure hinges are derived by adapt-
ing existing test methods for constant cross-section speci-
mens. Tensile tests are generally not representative for the 
determination of flexural properties. From a physical point 
of view, the Young’s modulus (tensile modulus) and the 
flexural modulus of isotropic materials are identical [12, 
13]. In reality, the experimentally determined values dif-
fer slightly for plastics [14]. Moreover, tensile and flexural 
properties of anisotropic materials are usually not equiva-
lent [15–17]. Flexural properties are commonly determined 
by three-point bending or four-point bending tests, with 
four-point bending tests (FPBT) having the advantage of 
producing a constant bending moment at the center of the 
specimens. However, the FPBT, as shown schematically in 
Fig. 2(a), applies only to small deflections [18], whereas 
thin-walled specimens undergo large deformations until fail-
ure. Therefore, the standardized FPBT can only be used to 

(a) (b)

Fig. 1   Small-length flexural pivot (SLFP) with the equivalent stiff-
ness: a Compliant model and b its representation in a pseudo-rigid-body 
model (PRBM)

(d)(a)

(c) (e)(b)

Fig. 2   Schematic representation of different bending test methods for 
constant cross-section specimens: a Four-point bending test, b simple 
vertical test, c platen test, d large deformation four-point bending test, 
and e column bending test
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determine the flexural modulus of thin-walled specimens at 
small deflections, but not to determine the flexural proper-
ties at large deformations [19].

Various nonstandard bending test setups have been 
developed to account for large deformations. Simple verti-
cal tests determine the moment–curvature curve from the 
post-buckling behavior under compressive loading, with both 
ends of the specimens attached to a universal testing machine 
using tapes [20, 21], plates [22], or a buckling rig [23]. The 
experimental setup of a simple vertical test using tapes is 
shown schematically in Fig. 2(b). Disadvantages of the ver-
tical tests are gravity-induced lateral loads, leading to shear 
distortions of the specimens. In the platen test [24, 25], 180° 
bent U-shape specimens clamped between two plates are 
subjected to compressive loading, as shown in Fig. 2(c). 
However, transverse loads induce compressive strains at 
the specimens’ midsection leading to a highly nonuniform 
bending moment. The platen test can be applied to determine 
maximum curvature at failure, but does not represent well a 
pure bending condition. Several research groups designed 
complex devices for large deformation bending tests applying 
pure bending loading [26–29]. In the large deformation four-
point bending test (LD-FPBT) presented in [28], the speci-
mens are clamped between two carts that rotate and translate 
horizontally with the crosshead displacement, shown sche-
matically in Fig. 2(d). The LD-FPBT can accurately predict 
the specimens’ bending stiffness. However, failure occurs 
due to stress concentrations at the grips, and therefore, failure 
properties cannot be determined.

The column bending test (CBT) [30, 31] combines the 
advantages of the platen test and the LD-FPBT and can simul-
taneously determine the specimens’ stiffness and failure prop-
erties. The CBT, as shown schematically in Fig. 2(e), requires 
a test fixture with two rotatable fixture arms and applies a 
nearly pure bending loading. The mechanical properties of 
the specimens are determined by using a simple kinematic 
analysis that calculates bending moment and curvature. 
NASA applies the CBT to characterize thin-ply, high-strain 
composites for deployable booms in satellite structural appli-
cations [32, 33]. Moreover, several research groups recently 
utilized the CBT method. Rose et al. [34] characterized stress 
relaxation of thin-ply high-strain composites using a long-term 
CBT fixture, while Firth and Pankow [35] investigated the 
strain energy stored in coiled spacecraft booms by bending 
flattened booms. Zehnder et al. [36] used micron scale X-ray 
computed tomography to track the deformation of fibers in 
laminates at large bending deformations, and Gao et al. [19] 
studied the influence of temperature and asymmetric weave 
structure on the flexural properties of single-ply composites 
at large deformations. The studies of Rose et al. [37] and 
Long et al. [38] were on the numerical modeling of the CBT. 
A combined modeling and testing approach is presented by 
Yapa Hamillage et al. [39] evaluating the effects of weave 

architecture on the relaxation response of thin-ply compos-
ites. Most recently, Aller et al. [40] investigated the bending 
behavior of thin composite shells with embedded fiber Bragg 
grating sensors using the CBT.

This paper presents novel test methods for variable cross-
section flexure hinges subjected to large deformations and pure 
bending loading. The objective is to determine the bending 
stiffness of flexure hinges over their entire deflection range. 
The bending stiffness is required for modeling the SLFP in 
the PRBM, as shown in Fig. 1. The novel test methods for 
flexure hinges are based on the tensile test, the FPBT and the 
CBT, which were initially formulated for constant cross-sec-
tion specimens. They are validated by comparing specimens 
with constant and variable cross sections and using isotropic 
materials with well-known properties. Anisotropy due to FRP 
is a comprehensive topic on its own and is not covered in this 
paper, but will be addressed in detail in a follow-up paper.

This paper is structured as follows: The “Materials  
and Methods” briefly presents the selection of test methods 
and test specimens investigated. The following sections “Ten-
sile Test”, “Column Bending Test” and “Four-Point Bending  
Test” describe the individual test methods in detail, includ-
ing the experimental setup, the adaptions made for con-
sidering the shape of flexure hinges, validation by image 
processing, and the test results. The “Discussion” compares 
the different test methods and outlines limitations of each 
method, whereas the “Conclusion” summarizes this paper 
and highlights future research.

Materials and Methods

Test Methods

This study investigates flexure hinges under axial and pure 
bending loading. Since there are no test methods for flexure 
hinges subjected to large deformations, this study derives 
three different mechanical tests by adapting existing test 
methods initially formulated for constant cross-section 
specimens. First, tensile tests are performed as a reference. 
Second, an adapted CBT (aCBT) method is derived since the 
literature shows high potential of CBT for determining large 
deformation bending properties of thin-walled specimens. 
Finally, an adapted FPBT (aFPBT) method is derived since 
FPBT are commonly used and well understood.

Test Specimens

Standardized specimens and flexure hinge specimens are 
used in each of the three tests. Table 1 lists all types of test 
specimens investigated in mechanical testing.

The geometry of the flexure hinge specimens is shown 
in Fig. 3. While circular flexure hinges have higher preci-
sion due to a well-defined axis of rotation, corner-filleted 
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flexure hinges enable larger deformations [6, 8]. This study 
investigates a modified version of a corner-filleted flexure 
hinge that has two opposite radii at each end. The shape 
of the hinge transition zone is governed by manufacturing 
constraints associated with integral FRP production [4, 5]. 
Although anisotropy is beyond the scope of this paper, the 
overall aim is to extend the test methodology to anisotropic 
materials, whereas isotropic materials are used for validation.

Standardized specimens are examined for comparison. 
For the tensile test, standard dog-bone shaped specimens 
according to ISO 527-2 [41] are used. For the FPBT and 
CBT, rectangular plates with the same edge dimensions as 
for the flexure hinges (68 mm × 25 mm) are investigated. 
The rectangular plates used in the FPBT have a thickness 
of 3 mm and comply with ISO 14125 [18], whereas the 
plates used in the CBT have a thickness of 0.5 mm.

Two different materials are investigated in mechanical 
testing: AlMg3, a metal with a distinct linear-elastic region 
and well-known mechanical properties, and PA6, a thermo-
plastic material that will also be used as the matrix compo-
nent for FRP specimens in subsequent work. The specimens 
are manufactured by CNC milling. Six specimens per test 
batch are used to determine the 95 %-confidence interval 
(CI) of the mean value.

Tensile Test

Tensile tests are performed according to ISO 527-2 [41], 
examining standard dog-bone shaped specimens and flex-
ure hinge specimens. This section presents the experimental 

setup and derives two correction factors to account for the 
variable specimen cross section and the compliance of 
the test setup when using no direct strain measurement 
technique.

Experimental Setup

Tensile tests are conducted on a universal testing machine 
from the manufacturer Instron (type 5966) equipped with a 
10 kN load cell. Figure 4 shows the test setup of the tensile 
test. The specimens are clamped using side-action grips at a 
constant clamping force applied with a torque wrench. The 
preload is approximately 1 % of the maximum load observed 
in preliminary tests for each specimen type.

For the standard dog-bone shaped specimens, the strain 
is measured directly with a mechanical clip-on extensometer 
with a gauge length of L0 = 50mm (type Instron 2630-111, 
see Fig. 4(a)). Each specimen is tested at two test speeds:  
A first speed to determine the Young’s modulus and a sec-
ond speed to determine tensile strength and strain at break. 
The first test speed is 1 mm min−1 , resulting in a strain 
rate of approximately 1 % min−1 . The second test speed is  
5 mm min−1 and 50 mm min−1 for AlMg3 and PA6 specimens,  
respectively.

The flexure hinge specimens feature a variable cross 
section within the gauge length, for which there are no 
standardized test methods. Therefore, the test procedure 
of ISO 527-2 is adapted to the hinge-specific boundary 
conditions. Strain is calculated from crosshead displace-
ment, since the specimen length is too short to attach a 
clip-on extensometer and strain gauges can interfere with 
the measurement when attached to small and thin-walled 
specimens [42]. However, to receive accurate strain values, 
correction factors for machine compliance and gauge length 

Table 1   Test specimens used for the different test methods

Method Test specimens

Tensile test Flexure hinge (according to Fig. 3)
Dog-bone shaped (ISO 527-2, type 1B)

FPBT Flexure hinge (according to Fig. 3)
Rectangular plate ( 68 mm × 25mm × 3mm)

CBT Flexure hinge (according to Fig. 3)
Rectangular plate ( 68 mm × 25 mm × 0.5 mm)

Fig. 3   Nominal dimensions of the investigated flexure hinge speci-
mens (lengths are in mm)

Fig. 4   Tensile test setup: a  Standard dog-bone shaped specimen 
according to ISO  527-2 (specimen type 1B) with extensometer. 
b Flexure hinge specimen
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are applied, as described subsequently. The first test speed 
is set to 0.125 mm min−1 , resulting in the same strain rate of 
approximately 1 % min−1 as for the dog-bone shaped speci-
men due to the difference in gauge length. The second test 
speed is 0.5 mm min−1 and 5 mm min−1 for AlMg3 and PA6 
specimens, respectively.

Correction of Machine Compliance and Gauge Length

No direct strain measurement technique is applied when 
testing the flexure hinge specimens. Therefore, the strain 
is determined from crosshead displacement. In that case, 
two effects have to be considered. First, the crosshead dis-
placement ΔX is not identical to the elongation of the spec-
imens, i.e. the increase of the gripping distance, ΔL due 
to compliance in the test setup. Second, the cross section 
and thus the strain are not uniform along the specimens’ 
length for both the dog-bone shaped and the flexure hinge 
specimens. Different segments of the specimens contribute 
differently to the elongation ΔL , depending on the local 
cross-sectional area. Jia and Kagan [43] describe a method 
that accounts for both effects and improves the accuracy in 
strain measurement if the strain is calculated from crosshead 
displacement. This method is adapted in the current work 
and extended to account for the specific geometry of flexure 
hinge specimens.

To consider the first effect, the measured crosshead 
displacement

is corrected for the total compliance Ctotal of the test setup to 
obtain the elongation of the specimens ΔL . The compliance 
of the test setup is assumed to be proportional to the load P. 
Figure 5(a) shows the definition of ΔX and ΔL.

The total compliance Ctotal = Cmachine + Cclamping is the sum  
of the machine compliance and the material-specific compli-
ance within the grips. For the test setup used in this work, the  
machine compliance is determined experimentally to 
Cmachine = 56.6 μm kN−1 using a massive steel specimen with 
high tensile stiffness. Cmachine includes deformation from the 
load frame, the crosshead beam, the load cell, and the grips, 
but does not include the material-specific deformation of the 
specimens within the grips. Jia and Kagan [43] found that a 
significant part of the compliance occurs within the clamping  
area and depends on the specimens’ Young’s modulus. 
The total material-specific compliance is determined to 
Ctotal,AlMg3 = 59.7 μm kN−1 and Ctotal,PA6 = 179.0 μm kN−1 
by comparing the crosshead deformation with the deformation  
measured with an extensometer on the dog-bone shaped speci-
mens. The compliance increases with decreasing material stiff-
ness, which is in accordance with findings presented in the 
literature [42, 43]. The machine compliance Cmachine is valid  

(1)ΔX = ΔL + CtotalP

for the entire force range of the testing machine, whereas 
Cclamping is valid only within the linear stress–strain region.

To address the second effect, a correction factor is derived 
to compensate for the variable specimen cross section. The 
elongation

is the integral of the strain �(x) along the length of the speci-
mens, i.e. the initial gripping distance L, whereas the thick-
ness h(x) of the specimens is variable within the gripping 
distance. Equation (2) is derived using Hooke’s law and is 
therefore restricted to the linear region of the stress–strain 
curve. Further, it is assumed that the stresses and strains are 
uniform in each cross section [43].

For determining the strain �h(x)=h1 in the thin-walled center 
region of the variable cross-section specimen, a corrected 
gauge length L∗

0
 is defined. The corrected gauge length L∗

0
 is 

the length of an equivalent rectangular specimen with constant 
thickness h(x) = h1 that would result in the same elongation

as the actual specimens with variable thickness h(x).
By comparing the right side of equation (2) and the right 

side of equation (3), L∗
0
 is determined to

To solve the integral in equation (4), the specimens are 
divided into segments i with the lower bound xl,i and  

(2)ΔL = ∫
L

2

−
L

2

�(x)dx = 2∫
L

2

0

�(x)

E
dx =

2P

Eb ∫
L

2

0

dx

h(x)

(3)ΔL = �h(x)=h1
L∗
0
=

P

Ebh1
L∗
0

(4)L∗
0
= 2h1 ∫

L

2

0

dx

h(x)
= 2h1

∑
i
∫

xu,i

xl,i

dx

hi(x)
.

(a) (b) (c)

Fig. 5   Definition of geometric parameters in the tensile test: a Cross-
head displacement ΔX and specimen elongation ΔL b Flexure hinge 
specimen. c Standard dog-bone shaped specimen
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upper bound xu,i , in which an analytic function for the 
thickness hi(x) can be derived (see Fig. 5(b), (c)). Table 2  
shows the segment boundaries and piecewise-defined 
functions for calculating the thickness hi(x) of each seg-
ment. Only one half of the symmetrical specimens is  
considered, whereby x = 0 lies in the symmetry plane of 
the specimens.

The piecewise-defined integrals in equation (4) are solved 
numerically with global adaptive quadrature.1 The corrected 
gauge length results in L∗

0,dog-bone
= 97.85mm and 

L∗
0,hinge

= 8.25mm for the dog-bone shaped and the flexure 
hinge specimens.

In summary, by combining equations (1) and (3), the strain

is determined from crosshead displacement, corrected for 
both the compliance of the test setup and the variable speci-
men cross section. In equation (5), the crosshead displace-
ment ΔX and the load P are directly measured by the testing 
machine, L∗

0
 is a geometry-dependent parameter, and the 

total compliance Ctotal is a parameter dependent on the test 
setup and the specimen material.

The Young’s modulus is determined as the slope of the 
linear fit of a least-squares regression between �1 = 0.05% 
and �2 = 0.25% for PA6 specimens (according to 
ISO 527-1 [44]) and in the linear region of the stress–strain 
curve for AlMg3 specimens (according to method 2 in 
DIN EN 2002-001 [45]).

Test Results

Figure 6 shows the stress–strain curves of the dog-bone 
shaped specimens using different strain calculation meth-
ods.2 The detailed view in the figure highlights the strain 
range used to determine the Young’s modulus. The deviation 
between the strain � = �extensometer measured directly with an 

(5)� =

ΔL

L∗
0

=

ΔX − CtotalP

L∗
0

Table 2   Thickness hi(x) for 
each segment i relative to 
the symmetry plane of the 
specimens

 aL
1
= 60mm , L

2
= 108mm , L = 108mm , h

1
= 10mm , h

2
= 20mm , r = 60.1mm , b = 4mm

  bL
1
= 5mm , L

2a = 7mm , L
2b = 9.47mm , L

2
= 11.47mm , L = 15mm , h

1
= 0.5mm , h

2
= 3mm , 

r = 2mm , b = 25mm

Specimen Segment[�
�,�
, �

�,�
] Shape Thickness�

�
(�)

Dog-bone shaped
(ISO 527-2, type 1B)a

[
0, L

1
∕2

]
constant h

1

[
L
1
∕2, L

2
∕2

]
circular

−2

√
r2 − x2 + 2r + h

1[
L
2
∕2, L∕2

]
constant h

2

Flexure hingeb
[
0,L

1
∕2

]
constant h

1[
L
1
∕2,L

2a∕2
]

circular
−2

√
r2 − x2 + 2r + h

1[
L
2a∕2,L2b∕2

]
linear

2x
h
2b − h

2a

L
2b − L

2a

+ h
2a

[
L
2b∕2,L2∕2

]
circular 2

√
r2 − (x − r∕2)2 − 2r + h

2[
L
2
∕2,L∕2

]
constant h

2

1  For verification, the integrals in equation  (4) are also solved ana-
lytically for the dog-bone shaped specimen:

The results using this analytical equation and the numerical integra-
tion of the integrals are identical. Therefore, numerical integration is 
suitable to avoid the tedious derivation of the analytical integrals of 
hi(x) for flexure hinge specimens.

L∗
0
= L

1
+

h
1

h
2

(L − L
2
) +

√
h
1√

h
1
+ 4r

⋅

⎡⎢⎢⎢⎢⎣
(h

1
+ 2r) arctan

⎛⎜⎜⎜⎜⎝

(h
1
+ 2r)(L

2
− L

1
)

2
√
h
1
(h

1
+ 4r)

�
r2 −

�
L2−L1

2

�2

⎞⎟⎟⎟⎟⎠

+ (h
1
+ 2r) arctan

�
L
2
− L

1√
h
1
(h

1
+ 4r)

�

−

√
h
1
(h

1
+ 4r) arctan

⎛⎜⎜⎜⎜⎝

L
2
− L

1

2

�
r2 −

�
L2−L1

2

�2

⎞⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎦
2  The stress–strain curves of the AlMg3 specimens feature oscilla-
tions occurring behind the yield point. This unstable plastic flow is 
typical for some alloys, including AlMg3, and is called Portevin-Le 
Chatelier effect [46, 47]. The instabilities caused by the Portevin-Le 
Chatelier effect form localized strain bands and appear as serrations 
in the stress–strain curve. Microscopically, the effect is based on 
dynamic strain aging defined by interactions between diffusing solute 
atoms and moving dislocations [48].
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extensometer and the strain � =
ΔX

L1
 without corrections is 

large. Considering the corrected gauge length L∗
0
 and the 

total compliance Ctotal of the test setup, the strain 
� =

ΔX−CtotalP

L∗
0

 determined from the crosshead displacement 

almost matches the directly measured strain � = �extensometer 
for both AlMg3 and PA6.

Figure 7 compares the stress–strain curves of the dog-
bone shaped and the flexure hinge specimens when applying 
� =

ΔX−CtotalP

L∗
0

 and � =
ΔX

L1
 . The shading indicates the 95 %-CI 

of the mean of each test batch. The enlarged shaded area at 
large strains results from material failure due to local neck-
ing of individual specimens. For both AlMg3 and PA6, the 
linear region in the stress–strain curves of the flexure hinge 

(a) (b)

Fig. 6   Comparison of different strain calculation methods in the tensile test on standardized dog-bone shaped specimens: a AlMg3 and b PA6

(a) (b)

Fig. 7   Comparison of dog-bone shaped and flexure hinge specimens in the tensile test. The strain is calculated with � =

ΔX−CtotalP

L
∗

0

 and � =
ΔX

L1

 . 
The shading represent the 95 %-confidence interval (CI) of the mean: a AlMg3 and b PA6
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specimens matches that of the dog-bone shaped specimens 
when both correction factors are applied (until � ≈ 0.5% for 
AlMg3 and � ≈ 1% for PA6), whereas the difference is large 
without applying the correction factors. The nonlinear 
region is outside the valid domain of the correction factors, 
but extending the method to the nonlinear region is possible 
by using a more complex nonlinear formulation for � = �(�) 
in equation (2) instead of Hooke’s law.

While the corrected strain values are only valid within 
the linear stress–strain region, no corrections are required 
for the stress values, which are accurate for the entire test 
cycle. The tensile strength of both specimen types is marked 
with black triangles in Fig. 7.

Figure 8 compares the Young’s modulus of the dog-bone 
shaped and the flexure hinge specimens using different 
strain calculation methods. The figure shows the effect of the 
individual correction factors on the Young’s modulus. The 
effect of machine compliance is more pronounced for the 
AlMg3 specimens, as the applied loads are higher than for 
the PA6 specimens. When applying both correction factors, 
the modulus determined from the crosshead displacement 
matches between the dog-bone shaped and flexure hinge 
specimens, although the specimens’ cross sections and the 
force intervals differ greatly.

Column Bending Test

Fernandez and Murphey [30] presented a novel test method 
for evaluating the nonlinear bending behavior of thin-ply, 
high-strain composites subjected to large bending deforma-
tions. The test method determines the moment–curvature 

relationship in the geometrically nonlinear region at large 
strains and is distinguished by its simplicity, as it applies a 
geometric closed-form solution (GCFS) solely measuring 
the crosshead displacement ΔX and the applied load P on 
a universal testing machine.

Test Method for Rectangular Plate Specimens

The CBT is a uniaxial test method using a specifically 
designed CBT fixture. The specimen is clamped at both 
ends in the fixture arms. Pin joints allow free rotation of 
the fixture arms. The specimen’s neutral axis is slightly 
offset from the loading axis so that the specimen bends 
when an axial force is applied. Axial and shear loads 
are negligible compared to the bending moment, as the 
moment arm increases rapidly after the test begins.

Figure 9 schematically shows the CBT setup with its 
geometrical definitions. Herein, L0 is the gauge length 
of the specimen (assumed to be constant during the test 
as compressive loading is negligible), La,eff the effective 
length of the fixture arm, � the initial angle of the fixture 
arm (defined by the clamping offset Loff ), � the deflec-
tion angle (change in fixture arm angle), ΔL the vertical 
displacement of the fixture pin joints (crosshead displace-
ment ΔX corrected for the compliance of the test setup), P 
the load applied by the testing machine, and r the effective 
moment arm. These definitions allow the derivation of a 
GCFS for the bending moment and specimen curvature.

For the derivation of the GCFS, it is assumed that the cur-
vature of the specimen is constant along the gauge length, so 
that the specimen forms a circular arc. In reality, the curva-
ture is maximum at the specimen’s midsection and decreases 

(a) (b)

Fig. 8   Young’s modulus obtained by different strain calculation methods on dog-bone shaped and flexure hinge specimens in the tensile test. 
Data are presented with the 95 %-CI of the mean: a AlMg3 and b PA6



1211Experimental Mechanics (2023) 63:1203–1222	

towards the grips. However, this difference is small if the 
dimensions of the CBT fixture are chosen appropriately [31, 
49]. The curvature � is the reciprocal of the bending radius 
of a circular arc with the length L0 and central angle � . The 
maximum strain � occurs on the outer surface of the speci-
men with the thickness h and is defined by

assuming the neutral axis is at the midplane of the specimen 
and the material behavior is linear-elastic.

The deflection angle � of the fixture arms is identical to 
the angle of the circular arc defined by the curved speci-
men, as shown in Fig. 9, assuming the specimen leaves the 
fixture arm perpendicularly. The relationship between the 
angle � and the vertical displacement of the fixture pin 
joints ΔL is geometrically defined by

requiring an implicit numerical solution for � [31].

(6)� = �

h

2
with � =

�

L0
,

(7)
ΔL

L0
= 1 −

2

�

sin
�

2
+ 2

La,eff

L0

(
cos � − cos

(
� +

�

2

))
,

The bending moment M varies linearly with the dis-
tance to the pin joints, being maximum at the specimen’s 
midsection and decreasing towards the grips. The maxi-
mum bending moment

at the specimen’s midsection is given by the load P and the 
effective moment arm r. The latter is derived based on trigo-
nometric relations (see Fig. 9 and [31]).

The bending stress given by beam theory is proportional 
to the bending moment. The maximum stress at the outer 
surface of the specimen’s midsection is

The flexural modulus

is determined either from the moment–curvature curve or 
the stress–strain curve. The flexural modulus is calculated 
as the slope of the linear fit of a least-squares regression 
between �1 = 0.05% and �2 = 0.25% for PA6 specimens and 
in the linear stress–strain region for AlMg3 specimens.

Discussion of the Model Assumptions

Four recent studies evaluate the assumptions made to 
derive the GCFS as described above. Fernandez and Mur-
phey [30] used digital image correlation (DIC) to evaluate 
the rotation angle and the strain at the tension and com-
pression side of the specimens. The study shows good cor-
respondence between the calculated values and the DIC 
results. They also compared the bending stiffness Mmax∕� 
obtained from CBT with theoretical values predicted with 
micromechanics, resulting in a difference below 10 % in 
most investigated cases.

Sharma et al. [31] compared the GCFS, which assumes 
constant curvature, with Euler’s elastica theory, which can 
predict variable curvature along the specimen. The dif-
ference in calculated curvature between both prediction 
methods disappears when the specimen’s gauge length L0 
is significantly shorter than the length of the fixture arms 
La,eff . The error is below 12 % if La,eff∕L0 = 1 and below 
5 % if La,eff∕L0 = 4.

Sharma et al. [50] provide a correction factor for the cur-
vature and bending stiffness to improve the accuracy of the 
GCFS. The correction factor is defined as the ratio between 
the exact results obtained by Euler’s elastica theory and 

(8)

Mmax = Pr = P

[
L0

�

(
1 − cos

�

2

)
+ La,eff sin

(
� +

�

2

)]

(9)�max =
6Mmax

bh2
.

(10)Ef =
ΔMmax

IΔ�
=

Δ�max

Δ�

Fig. 9   Definition of angles and lengths in the column bending test 
(CBT)
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those of the GCFS. Applying this correction factor decreases 
the error for La,eff∕L0 = 0.25 from about 20 % [31] to below 
2 % [50]. The parabolic fit derived in that study is valid 
between La,eff∕L0 = 0.25 and La,eff∕L0 = 4.

Gao  et  al.  [49] conducted similar investigations to 
Sharma et  al.  [31, 50] and achieved similar results. By 
comparing the GCFS with Euler’s elastica theory, they con-
clude that the accuracy increases with increasing La,eff∕L0 
and with larger offset values Loff . They recommend using 
La,eff∕L0 > 2 , resulting in a curvature error < 5.7% and a 
bending moment error < 0.32% in that specific case.

In summary, the GCFS is accurate if the ratio La,eff∕L0 
is appropriately chosen in the design of the CBT fixture. 
Otherwise, a correction factor should be applied to compen-
sate for the nonconstant curvature caused by a small ratio 
of La,eff∕L0 . In addition, Ubamanyu and Pellegrino [51] 
observed that the curvature error increases with smaller L0 
due to the increasing significance of edge effects.

Adapted Test Method for Flexure Hinge Specimens

Rectangular plate specimens are tested as described above, 
but testing flexure hinge specimens requires an adapted CBT 
(aCBT) method. The adaptions refer to the gauge length and 
the free length of the specimens.

First, the gauge length of the specimens is affected by the 
hinge transition zone, since some deflection occurs in the transi-
tion between the flexible and rigid segments of the specimens. A 
corrected gauge length L∗

0f
 is derived by defining an equivalent 

flexure hinge with the length L∗
0f

 and constant rectangular cross 
section, which has the same hinge stiffness K as the actual flexure 
hinge with transition zone. Paros and Weisbord [52] present 
expressions for determining the stiffness of single-axis and two-
axis flexure hinges under combined loading by integration over 
the entire length of the flexure hinge. While Lobontiu et al. [53] 
provide closed-form equations for the stiffness factors of single-
axis corner-filleted flexure hinges, Smith et al. [6] present an 
approximate expression for elliptical hinges subjected to pure 
bending loading. Assuming that the bending moment is constant 
over the gauge length, the bending stiffness

of the flexure hinge shown in Fig. 3 is determined by inte-
gration over the length of the flexible segment with variable 
thickness h(x).

The stiffness K of an equivalent rectangular flexure hinge 
with constant thickness h1 and length L∗

0f
 is given by

(11)1

K
= 2∫

L

2

0

dx

EI(x)
= 2

12

Eb ∫
L

2

0

dx

h3(x)

(12)
1

K
=

12

Ebh3
1

L∗
0f
.

By comparing the right side of equation (11) and the right side 
of equation (12), L∗

0f
 is determined in the bending case to

Equation (13) is solved using the same procedure as in the 
tensile case (cf. equation (4)). The corrected gauge length 
results in L∗

0f ,hinge
= 6.19mm by applying equation (13) to 

the geometric dimensions of the flexure hinge specimens 
given in Table 2.

The calculated value of L∗
0f

 is assessed by comparison with 
a finite element analysis (FEA). Therefore, the flexure hinge 
specimen from Fig. 3 is modeled as a three-dimensional solid 
structure using the simulation software ANSYS. The hinge is 
fixed at one end and subjected to a pure bending moment at 
the opposite end. The corrected gauge length determined by 
means of FEA is L∗

0f ,hinge,FEA
= Ebh3

1
∕12 ⋅ �∕M = 6.01mm , 

where � is the angular deflection of the flexure hinge due to 
the applied moment M. The deviation between the value cal-
culated by equation (13) and the value determined by FEA is 
less than 3 %.

Second, unlike for rectangular plate specimens, the free length 
of the flexure hinge specimens, i.e. the length of the specimens 
that is not clamped in the fixture arms, is not identical to the 
gauge length L∗

0f
 . Assuming that all the deformation occurs 

within L∗
0f

 , the remaining free length of the specimens is counted 
as part of the fixture arm length La,0 = (L − L∗

0f
)∕2 . Figure 10 

visualizes that the modifications also affect � and La,eff.

(13)L∗
0f
= 2h3

1 ∫
L

2

0

dx

h3(x)
= 2h3

1

∑
i
∫

xu,i

xl,i

dx

h3
i
(x)

.

Fig. 10   Definition of geometric parameters in the adapted CBT 
(aCBT) on flexure hinge specimens



1213Experimental Mechanics (2023) 63:1203–1222	

Experimental Setup

A universal testing machine from the manufacturer Instron 
(type 5567) with a 1 kN load cell is used. The CBT requires 
a test fixture, which is replicated by the authors of this study 
based on the data presented by Sharma et al. [31]. The fix-
ture is fabricated in a stereolithography process using a Form 
2 3D printer and the photosensitive polymer Clear v4 from 
the manufacturer Formlabs. The fixture arms and the fixture 
frame are rotatably connected by a steel rod, with sleeve 
bearings reducing friction. Figure 11 shows the CBT fixture 
mounted in the testing machine.

The fixture arm length and the clamping offset are set to 
La,0 = 30mm and Loff = 1mm + h∕2 considering the recom-
mendations of Sharma et al. [31] and Gao et al. [49] discussed 
above. This results in a ratio of La,eff∕L0 = 1.5 for the rectan-
gular plate specimens. When applying the aCBT method, the 
dimensions are La,0 = 36.9mm , Loff = 1mm + h2∕2 and 
La,eff∕L

∗

0f
= 6.0 for the flexure hinge specimens (cf. Figs. 9 

and 10). The specimens’ gauge length is short compared to 
the length of the fixture arms, minimizing the error in curva-
ture and bending moment caused by applying the GCFS. 
Gravity effects described by Fernandez and Murphey [30] can 
be neglected by using a counterweight-balanced test 
fixture [31].

Each specimen is tested at two test speeds. The first test 
speed is used to determine the flexural modulus and corre-
sponds to an average strain rate of approximately 1 % min−1 , 
depending on the specimen thickness and gauge length. The 
test continues with a second test speed of 10 mm min−1 until 
maximum specimen deflection.

The crosshead displacement ΔX is not identical to the 
vertical displacement of the fixture pin joints ΔL due to 
compliance in the testing machine and in the CBT fixture. 
The compliance of the test setup shown in Fig. 11 is cor-
rected by applying equation (1) and is determined experi-
mentally to CCBT = 2.5 μm N−1 using a steel specimen with 
the dimensions 69.5 mm × 25 mm × 3 mm. The bending 
stiffness of the steel specimen is at least two orders of mag-
nitude larger than that of the PA6 and AlMg3 test specimens.

Instead of applying a preload, toe compensation is imple-
mented similarly as described in ASTM D6272  [54] to 
account for alignment, slack, and seating of the specimens 
and the fixture. The toe compensation is performed by con-
structing a tangent to the maximum slope at the inflection 
point of the force–displacement curve.

Validation by Image Processing

The accuracy of the CBT and aCBT is evaluated by com-
paring deflections calculated by the GCFS with deflec-
tions measured by means of image processing. Images are 

captured during testing using a Canon EOS 5D Mark IV 
camera with a ZEISS Milvus 2/100M planar lens. Image 
processing determines the deflection angle � , the curvature 
� , and the moment arm r.

Figure 12 shows that the GCFS accurately predicts the 
deflection angle � and the moment arm r over the entire 
deflection range with an error below 0.7 % and 2 % for the 
rectangular plate and flexure hinge specimen. Furthermore, the 
images confirm that the assumption of constant curvature along 
the specimens’ gauge length is valid even at large deflections. 
However, the curvature � is overpredicted by approximately 
8 % for the rectangular plate specimen and underpredicted by 
approximately 6 % for the flexure hinge specimen.

The error in � is likely due to a deviation in gauge length, 
since � depends only on � and L0 . The overprediction of � for 
rectangular plate specimens implies that the specimens do not 

Fig. 11   CBT fixture mounted in the testing machine
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leave the fixture arms perpendicularly and some deformation 
occurs within the clamping area. The compliance found for the 
CBT setup can be reduced by using a more rigid fixture made of 
metal instead of 3D-printed plastic components in future studies.

On the other hand, the underprediction of � for flexure hinge 
specimens reduces from approximately 6 % to 3 % when using 
L∗
0f ,hinge,FEA

= 6.01mm determined by means of FEA instead 
of L∗

0f ,hinge
= 6.19mm calculated by equation (13).

The maximum curvature obtained with the used CBT 
setup is � = 0.14mm−1 and � = 0.40mm−1 for rectangular 
plate and flexure hinge specimens.

Test Results

Figure 13 compares the stress–strain curves of the rectangular 
plate and the flexure hinge specimens. The detailed view in 

the figure shows the flexural modulus Ef  for both specimen 
types. Failure is not observed in CBT because the materials 
investigated are ductile and have large strains at break.

For AlMg3 specimens, the shape of both curves is very 
similar, as would be expected for isotropic materials. The 
flexural modulus is within the 95 %-CI of the mean of the 
Young’s modulus from the tensile test shown in Fig. 8. For 
PA6, the rectangular plate specimens have been excluded 
from this study because specimens of the desired material 
with the required wall thickness and geometric accuracy 
were not available.

The flexural modulus of the PA6 flexure hinge specimens 
is 19 % higher than their Young’s modulus. One possible 
reason is friction in the fixture’s bearings, which can become 
significant at very low loads, as in the case of PA6 (below 
3 N for PA6, but up to 55 N for AlMg3 specimens). Addi-
tionally, the data of the PA6 specimens are noisy since the 

(a)

(b) (c)

Fig. 12   Validation of the CBT and aCBT by comparing deflections calculated by the GCFS with deflections measured by image processing: 
a Rectangular plate specimen at ΔX = 50mm . b Flexure hinge specimen at ΔX = 50mm . c Deflection angle � , curvature � and moment arm r 
as a function of the crosshead displacement ΔX
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applied forces are small, and not within the force range of 
10 N to 1000 N to which the load cell is calibrated. Using 
a load cell with a lower force range is recommended to get 
more precise results in future studies.

Four‑Point Bending Test

The standardized FPBT described in ISO 14125 [18] applies 
Euler-Bernoulli beam theory, which is limited to small 
deflections. This standardized method is extended in this 
study by additionally considering the variation of the contact 
points at large deflections, when testing rectangular plate 
specimens. The adapted FPBT (aFPBT) method for flexure 
hinges applies a GCFS that calculates the specimen’s cur-
vature from its deflection angle.

Experimental Setup

FPBT are conducted on a universal testing machine from the 
manufacturer Instron (type 5567) equipped with a 1 kN load 
cell and using a custom-made FPBT fixture. Figure 14 shows 
the FPBT fixture with its geometric dimensions, and the rec-
tangular plate and flexure hinge specimen during testing. 
The load span and the support span are set to LP,0 = 20mm 
and L0 = 55mm , and the radii at loading noses and supports 
are rinner = 3mm and router = 5mm , respectively. A deflec-
tometer measures the midspan deflection s relatively to the 
loading noses.

Each specimen is tested at two test speeds. The first 
one is used to determine the f lexural modulus and 

corresponds to a strain rate of approximately 1 % min−1 , 
depending on the specimen thickness and gauge length. 
The test continues with a second test speed of 5 mm min−1  
until maximum specimen deflection. The preload is 
approximately 1 % of the maximum load observed in 
pretests for each specimen type.

The crosshead displacement ΔX is not identical to the 
vertical displacement of the loading noses due to compli-
ance in the testing machine and in the FPBT fixture. The 
compliance of the test setup shown in Fig. 14 is corrected 
by applying equation (1) and is determined experimentally 
to CFPBT = 0.15 μm N−1 using a massive steel specimen with 
the cross-sectional dimensions of 50 mm × 14.9 mm.

Test Method for Rectangular Plate Specimens 
Considering the Variation of the Contact Points

The standardized FPBT method assumes that the contact 
points remain constant during the test. However, the loading 
noses and supports of the FPBT fixture are not sharp but 
have a radius, resulting in a variation of the contact points 
between fixture and specimen as the specimen deflects. As 
a result of horizontal displacements, the support span L and 
external span LA decrease, and the load span LP increases. 
Vertical displacements reduce the effective crosshead dis-
placement ΔXe . Figure 15 shows the effects of horizon-
tal and vertical displacements that are calculated using 
equations (14)–(16).

(14)LA = LA,0 − rinner sin(�inner) − router sin(�outer)

(a) (b)

Fig. 13   Comparison of rectangular plate specimens evaluated by the CBT method and flexure hinge specimens evaluated by the aCBT method. 
The shaded areas represent the 95 %-CI of the mean: a AlMg3 and b PA6
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Rectangular plate specimens are tested according 
to ISO 14125  [18], assuming the deflection curve w is 
described by an Euler-Bernoulli beam. The angles �inner and 
�outer are obtained from the first derivative w�

= − tan(�) of 
the beam’s deflection curve:

Equations (17) and (18) are simplified with 
� = �∕E = 3PLA∕(Ebh

2
)  [55]. The calculation of the 

(15)LP = LP,0 + 2rinner sin(�inner)

(16)
ΔXe = ΔX − rinner(1 − cos(�inner))

− router(1 − cos(�outer))

(17)
�inner = arctan

(
3P

Ebh3
LALP

)

= arctan

(
LP

h
�

)

(18)
�outer = arctan

(
3P

Ebh3

(
L2
A
+ LALP

))

= arctan

(
LA + LP

h
�

)

deflection angles requires an implicit numerical solu-
tion, as LA and LP depend on �inner and �outer . In contrast, 
Mujika et al. [55] consider the variation of the contact points 
by assuming small deflections ( sin(�) ≈ � and tan(�) ≈ � ), 
which allows for an explicit solution of �inner and �outer.

For rectangular plate specimens, the flexural modulus

is determined by deriving the deflection curve of an Euler-
Bernoulli beam using the corrected span values.

Adapted Test Method for Flexure Hinge Specimens

When comparing flexure hinge specimens to rectangular 
plate specimens, the deformation of the flexure hinge is 
concentrated on the flexible segment, whereas the outer 
segments are assumed to be rigid. Therefore, the equations 
given by the standardized FPBT method [18] using Euler-
Bernoulli beam theory are not applicable for flexure hinge 
specimens. Figure 16 shows the deflected flexure hinge 
specimen and the definition of relevant geometric param-
eters. A new system of equations must be defined to deter-
mine the stress–strain curve of the flexure hinge.

The aFPBT method applies the same assumptions made 
to derive the GCFS used in the aCBT. When assuming con-
stant curvature along the specimen’s gauge length, the speci-
men forms a circular arc with the length L∗

0f
 and central 

angle � , as shown in Fig. 16. Applying equation (6) results 
in

(19)Ef =
LA

4bh3
(4LA(2LA + 3LP) + 3L2

P
)

ΔP

ΔX + Δs

(20)� =

�

L∗
0f

=

2�

L∗
0f

.

(a)

(b)

Fig. 14   Four-point bending test (FPBT) setup: a  Rectangular plate 
specimen according to ISO 14125. b Flexure hinge specimen

Fig. 15   Definition of geometric parameters in the FPBT on rectangu-
lar plate specimens, including horizontal and vertical displacements 
due to the variation of the contact points. The figure shows one half 
of the symmetrical test setup
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The length L∗
0f

 of the flexible segment is given by equa-
tion (13), similar to the aCBT. The angle � of the circular arc 
is equal to twice the deflection angle � . Since no deflection 
of the specimen occurs between the supports and loading 
noses, the inner and the outer deflection angle are identical: 
�inner = �outer = � . The deflection angle

is geometrically defined (see Fig. 16), but its calculation 
requires an implicit numerical solution.

Unlike the standardized FPBT described in ISO 14125, 
the aFPBT requires only the crosshead displacement ΔX and 
the applied load P as input data recorded by the universal 
testing machine, and is independent of the midspan deflec-
tion s measured by the deflectometer. Furthermore, the eval-
uation of the aFPBT does not apply Euler-Bernoulli beam 
theory, which is limited to small deflections. The GCFS used 
in the aFPBT is geometrically defined and is also valid for 
large deformations. However, for large deformations, other 
sources of deviations occur that have not been considered 
so far, such as friction [56, 57] and horizontal forces [55].

Validation by Image Processing

Image processing determines the deflection angle � and the 
curvature � for both specimen types. Figure 17 compares 
the calculated deflections with the deflections measured by 
means of image processing. The image processing shows 

(21)

� = arctan

�
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2
− h2

LA

�
= arctan

⎛
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�
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− 1

�
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⎞⎟⎟⎟⎠
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�
1

cos(�)
− 1

�
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⎞⎟⎟⎟⎠

that the test methods predict the deflection angle � and the 
curvature � accurately for small crosshead displacements 
with an error below 2.5 % and 1 % for the rectangular plate 
and flexure hinge specimen.

However, the error between the calculated values and 
those measured by means of image processing increases 
for displacements ΔX > 7.5mm . The error at large deflec-
tions is higher for the rectangular plate specimen (28.9 % at 
ΔX = 15mm ) than for the flexure hinge specimen (4.3 % at 
ΔX = 15mm ), since Euler-Bernoulli beam theory is lim-
ited to small deflections. The findings are in accordance 
with ISO 14125 [18] that recommends a large deflection 
correction for deflections larger than 10 % of the support 
span, i.e. 5.5 mm in this particular case. The correction fac-
tor given in ISO 14125 is, however, limited to the specific 
experimental setup and specimen geometry defined therein 
and cannot be applied to other test setups.

The displacement of ΔX = 7.5mm is set as the limit of 
the presented FPBT setup. The curvature at this displace-
ment is � = 0.03mm−1 and � = 0.15mm−1 for rectangular 
plate and flexure hinge specimens.

Test Results

Figure 18 compares the stress–strain curves of the rectangular 
plate and the flexure hinge specimens.3 The detailed view in 
the figure shows the flexural modulus Ef  for both specimen 
types. The stress–strain curves of the rectangular plate speci-
mens using Euler-Bernoulli beam theory and the curves of the 
flexure hinge specimens using a GCFS have the same shape 
at small deflections but show deviations at large deflections.

In the FPBT, no failure characteristics can be determined 
for thin-walled specimens, since the specimens undergo large 
deformations until failure. However, the validity of standard-
ized bending test procedures is limited to small deflections. 
ISO 178 [13] specifies a conventional deflection of sc = 1.5h 
as a limit for the standardized bending test. The strain at the 
conventional deflection is �sc,plate ≈ 2.3% and �sc,hinge ≈ 0.37% 
for the rectangular plate and flexure hinge specimens, shown 
in Fig. 18 with vertical dotted lines. Since the GCFS applied 
for flexure hinge specimens is also valid for large deflections, 
�sc,hinge does not represent a limit for the aFPBT.

Discussion

Compliant mechanisms can be analyzed by using PRBM. 
PRBM represent flexible segments by discrete pin joints 
and torsion springs with the stiffness K = EI∕L0 . This study 

Fig. 16   Definition of geometric parameters in the adapted FPBT 
(aFPBT) on flexure hinge specimens. The figure shows one half of 
the symmetrical test setup

3  The test of the AlMg3 rectangular plate specimens stopped at 
� ≈ 0.5% when reaching the 1 kN force limitation of the load cell.



1218	 Experimental Mechanics (2023) 63:1203–1222

describes methods for determining EI and L0 for flexure 
hinges with variable cross section. While the bending stiff-
ness EI is determined experimentally, the specimen’s gauge 
length L0 is defined by the geometry of the flexible segment.

This paper takes into account the variable cross section of 
flexure hinges by introducing a corrected gauge length L∗

0
 . 

The investigated flexure hinge consists of a flexible segment 
with constant thickness and a transition zone with variable 

(a)

(b) (c)

Fig. 17   Validation of the FPBT and aFPBT by comparing the deflec-
tions calculated by Euler-Bernoulli beam theory and the GCFS with 
deflections measured by image processing: a  Rectangular plate 

specimen at ΔX = 5mm . b  Flexure hinge specimen at ΔX = 5mm . 
c Deflection angle � and curvature � as a function of the crosshead 
displacement ΔX

(b)(a)

Fig. 18   Comparison of rectangular plate specimens evaluated by the FPBT method and flexure hinge specimens evaluated by the aFPBT 
method. The shaded areas represent the 95 %-CI of the mean: a AlMg3 and b PA6
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thickness defined by manufacturing constraints (cf. Fig. 3). 
The corrected gauge length is defined as the length of an 
equivalent rectangular specimen with constant cross section 
that has the same hinge stiffness K as the actual flexure hinge 
with transition zone. A set of analytical equations is defined 
determining the corrected gauge length to L∗

0,hinge
= 8.25mm 

and L∗
0f ,hinge

= 6.19mm for the flexure hinge subjected to 
tensile and bending loading. When comparing both values 
with the length L1 = 5mm of the rectangular segment of the 
flexure hinge and the length L2 = 11.47mm of the flexure 
hinge including the transition zone, the corrected gauge 
length is in between L1 and L2 . The influence of the transition 
zone with gradually increasing thickness is more pronounced 
in the case of tensile loading, because tensile stiffness 
depends linearly on the specimen’s thickness and bending 
stiffness cubically. Verification shows that the error between 
L∗
0f ,hinge

= 6.19mm and L∗
0f ,hinge,FEA

= 6.01mm determined 
by means of FEA is less than 3 %.

The bending stiffness EI of the flexure hinge is deter-
mined experimentally instead of calculating it from the 
Young’s modulus E and the second moment of area I to 
include manufacturing-specific effects. Two bending test 
methods for flexure hinges are derived by adapting the 
FPBT and CBT. While the standardized FPBT applies Euler-
Bernoulli beam theory to examine specimens with constant 
cross section, the aFPBT applies a GCFS investigating 
flexure hinge specimens. Compared to Euler-Bernoulli 
beam theory, the GCFS is not limited to small deflections. 
However, for large deflections, effects such as friction and 
horizontal forces become significant that are not covered 
by the aFPBT. In contrast, the CBT is designed for deter-
mining pure bending properties at large curvatures. With 
the presented test setup, the aCBT is accurate even at large 
deflections and achieves a curvature of up to � = 0.40mm−1 , 
whereas the maximum curvature in the aFPBT is limited by 
the test methodology to about � = 0.15mm−1.

The aFPBT and aCBT presented in this paper are limited 
to flexure hinge specimens that consist of a geometrically 
defined transition region and a segment with constant thick-
ness at the center of the specimens, since equations (6) and 
(20) assume constant curvature. Image processing confirms 
that the assumption of constant curvature is met for both the 
aFPBT and aCBT for the flexure hinge investigated, which is 
similar to a corner-filleted flexure hinge with two opposite 
radii at each end. For other types of flexure hinges, such 
as circular and elliptical hinges, the assumption of constant 
curvature is not satisfied. Though, any type of flexure hinge 
could be characterized with the proposed aFPBT and aCBT 
methods using a more complex experimental setup where the 
strain is measured with DIC rather than calculated with the 
equations provided in this paper. Nevertheless, the approach 

of defining a corrected gauge length L∗
0
 applies to arbitrary 

geometries in tensile and bending testing. Moreover, the test 
methods presented for flexure hinges are distinguished by 
their simplicity, since they require only the measurement of 
the crosshead displacement ΔX and the applied load P on a 
universal testing machine.

For comparison, a tensile test method is presented to 
determine the Young’s modulus and the tensile strength 
of variable cross-section specimens without using a direct 
strain measurement technique. By considering the corrected 
gauge length L∗

0
 and the total compliance Ctotal of the test 

setup, the strain calculated from crosshead displacement 
matches the strain directly measured with an extensometer 
in the linear region of the stress–strain curve. The method 
applies to specimens of any shape as long as the shape is 
defined by analytical equations.

When comparing all three test methods and when com-
paring flexure hinge specimens with constant cross-section 
specimens, the test results are in good accordance in the lin-
ear stress–strain region. Figure 19 compares the modulus of 
elasticity determined with all three test methods on flexure 
hinge specimens. For AlMg3, the flexural modulus deter-
mined in the aCBT and aFPBT differs by less than 5 % from 
the Young’s modulus determined in the tensile test, which is 
to be expected from a physical point of view.

Material properties of plastics are more variable and less 
predictable than those of metals [1]. The flexural modu-
lus of PA6 determined in the aFPBT is about 10 % lower 
than the Young’s modulus, which is in accordance with 
data presented in the literature [58] and with most material 
data sheets provided by various manufacturers. The flex-
ural modulus determined in the aCBT is about 19 % higher 
than the Young’s modulus, contrary to expectation. This is 
possibly due to friction in the fixture’s bearings, which can 
become significant at very low loads, as in the case of PA6. 
Therefore, the authors recommend using ball bearing instead 
of plain bearings in the CBT fixture when testing specimens 
with very low bending stiffness.

While the results presented in this paper show the 
stress–strain curves of all specimens to allow comparison 
between tensile and bending tests, the PRBM requires the 
hinge stiffness K as an input parameter for designing com-
pliant mechanisms. The hinge stiffness can either be cal-
culated via K = EI∕L0 or determined experimentally in the 
aCBT or aFPBT from the slope of the moment–deflection 
curve with K = M∕� . Whereas the stiffness calculation is 
accurate for hinges made of isotropic materials, this is not 
the case when material inhomogeneities are present as in 
anisotropic flexure hinges made of FRP. With the meth-
odology presented in this paper, the hinge stiffness can be 
experimentally determined over the entire deflection range 
of flexure hinges of any material.
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Conclusion

Compliant mechanisms offer many advantages over con-
ventional rigid-body mechanisms, but their design and 
analysis are much more challenging. Modeling compliant 
mechanisms requires detailed knowledge about the mate-
rial properties and the geometry of their flexible segments. 
This study derived three test methods for characterizing 
flexure hinges subjected to axial and pure bending loading 
by adapting tensile test, FPBT and CBT.

The investigated flexure hinge features a variable cross 
section with a transition zone governed by manufacturing 
constraints. In this paper, the variable cross section of flex-
ure hinges is taken into account by introducing a corrected 
gauge length L∗

0
 . The corrected gauge length is determined 

for the case of pure axial and pure bending loading.
The newly derived bending test methods for flexure 

hinges are adaptations of the standardized FPBT and the 
CBT. These test methods were initially formulated for 
constant cross-section specimens, but are adapted in this 
study to examine variable cross-section specimens. The 
moment–curvature relationship of the specimens is deter-
mined using a GCFS that calculates the curvature from the 
angular deflection of the flexure hinge. The derived test 
methods are validated by comparing the calculated speci-
men deflections with those measured by image processing. 
While the aCBT proves to be a suitable test method for 
flexure hinges at large deflections, the stiffness characteri-
zation at small deflections can be performed either with 
the aCBT or the aFPBT. Therefore, the presented aCBT 
and aFPBT methods validated on isotropic materials form 
the basis for characterizing anisotropic flexure hinges.

Future research will incorporate the development of 
integrally woven cellular FRP structures consisting of rigid 
cell walls connected by flexure hinges to realize efficient 

morphing structures for aeronautical applications. Pressure-
actuated cellular structures allow high structural defor-
mations while simultaneously having high load-bearing 
capacity, which is a prerequisite for actuated adaptive wing-
tips [59, 60] or morphing ailerons [61]. The extension of the 
presented test methods for the characterization of anisotropic 
flexure hinges enables high-performance compliant mecha-
nisms made from FRP.
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