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Abstract
Background Continuous monitoring is essential for detecting internal defects in rails and prevent derailment related acci-
dents. Existing techniques do not facilitate continuous monitoring because they require specialized test cars and can only 
operate at speeds of up to 30 mph.
Objective The objective of this study is to evaluate the performance of a high-speed rail inspection system using a non-
contact ultrasonic technique with the potential of operating at train revenue speeds.
Methods The technique utilizes air-coupled transducers that record the ultrasonic guided waves generated by the rail-wheel 
contact and does not require a controlled acoustic source of excitation. A modified version of the traditional Welch’s peri-
odogram technique is utilized to extract the Green’s function between two points on the rail. The passively extracted Green’s 
function is then analysed statistically to detect structural discontinuities (e.g., defects) in the rail.
Results Results from fields tests performed at the Transportation Technology Centre (TTC) in Pueblo, CO, USA, demonstrate 
possible test speeds as high as 80 mph. From these field tests, the performance of the system is evaluated using Receiver 
Operating Characteristic (ROC) curves for a range of different operational parameters including test speed, location of the 
sensors relative to the locomotive (source), signal-to-noise ratio (SNR) of the raw signals, SNR of the reconstructed transfer 
function, baseline distribution length in the statistical analysis, wheel-rail interactions, and redundancies introduced from 
multiple runs over the same track.
Conclusions This study presents the current stage of development and performance of the passive rail inspection system 
with full-scale experiments under field conditions. The results indicate the potential of the system to operate at high speeds 
as well as possible avenues of future improvement to the system.

Keywords Rail inspection · Output-only identification · Ultrasonic guided waves · Receiver operating characteristic 
curves · Green’s function · Ultrasonic inspection

Introduction

Internal defects in rails are a major cause of train derailments 
around the world. In a recent study, the US Federal Railroad 
Administration (FRA) reported 4,961 train accidents during 
2017-2020, of which 3,437 (69.2% of total accidents) were 
caused by derailments [1]. Internal defects in rails are one 

of the primary causes of train derailments. The three major 
types of internal rail defects are [2]: (a) Transverse Fissure 
(TF), a fracture originating in the interior of the railhead 
marked by the presence of a nucleus; (b) Detail Fracture 
(DF), a progressive fracture originating at or near the surface 
of the railhead without a nucleus; and (c) Vertical Split Head 
(VSH), a crack propagating vertically through or near the 
middle of the railhead. TF and DF are commonly classified 
as Transverse Defects (TD), because of their orientation. 
TDs are the most common type of rail defects and typically 
account for the majority of train derailments [3].

The detection of these internal flaws is an essential task 
of railroad maintenance operations. Ultrasonic systems are 
commonly utilized for this purpose, most commonly using 
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fluid-filled wheels (Rolling Search Units or RSUs) that host 
a series of piezoelectric transducers operated in a pulse-echo 
or pitch-catch mode [5–7]. While quite effective in cover-
ing the majority of the rail cross-section, RSUs operate at 
speeds (~ 30 mph) that are substantially lower than revenue 
speeds, hence requiring careful scheduling among normal 
train traffic operations.

Various research has been conducted to develop technolo-
gies that can potentially inspect the rail at higher speeds. 
High-speed inspections usually require, among other 
things, the ability to probe the rail in a non-contact man-
ner. Wooh et al. [8] explored a high-speed rail inspection 
technique using air-coupled acoustic transducers based on 
the Doppler effect. Their technique, however, was limited 
to detecting surface-breaking cracks. Mandriota et al. [9] 
introduced a filter-based image processing technique for 
detecting rail defects. Their technique, again, was limited to 
surface defects visible to the camera. Other investigations on 
non-contact inspection techniques were based on Electro-
Magnetic Acoustic Transducers (EMATs) [4, 10–12]. This 
technique requires a small lift-off distance of the transducers 
from the rail surface and hefty magnets to reach the required 
sensitivity. Ultrasonic non-contact techniques have been also 
studied utilizing either hybrid laser/air-coupled approaches 
[13–15] or completely air-coupled approaches [16]. These 
systems remain limited by the requirement for an active 
“pulsed” ultrasonic excitation.

More recently, UCSD researchers [17–19] have investi-
gated the possibility for non-contact rail inspection without 
using an active ultrasonic source, but rather exploiting the 
natural acoustic excitations imparted by the rolling wheels 
of a travelling train. This is therefore a case of “passive” 
or “output-only” inspection that utilizes solely ultrasonic 
receivers. These receivers are air-coupled transducers that 
stay above the rail clearance envelope (3 in) for non-contact 
probing. The sensors are installed on a travelling train car 
enabling a new concept of “smart train.” If successfully 
developed, this capability would (a) enable rail inspections 
at regular (revenue) speeds without traffic disruptions, and 
(b) maximize the Probability Of Detection (POD) while 
minimizing the Probability of False Alarms (PFA) by 
exploiting the redundancy afforded by the multiple train 
passes over the same section of rail. This technology uses 
concepts of passive reconstruction of a system’s Green’s 
function (or transfer function) that have been developed in 
various fields, including seismology, underwater acoustics, 
and also structural inspections [20–26]. Examples include 
ambient vibrations in bridges induced by traffic [27–30], 
aerodynamic vibration signatures from aircraft wings and 
wind-turbine blades [31, 32], wind-induced vibrations in 
high-rise buildings [33], among others.

This paper presents the latest performance evaluation of a 
high-speed rail inspection prototype based on this “passive” 

approach that was tested at the Transportation Technol-
ogy Center (TTC) in Pueblo, CO, USA at speeds up to 80 
mph. In particular, the paper presents Receiver Operating 
Characteristic (ROC) curves that quantify the ability of 
the system to detect rail discontinuities (welds, joints and 
TDs) in terms of POD versus PFA [16, 19, 33] with vary-
ing operational parameters. These parameters include: the 
length of the baseline distribution utilized in the statistical 
signal processing, the speed of the test run, the type of the 
wheel-rail interaction, the location of the transducer array 
with respect to the locomotive, the SNR of the reconstructed 
transfer function, and the number of test runs (redundancy). 
These studies build the foundations for future improvements 
of this system.

Background

“Passive” Transfer Function Extraction (Dual‑Output 
System)

Consider the schematic in Fig.  1, showing a rail track 
dynamically excited by a rolling wheel W, and the responses 
measured by two air-coupled ultrasonic receivers at loca-
tions A and B. Assume that both receivers are only sensitive 
to waves propagating uni-directionally from left to right. The 
aim is to isolate the transfer function of the test structure 
(rail) between location A and location B which is denoted by 
GAB(f). The wheel excitation W(f) is unknown, uncontrolled, 
and assumed to be piecewise-stationary, meaning that its 
statistics do not change during the observation time windows 
of OA(f) and OB(f) (as discussed later, the observation time 
windows are on the order of ~msec thus this assumption 
is reasonable). WA(f) denotes the transfer function between 
the the wheel excitation and location A. Uncorrelated noise 
components NA(f) and NB(f) are also assumed to be present 
at each of the two outputs. Assuming all systems to be lin-
ear, the outputs at locations A and B with added noise can 
be written as:

Fig. 1  Schematic diagram of passive transfer function reconstruction
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The transfer function GAB(f) can be computed as a ratio 
of the cross-power spectrum between responses at A and B 
divided by the auto-power spectrum of the response at A. 
Both the cross-power spectrum and auto-power spectrum 
are computed in an ensemble average sense, by dividing the 
time-series into n segments, with a 50% overlap between 
segments to avoid loss of information near the ends of each 
segment [18]. A Hamming window is also applied to each 
time segment before computing the Fast Fourier Transform 
(FFT) which is a common practice in the signal process-
ing domain to prevent side-lobe leakage [34]. Intra-segment 
averaging is used for computing the cross-power spectrum 
and inter-segment averaging is used to compute the auto-
power spectrum for reasons that will be clear subsequently. 
Let us first compute the intra-segment cross-power spectrum 
between outputs at A and B as shown below:

where * denotes the complex conjugate, ⟨⟩  denotes an 
ensemble average, | | denotes the absolute value, and i 
is an index for the different segments over which the 
averaging is done. The terms ⟨W∗(f ) ⋅WA∗(f ) ⋅ NB(f )⟩ , 
⟨W(f ) ⋅WA(f ) ⋅ GAB(f ) ⋅ N

∗
A
(f )⟩ and ⟨N∗

A
(f ) ⋅ NB(f )⟩ can be 

eliminated because the cross-power spectrum of uncorre-
lated signals (with no DC bias component) tends to zero in 
an averaged sense. Since the same segment (i) in responses 
at A and B is used, this averaging is termed as intra-segment 
averaging. Assuming the process to be ergodic, we can 
express the time-averaged cross-power spectrum as follows:

where n is the total number of segments. It is clear that the 
cross-power spectrum alone does not isolate the transfer 
function GAB(f) since it is ‘colored’ by the spectrum of the 
wheel-induced excitation |W(f )|2 and the transfer function 
|WA(f )|2 between the excitation source and transducer A. 
The cross-power spectrum is therefore normalized by the 
auto-power spectrum of the response at A. Let us first com-
pute the auto-power spectrum using the same intra-segment 
averaging as discussed above. The auto-power spectrum at 
A can be written as:

(1)OA(f ) = W(f ).WA(f ) + NA(f ) receiver A

(2)
OB(f ) =W(f ).WA(f ).GAB(f )

+ NB(f ) receiver B

(3)

⟨Cross_Power⟩intra−segment = ⟨O∗
Ai
(f ) ⋅ OBi(f )⟩ = ⟨�W(f )�2 ⋅ �WA(f )�2 ⋅ GAB(f )⟩+

⟨W∗(f ) ⋅WA∗(f ) ⋅ NB(f )⟩ + ⟨W(f ) ⋅WA(f ) ⋅ GAB(f ) ⋅ N
∗
A
(f )⟩+

⟨N∗
A
(f ) ⋅ NB(f )⟩ = �W(f )�2 ⋅ �WA(f )�2 ⋅ GAB(f )

(4)

⟨Cross_Power⟩intra−segment =
1

n

n�

i=1

O∗
A,i
(f ) ⋅ OB,i(f )

= �W(f )�2 ⋅ �WA(f )�2 ⋅ GAB(f )

Again, assuming ergodicity, (equation (5)) may be rewrit-
ten as a time-average over n segments:

The normalized cross-power spectrum can be obtained as:

From (equation (7)), it is clear that the transfer function 
GAB(f) can not be isolated if the noise term ||NA(f )

||
2 is non-

zero. The term ||NA(f )
||
2 is non-zero because the auto-power 

spectrum of an uncorrelated signal cannot be eliminated if 
it is taken over the same time segment. This problem can be 
resolved by averaging the same time signal over different 
segments (inter-segment averaging). This strategy eliminates 
the noise term ||NA(f )

||
2 . The inter-segment auto-power spec-

trum for response at A is computed as:

where i , j are indices for different segments of the same 
signal and n = nC2 =

n!

2(n−2)!
 is the number of the possible 

combinations of two different segments for a total of n seg-
ments. Substituting OA(f) from (equation (1)) into (equation 
(8)), the auto-power spectrum can be written as:

The noise term ( N∗
A,i
(f ) ⋅ NA,j(f ) ) is eliminated because 

the cross-power spectrum of uncorrelated noise averaged 
over different segments tends to zero. Inter-segment averag-
ing, however, introduces another problem. Strictly speaking, 
(equation (9)) is accurate only if the signals W(f) and WA(f) 
are correlated in both amplitude and phase over the differ-
ent possible combinations of segments. This assumption is 
not true since conformity in phase cannot be assured for 

(5)

⟨Auto_PowerA⟩intra−segment = ⟨O∗
Ai
(f ) ⋅ OAi(f )⟩ = ⟨�W(f )�2 ⋅ �WA(f )�2⟩

+ ⟨W∗(f ) ⋅WA∗(f ) ⋅ NA(f )⟩

+ ⟨W(f ) ⋅WA(f ) ⋅ N∗
A
(f )⟩ + ⟨N∗

A
(f ) ⋅ NA(f )⟩

= �W(f )�2 ⋅ �WA(f )�2 + ��NA(f )
��
2

(6)

⟨Auto_Power⟩intra−segment =
1

n

�n

i=1
O∗

A,i
(f ) ⋅ OA,i(f )

= �W(f )�2 ⋅ �WA(f )�2 + ��NA(f )
��
2

(7)

⟨Cross_Power⟩
⟨Auto_Power⟩ =

1

n

∑n

i=1
O∗

A,i
(f ) ⋅ OB,i(f )

1

n

∑n

i=1
O∗

A,i
(f ) ⋅ OA,i(f )

=
�W(f )�2 ⋅ �WA(f )�2 ⋅ GAB(f )

�W(f )�2 ⋅ �WA(f )�2 + ��NA(f )
��
2

(8)⟨Auto_PowerA⟩inter−segment =
1

n

n−1∑
i=1

n∑
j=i+1

O∗
A,i
(f ) ⋅ OA,j(f )#

(9)

⟨Auto_PowerA⟩inter−segment = �W(f )�2 ⋅ �WA(f )�2

+
1

n

�
i,j
N∗
A,i
(f ) ⋅ NA,j(f )

= �W(f )�2 ⋅ �WA(f )�2
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different segments. A more reasonable assumption would 
be that W(f) and WA(f) are correlated in amplitude, but not 
phase, among different segments. This problem is handled 
by forcing different segments to be in the same phase. Let us 
rewrite the response at sensor A by separating the output into 
signal and noise components in (equation (1)) as:

where SA(f ) includes the correlated signal at A and NA(f ) is 
the uncorrelated noise. Assuming SA(f )  to be time-invariant 
during the observation window, each inter-segment cross-
power spectrum will therefore have an amplitude that is con-
sistent and a phase that is random. Analytically:

The signals in each segment are shifted appropriately in 
such a way that their phases are aligned in all segments and 
therefore phase correlation is enforced in addition to ampli-
tude correlation. The appropriate time-lag of shift for each 
segment pair is determined by the maximum peak of the 
cross-correlation function between the two segments. This 
time-lag for each segment pair is computed as:

The final expression for the time-shifted, inter-segment 
averaged auto-power spectrum is written as:

This technique efficiently removes the noise term since  
1

n

∑
i,jN

∗
A,i
(f ) ⋅ NA,j(f ) = 0 for uncorrelated noise. The nor-

malized cross-power spectrum computed using this novel 
inter-segment auto-power spectrum successfully isolates the 
transfer function GAB(f) of the system as shown below:

(10)OA(f ) = W(f ) ⋅WA(f ) + NA(f ) = SA(f ) + NA(f )

(11)

⟨S∗
A
(f ) ⋅ SA(f )⟩inter−segment =

1

n

n−1�

i=1

n�

j=i+1

S∗
A,i
(f ) ⋅ SA,j(f )

=
1

n

n�

i,j

�SA,i(f )�e−i�A,i
⋅ �SA,j(f )�ei�A,j

=
1

n

n�

i,j

�SA,i(f )� ⋅ �SA,j(f )�eiΔ�A,ij

(12)�ij = argmax

(

∫
+∞

−∞

O∗
A,i
(t).OA,j(t + �)dt

)

(13)

⟨Auto_Power⟩
inter − segment

shifted

=
1

n

n−1�

i=1

n�

j=i+1

O∗
A,i
(f ) ⋅ OA,j(f ).e

−i2�f �ij

= ��SA(f )��
2
+

1

n

�

i,j

N∗
A,i
(f ) ⋅ NA,j(f )

= ��SA(f )��
2
= �W(f )�2.�WA(f )�2

The time-domain transfer function (impulse-response 
function) can be then retrieved from the frequency domain 
through an inverse Fourier Transform:

In the rail inspection prototype to be discussed, the trans-
fer function is filtered in the frequency bands of 20 kHz 
- 40 kHz and 70 kHz – 120 kHz. These ranges were found 
to reconstruct a stable waveform during the tests. Figure 2 
shows a typical reconstructed transfer function in time 
domain (GAB(t)). The wave packet arrival at ~ 160 μs indi-
cates the time taken by the wave to travel the distance from 
point A to B (Fig. 1) which is around 460 mm (18 inches).

Statistical Outlier Analysis

The transfer function so obtained defines a system governed 
by the properties of the rail segment between the two trans-
ducers. Discontinuities present in the rail between A and B 
(e.g. joints, welds and defects) would induce wave scattering 
hence alter the transfer function. Features from the transfer 
function (e.g. amplitude) can therefore be tracked statisti-
cally for changes along the length of the track. Outliers of 
these features with respect to a baseline distribution of fea-
tures can then be related to the rail discontinuities.

(14)

⟨Cross_Power⟩intra−segment
⟨Auto_Power⟩

inter − segment

shifted

=

1

n

∑n
i=1

O∗
A,i
(f ) ⋅ OB,i(f )

1

n

∑n−1
i=1

∑n
j=i+1

O∗
A,i
(f ) ⋅ OA,j(f ).e

−i2�f �ij

=
�W(f )�2 ⋅ �WA(f )�2 ⋅ GAB(f )

�W(f )�2 ⋅ �WA(f )�2
= GAB(f )

(15)GAB(t) =
1

2� ∫
+∞

−∞

GAB(f ).e
iftdf

Fig. 2  A sample passively reconstructed transfer function in time 
domain
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Accordingly, for the prototype a statistical Damage Index 
(DI) was computed as the Mahalanobis Squared Distance 
[35] of the features of the transfer function with respect to a 
baseline distribution of features. The most general DI metric 
is defined below in a multivariate sense:

where x is the feature vector extracted from a given location, 
x is the mean of the feature vector from the baseline distribu-
tion, Cov is the covariance matrix of the baseline distribu-
tion, and T  represents the matrix transpose operator. In the 
field tests that were conducted, the feature vector {x}4x1 con-
sisted of the metric variance−1 of the transfer function from 
four possible combinations of sensor pairs (discussed later). 
Since the rail geometry and wheel-rail interactions can 
change along a track, the baseline distribution was computed 
adaptively by considering a limited number of locations col-
lected right before the current location. The length of this 
adaptive baseline distribution is one operational parameter 
of the results shown later. Finally, an “exclusive” version of 
the baseline was adopted, whereby extreme values of the DI 
(i.e. values larger than mean + twice the standard deviation) 
were removed from the baseline computation. This removal 
ensured that only pristine portions of rail were included in 
the computation improving the detection of outliers.

Field Tests

Test Setup

A set of field tests of a “passive” inspection prototype were 
conducted at TTC, in Pueblo, CO, USA in December 2018, 
June 2019 and December 2019. The prototype consisted of 
12 ultrasonic capacitive air-coupled transducers (CAP-2 by 
VN Instruments Inc.) with a central frequency of 120 kHz 
and arranged as shown in Fig. 3. The transducers prototype 
beam was mounted on the equalizer beam of a test car and 
arranged in 3 groups with each group having 4 transducers. 
This configuration resulted in four possible combinations 
of transfer functions from each group. The transducers were 
positioned at 3 inches from the rail’s top surface at an angle 
of 6° with the vertical based on Snell’s Law [36] to ensure 
unidirectional reception of the waves leaking from the rail 
into the air. Shown in Fig. 4, a laser system consisting of 
two sensors was attached to both ends of the prototype to 
detect cases of misalignment during a run. A high-speed 
camera (up to 100 frames per second) was installed along-
side the prototype to continuously capture images of the rail. 
The camera images were also used to construct the “ground 
truth” map of rail discontinuities, consisting of locations of 
joints, welds, and internal defects (that were marked with 

(16)D.I. = (x − x)
T
⋅ Cov−1 ⋅

(
x − x

)

paint). A GPS receiver was used to assign the signals and 
ground truth features to their specific locations on the track.

Test Methodology

The instrumented test car was towed by a locomotive. Tests 
runs were conducted on the High-Tonnage Loop (HTL) track 
and the Railroad Test Track (RTT) of TTC in 2018 and 2019. 
The difference between the field tests in 2018 and those in 
2019 was that in the latter tests the prototype was placed 
closer to the locomotive wheels for improved signal strengths.

The HTL is a 2.7-mile-long test track that has numerous 
joints (about 22) and welds (about 275) since portions of 
the track are constantly replaced from damage due to heavy 
freight cars. At the time of the tests, the HTL also had three 
pre-identified defects (TDs) that were marked by spray-paint 
and were also identified by the camera for the ground truth. 
Speeds of 25 mph, 33 mph and 40 mph were tested on the 
HTL with three runs conducted at each speed. In addition, 
12 continuously recorded runs were performed on the HTL 
at 40 mph and the results were compounded to study the role 

Fig. 3  Sensor arrangement in prototype with location of alignment 
lasers

Fig. 4  Prototype and accessory hardware mounted on the test-car



1048 Experimental Mechanics (2023) 63:1043–1054

of redundancy. Tests runs were also conducted on the RTT 
at even higher speeds of 60 mph, 70 mph and 80 mph with 3 
runs conducted at each speed. The RTT is a 13.7-mile-long test 
track with 1801 welds and 45 joints based on the image-based 
ground truth library. The RTT had no known internal defects 
present at the time of the tests.

The sensor head was mounted to probe the inner rail for 
both the HTL and the RTT and the runs were conducted in a 
clockwise sense. Data was acquired continuously for the 3 runs 
at each speed without halting the train. Data recording was 
stopped at the end of the 3 runs at each speed and the train was 
brought back to the starting point to begin testing at a different 
speed. Different speeds were used to test the effects of varying 
excitation source strengths and their influence on the stability 
of the reconstructed transfer function. Real-time analysis was 
performed on a National Instruments FPGA module running 
on LabView Real-time platform. Extraction of the transfer 
function and computation of DI was performed in real-time, 
in tandem with data acquisition, as a quality control check on 
the acquired data.

Test Results

ROC Curves

The prototype performance was assessed with the help of ROC 
curves, similarly to previous evaluations of an “active” version 
of the non-contact rail inspection system [16]. The ROC curve 
plots the Probability Of Detection (POD) vs Probability of 
False Alarms (PFA) for different values of the DI threshold 
level. A high DI value indicates an outlier and may represent 
a possible rail discontinuity. A high value of DI in the vicinity 
of a known discontinuity would be a “true positive”. Alterna-
tively, a high value of DI in the vicinity of a pristine segment 
of track would be a “false positive”. The POD gives an esti-
mate of the “true positives” and is calculated by the equation 
below:

where Di is the number of discontinuities detected during the 
test run and Dt is the total number of discontinuities present 
in the test track. Similarly, the PFA gives an estimate of the 
“false positives” and is computed by the equation:

where Dp is the total number of discontinuities spuriously 
identified in pristine rail segments and Pt is the total num-
ber of pristine rail segments scanned. The ROC curves 
are computed by varying the DI threshold level such that 

(17)POD =
Di

Dt

(18)PFA =
Dp

Pt

each threshold value corresponds to one point on the curve. 
A good performance is indicated by an ROC curve lying 
towards the top left of the graph, corresponding to high POD 
and low PFA values. To ensure robustness of the analysis, 
a minimum number of threshold crossings (7) was required 
within a fixed length of rail segment (18 inch) for a loca-
tion to be flagged as a possible discontinuity. In order to 
compensate for the limited GPS resolution, a discontinuity 
search range of ±10ft was adopted, meaning that any loca-
tion flagged within the search range of a known discontinu-
ity location was considered as a true detection. Any outliers 
flagged outside this search range of known discontinuities 
were considered as false positives. Figure 5 shows a sample 
DI trace along with the corresponding ROC curve obtained 
by varying the threshold levels. The next sections discuss the 
field test results obtained for varying operational parameters.

Signal‑to‑Noise Ratio of Raw Signals

The first parameter examined was the strength of the raw 
signals recorded by the air-coupled sensors from the wheel 
excitations with respect to the recordings’ noise floor. When 
the train wheels do not acoustically excite the rails suffi-
ciently, the signal in the sensors essentially consist of elec-
tronic and environmental noise. This happens, for example, 
when the train is moving at slow speeds.

The variance of the signal ( �2
s
) relative to the variance of 

the noise ( �2
n
) gives the signal-to-noise ratio (SNR) of the 

raw data and can be expressed in decibels (dB) as:

It can be difficult to separate the raw data into signal and 
noise components because even at higher speeds, the noise 
component will be present. Hence, an approximate SNRwas 
calculated based on the assumption that any signal generated 
at speeds below 5 mph was noise, as shown below:

where 𝜎2

s<5mph
 is the variance of the signal at speeds below 5 

mph and 𝜎2

s>5mph
 is the variance of the signal at speeds above 

5 mph. Based on this SNR calculation, a cut-off dB level can 
be chosen. Track regions having signals above a threshold 
dB level can be classified as ‘good’ zones, whereas track 
regions having signals below the threshold dB level can be 
classified as ‘bad’ zones. As expected, the transfer function 
reconstructions and discontinuity detection performance in 
the ‘good’ zones was found more reliable compared to those 
from the ‘bad’ zones, as will be shown later. Figure 6 shows 

(19)SNRraw(dB) = 10log10

(
�2
s

�2
n

)

(20)SNRraw−approx(dB) = 10log10

(
𝜎2

s>5mph

𝜎2

s<5mph

)
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the acoustic signal strengths based on a 6 dB SNR threshold 
for test runs at 40 mph and 25 mph on the HTL. From Fig. 6, 
it is evident that acoustic signal strength increases with 
increasing speed of the runs. Also, signal strengths seem to 
be consistently good in the curved sections of the track. 
Acoustic “noise” induced by the contact between the wheel 
flange and the rail gage [37, 38] corner in curved sections of 
the track could be one of the reasons for the increased 
recorded signal. However, since the inner rail of the HTL 
was probed, wheel flanging would only occur at curve 1 
because the wheel on the inner rail has to travel a greater 
distance. Moreover, at shallow curves and lower speeds, 
wheel flanging may not occur at curve 1. This observation 
hence does not explain the higher signal strengths recorded 
at curve 1 for lower speeds (25 mph). Wheel flanging alone, 
therefore, cannot explain the high signal strengths observed 
in all the curves. It is possible that curve squeal could 
explain the high signal strengths at curves 2, 3 and 4. When 
a train manoeuvres a curve, the axle of the vehicle moves in 
a transverse direction which leads to a transverse slip 
between the wheel and the rail (lateral creep). This lateral 
creep induces a self-excited vibration with a single 

high-frequency dominant tone which is independent of train 
speed [39]. Curve squeal, therefore, explains the high acous-
tic signal strengths at curved sections irrespective of train 
speed.

Figure 7(a) shows the ROC curves computed for the 
“joint” discontinuities at 40 mph comparing the entire run 
and good signal strength zones only (curves 1-4). The Area 
Under the Curve (AUC) is a measure of the system’s overall 
performance for different thresholds, with a higher AUC 
value indicating better performance. Figure 7(b) shows the 
comparison of ROC curves of the “weld” discontinuities 
for the entire run selected from the SNR of the record-
ings. Clearly, the joint and weld detection performance of 
the system improves in regions with higher acoustic sig-
nal strengths, as indicated by the shift in the ROC curves 
towards the top-left and a corresponding increase in the 
AUC metric. Note that for the entire run considered, the joint 
detection accuracy is generally better than the weld detec-
tion. This is expected since joints are always expected to 
produce the most severe wave scattering (more pronounced 
outliers in the DI), whereas weld are expected to produce 
a limited wave scattering (and no wave scattering at all, at 
the wave frequencies considered, for a particularly “good” 
weld).

Note that the locations of all the three types of discon-
tinuities (welds, joints, and internal defects) on the probed 
rail were already known. The library (ground truth) of 
these discontinuity locations was built by analyzing the 
camera images (of the rail) acquired during testing. The 

Fig. 5  ROC curve computation from varying DI thresholds

Fig. 6  Map of the HTL with regions of “high” and “low” acoustic 
signal strengths at different test speeds

b) Welds – adaptive SNR regionsa) Joints – Entire run vs good zones (curves1-4)

Fig. 7  ROC curves for joints and welds at 40 mph on the HTL track 
for different acoustic signal strength regions
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known locations of the discontinuities were mapped 
through GPS coordinates to build a ground truth library. 
Locations flagged during data analysis as possible discon-
tinuities were assigned to either joints, welds, or defects 
based on which known discontinuity was present in the 
vicinity of the flagged location. For example, if the sys-
tem flagged a discontinuity in a rail segment and a known 
joint was present within a +-10 ft (search tolerance) of that 
flagged location, that detection was assigned a “true detec-
tion” for a joint. If there was no known discontinuity within 
the search tolerance limit, that detection was assigned a 
“false positive”.

Achieving reliable rail excitation at lower speeds and 
tangent sections of the track is important to ensure suffi-
cient signal-to-noise ratio. The use of a non-contact, con-
trolled, and continuous acoustic source is currently being 
investigated. Another way of generating reliable excitations 
could be by mounting the prototype on a rail grinder vehi-
cle. The grinding action is expected to impart significant 
acoustic energy to the rail potentially improving the signal-
to-noise ratio.

Test Speed

Another important operational parameter for the prototype is 
the speed of the test run. Figure 8 shows the ROC curves for 
the three TDs present on the HTL track at different speeds. 
Interestingly, the passive defect detection improves signif-
icantly with the increase in speed due to higher acoustic 
signal strengths at high speeds. Best results were obtained 
at the speed of 40 mph where a 100 % detection rate (PD) 
was observed with a 17% possibility of false alarms (PFA). 
At 33 mph, the rate of detection drops to 67% (PD=67%) 
for the same rate of false alarms (PFA=17%). If the speed 

is lowered to 25 mph, the rate of detection further drops 
to 34%. Depending on the allowable rate of false alarms 
that can be tolerated, the DI threshold level can be selected 
that optimizes the detection performance of the system for 
a given set of operational parameters. The staggered nature 
of the ROC curves was because the PD was calculated with 
only 3 known location of defects which resulted in only 4 
possible values (0, 1/3, 2/3, 1). The fact that speed seems to 
aid the performance is a comforting result since the objec-
tive is enabling inspections at revenue speeds. The sample 
size of 3 defects makes it difficult to draw any substantial 
conclusions and further tests need to be conducted on tracks 
with larger number of known defects to obtain statistically 
significant inferences. The PFA of 17% is still too high for 
industrial applications and needs further improvements.

Location of the Prototype

The location of the prototype with respect to the locomotive 
wheels was changed in two different sets of tests. Figure 9 
shows the ROC curves for joints at 40 mph on the HTL 
for different locations of the prototype with respect to the 
locomotive. Placing the sensing array closer to the source of 
excitation led to a more stable transfer function reconstruc-
tion due to improved acoustic signal strengths, resulting in 
an improved detection performance.

Baseline Distribution Length

The length of the baseline in the outlier analysis plays a key 
role in the discontinuity detection performance. A longer 
baseline results in an increased number of points in comput-
ing the normal distribution which leads to a more averaged 

Fig. 8  ROC curves for defects (TD) at different speeds
Fig. 9  ROC curves for joints at 40 mph for different locations of the 
prototype
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statistics of the rail. On the other hand, a shorter baseline 
results in lesser number of points in computing the normal 
distribution which leads to a more localized statistics of the 
rail. Therefore, a longer baseline is expected to result in a 
reduced sensitivity to discontinuity detection. On the other 
hands, a shorter baseline is expected to be more sensitive to 
discontinuities but may also lead to increased false alarms. 
The effects of changing the length of the baseline distribu-
tion was analysed with the help of ROC curves. Baseline 
distribution lengths of 30, 60, 120 and 240 points were 
analysed which correspond to approximately a physical dis-
tance of 3.5 ft, 7 ft, 14 ft and 28 ft respectively at 80 mph. 
The ROC curves of joints for different baselines at 80 mph 
testing speeds on the RTT are shown in Fig. 10(a). ROC 
curves of defects for different baselines at 40 mph on the 
HTL are shown in Fig. 10(b). From Fig. 10 it is evident that 
a reduction in the baseline distribution length increased the 
sensitivity of the system and improved the ROC curves as 
seen by an increase in the AUC. For example, for a certain 
DI threshold with 15% false alarms, a baseline distribution 
length of 240 points led to 34% detection rate for defects 
(Fig. 10(b)). Reducing the baseline length to 60 points led 
to a 100 % PD with 15% PFA.

SNR of Reconstructed Transfer Function

The defect detection performance of the passive rail inspec-
tion system depends on the quality of the reconstructed 
transfer function. A distinct wave arrival with minimum 
noise floor would be an ideal reconstruction. The relative 
amplitude of the arrival wave with respect to the noise 
floor is an indication of the quality of the transfer function 
(Fig. 11). The signal-to-noise ratio of the transfer function 
in dB is calculated as:

where �2
t
 is the variance of the transfer function within the 

arrival window and �2
n
 is the variance of the noise outside the 

(21)SNRTF(dB) = 10log10

(
�2
t

�2
n

)

arrival window as shown in Fig. 11. Low SNR of the transfer 
function would indicate wave attenuation in the presence of 
discontinuities in the rail segment and can be used to predict 
defect locations. Figure 12 shows the predictions made by 
the passive inspection system based on a combination of DI 
values and the SNR of transfer functions from different pairs 
of group-1 sensors. Black diamonds indicate all four pairs 
of the transfer functions have SNR less than 3 dB. Red dia-
monds indicate 3 pairs of transfer functions have SNR less 
than 3 dB. Yellow diamonds indicate 2 pairs of transfer func-
tions have SNR less than 3 dB and green diamonds indicate 
either one or none of the pairs have SNRs less than 3 dB. 
Black, red, yellow and green diamonds plotted are all above 
a threshold of 0.02% (2e-5) of the maximum DI value in the 
trace. Blue asterisks, orange triangles, yellow stars are the 
locations of the welds, joints and defects respectively picked 
up by the camera and represent the ground truth. Finally, the 
cyan asterisks represent the regions where the SNR of raw 
signals falls below 6 dB. Black, red and yellow diamonds 
represent the locations where the passive system predicts 
some form of discontinuity (welds, joints or defects). When 
these diamonds (black, red or yellow) align with any of the 
plotted ground truth (blue asterisk-welds, orange diamond-
joints, yellow star-defects) a true detection can be assigned. 
When these diamonds occur in regions where there are no 
known discontinuities, a false alarm is raised. Zoomed views 
of a region of high signal strength (Zone-A) and a region of 
low signal strength (Zone-B) are shown in Fig. 12. Low sig-
nal strength zones have a comparatively higher rate of false 
alarms compared to the high signal strength zones.

Redundancies from Multiple Runs

The results discussed so far in this paper for the discontinu-
ity detection performance of the passive inspection system 
are only for 1 test run considered at a time. In practical situ-
ations, when the prototype will be used for defect detection 
by mounting it on a revenue train, the same section of the 
track will be traversed by the train multiple times, resulting 
in a larger set of observations. Multiple observations on the 

a) Joints 80 mph (RTT) b) Defects 40 mph (HTL)

Fig. 10  ROC curves for joints and defects with different baseline dis-
tribution lengths

Fig. 11  Coherent signal and noise floor in the reconstructed transfer 
function
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same track are expected to cause redundancies in the data 
with consequent reduction of false alarms. This expectation 
is based on the assumption that false positives will occur 
at randomly distributed locations along the track, whereas 
true positives will occur at consistent locations for every 
run. Locations flagged as possible discontinuities in differ-
ent runs based on the DI trace can then be overlaid on top of 
each other and non-coinciding points may be discarded as 
false positives, whereas coinciding locations could be tagged 
as true detections.

Figure 13 shows the results obtained on the 12-run data-
set at 40 mph on the HTL for welds. If 33% or more of the 
number of runs detected a discontinuity at the same location 
within a search range ( ±10ft ), that location was flagged as 
a positive detection. Therefore, the number of runs required 
to assign a positive detection was 1 out of 3 runs, 2 out of 
6 runs and 3 out of 12 runs. The results obtained for 1-run 
and 3-run cases do not introduce any redundancies. The 
3-run case still performs better than the 1-run case because 
of the additional odds of detecting the weld in at least 1 out 

of 3 runs. The 3-run case, however, also increases the rate 
of false positives simultaneously and therefore a significant 
improvement is not achieved. The 6-run case improves the 
performance significantly because now redundancies are 
introduced, and the false positive detections need to align 
in at least two of the runs which is more unlikely. In gen-
eral, it is observed that as the number of runs is increased, 
the ROC curve shifts towards the top-left indicating the 
expected reduction in the rate of false alarms. The results 
also do not improve as much when we compare the 6-run 
case with the 12-run case (sort of a saturation effect). This 
suggests that the system’s performance tends to a maximum 
limit as the number of runs are increased. It is also worth 
noting that not all the false positives are removed by com-
pounding multiple runs. This indicates the system keeps 
flagging similar locations in multiple runs where possibly 
unmarked defects or discontinuities are present. A more 
accurate ground truth is likely to convert many of the false 
positives to true positives.

Conclusions

This paper discusses the current state of the high-speed 
rail inspection system under development at the University 
of California San Diego on behalf of the Federal Railroad 
Administration. The system uses a passive ultrasonic sens-
ing approach that utilizes non-contact air-coupled ultrasonic 
receivers and special signal processing algorithms to flag 
locations of discontinuities along a rail. The key potential 
advantages of this technology are: (1) the possibility to 
inspect the rail at regular train speeds (2) the possibility to 
enhance the detection performance due to the run redun-
dancies. The field test performance is presented in terms of 
ROC curves quantifying the trade-off between PD and PFA 

Fig. 12  GPS based map of passive system predictions, ground truth 
and signal strengths

Fig. 13  ROC curves for welds at 40mph with redundancies for mul-
tiple runs
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for various rail discontinuities (joints, welds, defects) and for 
different operational parameters. The SNR of the raw signal 
has an obvious effect on the performance, indicating “good” 
and “bad” portions of rail depending on the rail-wheel inter-
action conditions. This is a complex problem that needs to 
be investigated further. Higher test speeds were found to 
yield better performance of the system because of the higher 
energy and higher bandwidth levels introduced into the rail 
by the wheel excitations, which improved the signal-to-noise 
ratio of the passively reconstructed ultrasonic transfer func-
tion of the rail. Improved performance at higher speeds is 
very encouraging since one of the primary objectives of this 
project is enabling rail inspections at regular train speeds 
(“smart train” concept). The tests also show that the location 
of the sensors should be as close as possible to the locomo-
tive wheels for enhanced excitation strength. In terms of 
statistical analysis, it is found that the length of the baseline 
distribution can affect the performance outcome, with an 
optimum length resulting in the best performance. Finally, 
it is found that multiple runs on the same track improve the 
performance, with the improvement saturating when a cer-
tain number of runs is reached (six in our tests).

Defects and welds will cause scattering of the travelling 
waves that allows their detection. Joints should result in total 
signal loss (total reflection). Note that all defects presented 
and identified in the manuscript are transverse defects. 
Transverse defects belong to the category of defects where 
the cracks primarily grow in a plane perpendicular to the 
train running direction in the transverse direction (parallel 
to the railroad ties). The proposed technique utilizes guided 
wave modes traveling in the longitudinal direction along the 
rail and therefore these waves are particularly sensitive to 
the transverse defects. Since guided waves are formed by 
constructive interference of bulk modes propagating in the 
transverse direction of the waveguide (rail), we have found 
in previous investigations that these modes are sufficiently 
scattered also by Vertical Split Head defects, enabling their 
detection (although with a smaller sensitivity compared to 
transverse-type defects).

Although this work has laid strong foundations for this 
approach, additional research and development efforts are 
needed to make a successful transition to industry. Further 
studies need to be conducted to investigate ways of improv-
ing signal strengths at lower speeds on straight sections of 
the track. One possible way to achieve this is to introduce a 
controlled and broadband excitation source, such as continu-
ous impacts on the rail, using an automatically controlled 
hammer. Another technique is to use high powered acous-
tic horns for non-contact excitations. The fact that, in these 
cases, multiple excitation sources may co-exist should not be 
a problem for the Green’s function reconstruction, as long as 
there is sufficient energy at the frequency band of interest. 
In other words, all multiple sources will superimpose to give 

the excitation W(f) in Fig. 1. The normalized cross-power 
spectrum described in (equation (14)) eliminates the effect 
of W(f), regardless of the individual excitation sources pre-
sent. The only requirement is that there is sufficient excita-
tion energy in the frequency band of interest.

Further research also needs to be conducted to improve 
and optimize the signal feature vectors used in the outlier 
analysis with machine learning based techniques.

Finally, at this stage of research, the location of the defect is 
identifiable. Once the location is identified, other methods (e.g. 
hand-held verification) can be used for size determination.
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