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Abstract
Digital image correlation, commonly referred to as DIC, enables full-field measurements of displacements and strains from a surface
of interest. While DIC offers major advantages over commonly established methods, such as strain gauges or extensometers, some
questions remain in guaranteeing data precision of the DIC measurements. This paper reports on improvements in the precision of
DIC measurements of large deformations in copper tensile specimens by optimized patterning and lighting conditions, as well as
quantifying the improvements in the data. In the context of detection of strain localization at welds in copper canisters for spent
nuclear fuel disposal, the trade-off between spatial resolution and strain resolution is critical. To quantify the improvements in
measurement conditions, we propose a method for estimation of spatial resolution and noise level of a full-field strain measurement,
which does not require imposing a displacement field with variations in strain or displacement of well-defined length scale.
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Introduction

Techniques using pattern matching in digital images, com-
monly referred to as Digital Image Correlation (DIC), are
widely used for measuring shape, motion, and deformation
of objects [1]. The major benefit of DIC is that it is not limited
to point measurements, like strain gauges, or average mea-
surements like extensometers are. Quantitative error analysis
[2–6] of DIC technique shows that the measurement error
depends critically on the presence of intensity gradients in
the image. Therefore, obtaining satisfactory results with the
technique often requires a sample preparation procedure to
enhance image texture. Various methods for generating suit-
able textures at microscopic length scales have been reported
in detail [7–9].

At macroscopic length scales, a suitable texture can
often be achieved by spraying paint speckles onto the

object or by applying a given reproducible pattern with
a suitable method, such as adhesive foils. When deforma-
tion is measured, the pattern has to deform with the sur-
face of the object in order to give reliable information
from the real strains. Therefore, the pattern has to be well
attached to the surface of the specimen. With large strains
paint or adhesive foil may detach from the surface or
deform differently from the base material resulting in un-
reliable DIC data.

The material studied herein is phosphorous-alloyed oxy-
gen-free copper (Cu-OFP) used for spent nuclear fuel disposal
canisters [10]. Copper is a ductile material, which leads to
large strains in tensile testing. Therefore, using paint or adhe-
sive foils for patterning is not optimal, because the foil might
detach or deform differently from the underlying material. To
overcome this problem, the copper surface was oxidized with
black copper oxide and the surface was patterned by etching
an optimized DIC pattern [11] with the aid of a photolitho-
graphic method. The simplest solution, on the other hand, is to
use the electro-discharge machined (EDM) surface directly as
a natural pattern. Reflections from the roughness of the sur-
face were found consistent enough for the sum-of-differential
correlation to work, but the noise level of the data becomes
rather high. In comparison to that, an optimized pattern im-
proves the precision of the measurements considerably by
providing easily trackable consistent features on the surface.
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In addition to methods for patterning objects for the pur-
pose of DIC measurements, methods for characterizing the
resulting patterns [12–14], and for choosing the analysis pa-
rameters in function of the characteristics of the pattern [15,
16] or in function of the strain field [17] have been proposed.
However, some questions remain about guaranteeing the reli-
ability of DIC measurements in terms of spatial resolution,
accuracy, precision, sensitivity, and robustness of themeasure-
ment. It is well established, that there is a trade-off between
spatial resolution and precision, which governs the choice of
subset size when analyzing DIC measurements and which is
affected by the quality of the pattern [12, 13]. However, de-
termination of spatial resolution of a measurement is not that
straight-forward and often requires à priori tests with the same
test conditions as the actual tests or imposing a synthetic dis-
placement field with known variations in displacement [3–5,
18]. We propose, that in the absence of images with known
imposed displacements, the autocorrelation length of the noise
in the measurement may serve as a metric of the spatial reso-
lution, since the wave length of the noise correlates with the
spatial resolution of the measurement. The obtained value
includes the combined effects of the test conditions and cal-
culation methods, without any prior knowledge about those
conditions or methods in advance. The autocorrelation length
was extracted for a set of experimental images, in the context
of detection of strain localization at copper welds, and for
Sample 14 of the DIC Challenge [18], which contains known
sinusoidally varying displacements.

Experimental

Tensile Specimen Preparation and Naming

In total, three Cu-OFP tensile specimens were cut with
electro-discharge machining (EDM) across an electron
beam weld (EBW) and across a friction stir weld (FSW),
see Fig. 1. Two of the specimens were cut next to each
other from an electron beam welded copper plate. One of
them was used as a reference specimen with the EDM-cut
surface used as a natural DIC pattern (Fig. 1a) and the other
one was patterned with the copper oxide pattern (Fig. 1b).
From hereafter, the specimens are named EBW-EDM-S
and EBW-P-S, respectively. P stands for patterned and S
for spot lighting. A third specimen was cut across an FSW
copper canister weld and patterned similarly to EBW-P-S,
but in this instance indirect diffuse lighting was used in-
stead of spot lighting (Fig. 1c). The specimen is designated
as FSW-P-D, where D stands for diffuse lighting. The di-
mensions of the gauge length of the EBW specimens were
3.5x25x40 mm, and the dimensions of the FSW specimen
were 3.0x30x53.6 mm.

Pattern Generation

The pattern bitmap was generated by specifying the spatial
frequency content, with randomized phase, and calculating
the inverse Fourier transformation as described in ref. [11].
The specified frequency content is directly related to the de-
sired size of the pattern features, which was optimized by
taking into consideration the imaging area of the specimen
throughout the deformation. In other words, the camera had
to be at a right distance from the specimen in order to see the
whole specimen after deformation with the lens that was used.
The resolution of the camera and lens system was evaluated at
this set distance and taken into consideration during pattern
generation so that the physical feature size on the specimen
surface was close to 3 pixels in the image.

According to iDICs’s Good Practice guide for DIC, a fea-
ture of a traditional speckle pattern should appear as 3-5 pixels
on the CCD of the camera [19]. This is to minimize aliasing
from smaller features (<3 pixels), adding up as noise, and loss
of spatial resolution from larger features (>5 pixels). The pat-
tern used herein solves the problem associated with speckle
patterns by introducing evenly spaced features with varying
shape, that are all within the desired size range, enabling con-
sistent information from the whole field-of-view.

Copper Oxide Pattern Preparation

Before patterning, the EDM cut surface of the tensile speci-
mens was polished with wet grinding and diamond paste
polishing up to 1 μm to allow an evenly thick copper oxide
layer to be formed. An opaque layer of black copper(II)oxide
(CuO) was formed by treatment in 100 g/l of 50/50 mixture of
sodium hydroxide (NaOH) and sodium chlorite (NaClO2) at
85 °C for about 10 min. AZ5214E photoresist was then spin-
coated on top of the copper oxide layer. The spinning param-
eters were carefully adjusted for slow acceleration and decel-
eration, because the specimen was heavy and had an elongat-
ed shape. Even so it had to be well attached to the spinner.
Maximum spin rate was about 800 RPM resulting in resist
thickness of about 4 μm.

The photomask for pattern exposure was created with a
Microtech LW405 laser writer using bitmap-patterning mode.
The pattern was inscribed with the laser writer on a soda-lime
glass plate which had a thin chromium layer. The pattern was
transferred to the photoresist by placing the photomask direct-
ly on top of the copper specimen, onto which the photoresist
was spin-coated, and the pattern was exposed with UV light
from a mercury lamp. This method introduces a slight loss in
optical resolution, but given the size of the features
(>150 μm), the loss is irrelevant. After exposure, the photore-
sist was developed in AZ351B solution; a NaOH-based de-
veloper, and finally the cupric oxide was patterned by etching

Exp Mech (2020) 60:3–124



in 2%HCl solution for a short time. The remaining photoresist
was rinsed away with acetone.

Figure 2 shows optical micrographs of the EDM cut sur-
face and the copper oxide patterned surface with the same
magnification. The feature size of the pattern is relatively large
when compared to the roughness of the EDM cut surface, but
the EDM cut surface still works as a simple DIC pattern in 2D
measurement, even if it is not optimal. The grains of copper
are visible in the etched regions of the patterned surface.

Tensile Testing with DIC

Tensile testing with 2D optical displacement measurement
through digital image correlation (DIC) was performed with
a Zwick/Roell Z020 tensile testing machine and a Strain-
Master DIC system by LaVision. The camera was a
LaVision Imager pro X equipped with a Nikon Micro-
Nikkor 105 mm lens. Dynamic range of the camera is 14 bits.
The size of the camera sensor is 1600 × 1200 pixels, but the
test images were taken with a narrowed field of view of

roughly 600 × 1600 pixels. Physical size of the pixels was
about 50 μm/pixel for the EBW tests and 60 μm/pixel for
the FSW test due to slightly different camera distance from
the specimen. Images were taken every 250 s, but only every
20th image was used for the digital image correlation. This is
equal to frame rate of one image per 1.4 h and cross-head
displacement of 0.08 mm of the tensile testing machine. The
tests were performedwith constant extension rate of 0.001mm/
min, which corresponds to a strain rate of 4.17 × 10−7 1/s for
gauge length of 40 mm and 3.1 × 10−7 1/s for gauge length of
53.6 mm. The very low extension rate led to test duration of
about two to three weeks depending on the specimen.

Two different lighting configurations were used in different
experiments; 1) a direct spotlight from in front of the specimen
(EBW-EDM-S, EBW-P-S) and 2) indirect diffused light (FSW-
P-D), where the spotlight was placed behind the specimen and
the light was reflected from two curved curtains, made of pro-
jector screen canvas, located in front of the specimen (details
can be found in ref. [20]). The monitoring of the specimen was
performed from an opening between the curtains.

Fig. 2 a) EDM cut surface and b) copper oxide patterned surface

Fig. 1 a) EBW-EDM-S; electron
beam welded, EDM-cut surface
used as a natural pattern, and di-
rect spot lighting b) EBW-P-S;
electron beam welded, patterned,
and direct spot lighting c) FSW-P-
D; friction stir welded, patterned,
and indirect diffuse lighting. An
approximate location of the welds
is marked with orange lines
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Digital image correlation was performed repeatedly with
LaVision DaVis software version 8.4.0 with varying calcula-
tion settings (Table 1). Since the trade-off between displace-
ment precision and spatial resolution in DIC measurements is
especially relevant, the subset size was systematically varied
from 13 to 37 in a logarithmic series, roughly doubling the
number of pixels per subset at each step in the series. Gaussian
weighted round subsets were used, which affects the charac-
teristics of the spatial resolution of the measurement.

Data Analysis and Visualization

Strain Noise and Autocorrelation Length

Displacement data obtained with DaVis software was trans-
ferred to Matlab for further analysis and visualization. The
vertical engineering strain components were calculated by cen-
tral finite differences on raw displacement field data. The edges
of the displacement data were omitted to avoid erroneous
strains from edge effects. No out-of-plane compensation was
performed, which results in small errors in strain when necking
of the specimen occurs. Since the plastic strains in these exper-
iments are on the order of 50% or larger, this error is acceptable
(0.05% estimated maximum apparent strain from out of plane
component of the displacement field at final fracture zone).

Data accuracy and precision were assessed by calculating sta-
tistics for a section of the displacement field data that could be
reasonably approximated as having uniform strain. Since the strain
field was not perfectly uniform, the underlying trend was approx-
imated by local regression smoothing (Lowess smoothing) over
an area much larger than the subset size, and subtracted from the
calculated strain field. A typical result of this procedure is shown
in Fig. 3a). The remaining strain field thus can be considered as the
noise in the DIC strain measurement. Its standard deviation quan-
tifies the strain noise level, or the strain detection limit for the given
experiment conditions and DIC calculation settings.

Quantifying the spatial resolution of the measurement is
not as straightforward. There is clearly an intrinsic length scale
to the noise in the DIC strain measurement, obtained by the
above procedure. How well that length scale corresponds to
the concept of spatial resolution, with which the displacement
field or strain field is measured, is still somewhat of an open
question, but in the absence of an imposed displacement field
with variations in strain or displacement of well-defined
length scale, the autocorrelation length of the noise in the
measurement may serve as an upper bound on the spatial
resolution of the measurement. There may be extraneous noise
that is not subject to the smoothing effect inherent to DIC
calculations with subsets, but if so the measurement can triv-
ially be improved by smoothing the displacement field. The
intrinsic length scale of the noise includes the combined ef-
fects of the subset size and strain calculation method, as well
as those of the feature size distribution of the pattern. If the
point spread function for the displacement field, calculated
using Gaussian weights to emulate Bround^ subsets on a ver-
tically stretched grid, is a 2-dimensional Gaussian function,
with characteristic width a horizontally and b vertically, the
expected point spread function for the vertical component of
the strain field calculated from this displacement field is:

z ¼ 1−
2y2

b2

� �
e−

x2

a2
þy2

b2

� �
ð1Þ

, where.

z autocorrelation value
x horizontal point shift
y vertical point shift
a horizontal point spread coefficient
b vertical point spread coefficient

, with z a dimensionless number between −1 and + 1, and grid
points as the unit of measurement for x, y, a, and b in
Lagrangian coordinates.

Table 1 Calculation settings in
LaVision DaVis Subset size 13, 19, 27, 37 pixels

Step size 5 pixels

Correlation method sum-of-differential (and relative-to-first)

Minimum number of valid pixels 50%

Pyramid levels 1

Maximum iterations 20

Epsilon 0.001

Threshold for correlation value 0.1

Threshold for confidence margin 0.1 pixel

Subset shape round

High accuracy interpolation on

Outlier and smoothing filters off (except when otherwise stated)

Fit function affine
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This theoretical function shape corresponds well with the
experimental autocorrelation data calculated from the noise in
the DIC strain measurement, as shown in Fig. 3b). Therefore,
in addition to the standard deviation of the noise in the DIC
strain measurement, the autocorrelation length was calculated
from the noise component of the measured strain field. The
two-parameter fit using equation (1) gives the least-squares fit
coefficient b for vertical point spread. This value was then
multiplied by the elongated grid spacing in pixels at that spe-
cific point in time to obtain a length characterizing the spatial
resolution of the DIC measurement in pixels in the vertical
direction.

Comparison to Sample 14 of the DIC Challenge

The DIC Challenge [18] provides test images for comparing
the spatial resolution of different DIC codes. In particular, for
Sample 14, sinusoidally varying Bcommanded^ displace-
ments with known constant amplitude and decreasing wave-
length in horizontal direction (which results in increasing
strain as the wavelength decreases) are imposed on the im-
ages. In the DIC Challenge paper, a relatively small attenua-
tion of the measured strain variation amplitude is used as the
threshold for considering the strain variations below the spa-
tial resolution of the DIC measurement. Thus the DIC
Challenge paper approached the concept of spatial resolution
as answering the question BDoes this DIC measurement accu-
rately measure the strain amplitude, for strain variations at
this wavelength?^ This is not quite the same as answering the
question BAre strain variations of this wavelength and ampli-
tude detectable with this DIC measurement?^ The combina-
tion of noise amplitude and autocorrelation length is directly
suitable for answering the latter question, but not the first one.

However, for a rough comparison, the attenuation of
the commanded displacement variations may be compared
with the effect of filtering the commanded displacements
by convolution with a Gaussian kernel of the appropriate
width to result in the same autocorrelation length for orig-
inally uncorrelated noise. Thus, DIC was repeatedly per-
formed on Sample 14 L5 of the DIC Challenge, with the
same settings as for the experimental images, varying the

subset size from 13 to 55 pixels. The larger the subset size
and the smaller the wavelength of the imposed displace-
ments, the more the measured displacements or strains
will be attenuated from the imposed ones due to spatial
filtering. For each of the DIC measurements with different
subset sizes, the noise amplitude and autocorrelation
length were extracted in horizontal direction from the hor-
izontal component of the measured strain field, from the
left side of Sample 14 L5 (x-position 50-550 pixels),
which contains no or very small strains. The small strains
were compensated by the local regression smoothing. The
commanded displacements were then convolved with a
Gaussian kernel given in equation (2), where the kernel
width is defined by the autocorrelation length. The simul-
taneous attenuation of the commanded displacements by
the DIC measurement and by convolution with the auto-
correlation length were then plotted with the Matlab script
of the DIC Challenge [21].

G x;wð Þ ¼
ffiffiffi
2

p

w
ffiffiffi
π

p e−
2x2

w2 ð2Þ

, where.

x horizontal coordinate
w kernel width defined by the autocorrelation length of the

DIC measurement

For the case of convolving sinusoidally varying commanded
displacements with a Gaussian kernel, when the sine wave-
length λ = 2π/k and amplitude α are constant:

u k; xð Þ ¼ αsin kxð Þ ð3Þ
, the attenuation may be calculated analytically:

u k; x;wð Þ ¼ αe−
1
8k

2w2ð Þsin kxð Þ ð4Þ

In the DIC Challenge paper, the spatial resolution is
characterized by the wavelength of the sinusoidally vary-
ing displacement field for which the measured displace-
ment variation amplitude or strain variation amplitude
reaches an arbitrarily chosen attenuation threshold. The

Fig. 3 a) Filtered noise in a
section of the strain map. b) The
corresponding autocorrelation of
the noise field with the colored
surface showing the fitted
function and the points indicating
the autocorrelation data
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attenuation ratio R for both displacements and strains
equals to the exponential in equation (4):

R k;wð Þ ¼ e−
1
8k

2w2ð Þ ¼ e−
π2
2
w2

λ2

� �
ð5Þ

Thus, for this specific case there is an exact relationship
between the metric of spatial resolution in the DIC Challenge
paper and the autocorrelation length used in this paper.
Although this relationship does not necessarily hold for DIC
measurements in general, solving equation (5) for the wave-
length results in a conversion factor that can be used to esti-
mate the spatial resolution obtained using the procedure of the
DIC Challenge from the autocorrelation length obtained using
the procedure in this paper, or vice versa:

λest R;wð Þ ¼ πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ln Rð Þp w ð6Þ

For the threshold of R = 0.95 proposed in the DIC chal-
lenge paper for displacements, this results in λest = 9.809w,
and for the value of R = 0.90 used for strains in λest = 6.844w.

Results and Discussion

Experimental Results

It is well established, that there is a trade-off between spatial
resolution and precision, which governs and which is affected
by the choice of subset size in relation to quality of the pattern
and test conditions when analysing DIC measurements.
Therefore, to assess the impact of methods to improve the
spatial resolution or reduce the noise level in a DIC measure-
ment, it is necessary to characterize that trade-off. Figure 4
shows the reduction in noise of a strain measurement when
the test conditions are improved or the subset size is increased.
In addition to the amplitude of the noise, the wavelength of the
noise is affected by the measurement conditions and the subset
size. In the absence of an imposed displacement field with
variations in strain or displacement of well-defined length
scale, the length scale of the noise in the measurement was
determined, and used as a proxy for the spatial resolution of
the measurement.

Figure 5 plots the extracted autocorrelation length versus
the noise level for the three different specimens. The autocor-
relation length correlates inversely with the noise level show-
ing a logarithmic increase in noise when the subset size is
reduced. The entire trade-off curves are shifted towards less
noise by patterning and by diffuse lighting, enabling detection
of smaller variations in strain. However, a simultaneous shift
of the autocorrelation values to the right is observed. This is
most likely explained by extraneous noise components in the
worse measurements, with smaller wavelength than the

autocorrelation length, which will shift the autocorrelation
length towards smaller values. This shift is more visible with
noisier data. The different length scale of the trade-off curve
for specimen FSW-P-D, when compared to the EBW speci-
mens, is most likely explained by the slightly different camera
distance from the specimen.

A comparison of the sum-of-differential and relative-to-
first correlation methods is presented in Fig. 6 with data for
frames 100, 200, and 300 for the specimen FSW-P-D. The
respective points in time are 134.5 h, 270.3 h, and 406.2 h,
and the mean strain over the gauge length is 6%, 15%, and
26% without significant strain localization. Signal-to-noise
ratios for the mean strain, when using sum-of-differential
and subset size 27, are 49.5, 60.5, and 61.5, respectively. It
is worth pointing out that if the signal of interest is the local-
ization of deformation, with onset after some time and increas-
ing amplitude, the signal to noise ratio improves even though
the noise level increases. It is evident from Fig. 6 that relative-
to-first accumulates less noise, but still the noise level in-
creases similarly with added images in the series regardless
of the correlation method. The deterioration of noise level is
probably explained by increasing residual differences between
deformed and initial images after the deformation is accounted
for by the subset shape function, and how those affect the
numerical minimisation of the residual by varying the defor-
mation within the DIC algorithm. The deterioration of the
spatial resolution as the experiment progresses is a result of
elongation of the grid spacing, since the vertical point spread
coefficient of the autocorrelation peak was multiplied by the
elongated grid spacing.

It should be noted, that due to the non-linearity of the DIC
calculation, its spatial filtering effect may be significantly dif-
ferent from the linear approximation of convolution with a
point spread function. As a result, especially for unreasonably
large subset sizes, the results of a DIC calculation may contain
noise components with smaller wavelength than the autocor-
relation length, and the spatial resolution may be smaller than
expected from the subset size. For example, it can be seen in
open implementations of DIC algorithms that under certain
conditions with discontinuous displacement fields the cost
function is bimodal, and the measured displacement discon-
tinuously jumps when the smaller peak becomes the larger
one. Likewise, the minimum in the cost function becomes less
sharp when it is further away from zero—for example by not
normalizing the image intensities— allowing spurious noise-
dominated terms in the correlation to contribute more. These
noise components will shift the autocorrelation length towards
smaller values, and it seems that the summation of small dis-
placements amplifies this effect, since the autocorrelation
lengths obtained for sum-of-differential measurements, when
compared to relative-to-first measurements, are smaller when
using the same subset size (Fig. 6). To investigate this in detail
is beyond the scope of this paper and it would require low-
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level access to the DIC algorithm and intermediate results.
However, if such noise deteriorates the data, the measurement
can trivially be improved by smoothing the displacement field
with filters smaller than the spatial resolution of the measure-
ment. Thus, the autocorrelation length is an approximate mea-
sure of all of the noise components, including any extraneous

noise which might not be dependent on the spatial resolution
of the measurement. Therefore, the autocorrelation length
should be taken as an upper bound of the spatial resolution,
with the given test conditions and computational factors.

It is a choice of the experimentalist to aim for better noise
level or better spatial resolution of a DIC measurement. The
DIC software often provides filters for the improvement of the

Fig. 4 Small variations in strain in comparison to the noise level of the measurement for the three different specimens. The subset size increases from left
to right showing the reduction in noise and increase inwavelength of the noise. X and Yindicate positions across and along the gauge length of the tensile
specimen, respectively

Fig. 5 Trade-off curves of strain noise and noise autocorrelation length
for frame 100. Patterning (EBW-P-S, FSW-P-D) and diffuse lighting
(FSW-P-D) shift the entire trade-off curves towards less noise. The subset
size varies from 13 to 37 pixels, except for EBW-EDM-S, with which
DIC failed to correlate with subset size 13

Fig. 6 Comparison of relative-to-first and sum-of-differential correlation
methods with data for frames 100, 200, and 300 for the specimen FSW-P-
D. The strain noise and autocorrelation length deteriorate with added
images in the series. The subset size varies from 13 to 37 pixels

Exp Mech (2020) 60:3–12 9



noise level, but this happens at the expense of the spatial
resolution. The effect of the filters on the autocorrelation
length is shown in Fig. 7. The filters clearly compress the
trade-off curve towards larger autocorrelation lengths while
the noise is reduced. This is especially evident with small
subsets, which suffer from high level of noise initially.
Larger subsets, on the other hand, do not benefit from the
filters, since they already perform as initial smoothing filters
in the DIC calculation process.

The best data quality was achieved by using the optimized
DIC pattern and indirect diffuse lighting, which minimized
specular ref lect ions from the specimen surface .
Alternatively, a white pattern background would have elimi-
nated point-like specular reflections from facets on the grains
of copper or the EDM-roughened surface, but possibly not a
glare from the spotlight. Thus, using the diffuse lighting or a
white coating would nearly eliminate contrast from the spec-
imen with the as-cut EDM surface. However, copper oxide
was used for patterning because it adheres to the copper sur-
face better than a paint or foil would have, and this process is
incompatible with applying a white background.

Sample 14 of the DIC Challenge

Since the metric of spatial resolution in the DIC Challenge
paper [18] is different than the metric proposed in this paper,
a direct comparison of the obtained values is not generally
valid. In addition, the images provided in the DIC Challenge
did not include strain variations with sufficiently short wave-
length to really challenge the DIC codes with respect to the
detectability of the commanded strain variations. However,
for the special case of spatial filtering by convolution with a
Gaussian function, the relationship between the two metrics is
well-defined by the shape of the Gaussian function, and each
of the methodologies can be compared with that common
reference. Therefore, we compared the measured strains with

both the commanded strains and the commanded strains
smoothed by a convolution that for random noise results in
the same autocorrelation length as the noise autocorrelation
length of the measured strains. The obtained curves are shown
in Fig. 8. DIC measurement with increasing subset size results
in increasing autocorrelation length of the measured strains, as
shown in Fig. 8a), as well as increasing attenuation of the
measurement from the commanded strains at shorter wave-
lengths (Fig. 8b-f). Convolution of the commanded strains in
Fig. 8b-f), with increasingly broad point spread functions,
corresponding to the same strain noise autocorrelation lengths
from Fig. 8a), results in good agreement for the attenuation of
the strain variations. Thus it seems that for this DIC code with
these patterns and these parameters, the relationship that holds
between these two metrics of spatial resolution that holds for
convolution with a Gaussian point spread function, approxi-
mately holds for the spatial filtering that happens in the DIC
measurement, as well. Table 2 compares these two metrics,
with numerical values for the autocorrelation length w, the
corresponding attenuation threshold wavelength λest =
6.844w from equation (6), and the spatial resolution that the
Matlab script of the DIC Challenge returns for the strains
measured in this paper.

Summary and Conclusions

This paper consists of three main parts: 1) Improvement of
DIC test conditions by optimized patterning of copper tensile
specimens and diffuse lighting, 2) quantifying the improve-
ments by extraction of noise level and autocorrelation length
of the noise, and 3) situating the strain noise autocorrelation
length as a proxy for the spatial resolution of the measure-
ment, by analysis of images with known imposed displace-
ments [18].

The copper tensile specimens were patterned with the aid
of a photolithographic method by using black copper oxide as
the patterning medium. The advantage of copper oxide is that
it adheres to the surface better than a paint or foil would have.
This enables full-field measurements of large deformations in
copper tensile specimens, as well as detection of smaller var-
iations in strain due to improved precision of the
measurement.

The noise level of the measurements was calculated from a
section of the strain map by subtracting a fitted local average
strain, and by taking the standard deviation of the noise ex-
tracted this way. There is an intrinsic length scale of the noise.
This length scale was extracted by autocorrelation of the noise
field, and by determining the spread of the autocorrelation
peak. The value was then multiplied by the elongated grid
spacing and used as a proxy for the spatial resolution of the
measurement. The method requires a region with fairly
smooth strains for the extraction of the noise since the local

Fig. 7 Filters in the DIC software reduce the strain noise while worsening
the autocorrelation length. The data is for the patterned FSW-P-D speci-
men with indirect diffuse lighting. The subset size varies from 13 to 37
pixels
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regression smoothing can only compensate for a limited
amount of strain localization. In addition, the size of the ex-
tracted noise field should be significantly larger (>10x) than
the subset size for reliable extraction of the noise wavelength

by autocorrelation. Comparing the spatial filtering, that hap-
pens in the DIC measurements discussed here, to convolution
with a Gaussian point spread function, the Gaussian width that
results in the same strain noise autocorrelation length also
gives comparable attenuation of known imposed strains.

The results obtained by the above method quantify the
trade-off between the minimum magnitude of localized strain
(noise) and minimum extent of localized deformation (spatial
resolution) that can be detected when varying the calculation
parameters and test conditions. The method may be used to
estimate the spatial resolution of a displacement or strain field,
based only on the displacement data-set itself, without any
knowledge at all about how it was measured. This spatial
resolution value includes the combined effects of the pattern,
tests conditions, and computational factors. Thus the method
may be used for assessment of improvements in a DIC mea-
surement when looking for optimum test conditions and

Fig. 8 a) Measured strain noise and noise autocorrelation length of Sample 14 L5 [18], as well as, random noise convolved in two dimensions with
increasingly broad point spread functions corresponding to the noise autocorrelation lengths. b-f) Attenuation of strains in Sample 14 L5 due to the DIC
measurement and due to convolution of the commanded strains with kernel widths corresponding to the autocorrelation lengths for the different subset
sizes

Table 2 Autocorrelation lengths (w) of the DIC measurement as a
function of the subset size, converted to attenuation threshold wavelength
(λest) for comparison with the metric of spatial resolution of the DIC
Challenge paper (λthr)

Subset size w λest (at R = 0.90) λthr (at R = 0.90)

13 11.0 76 n/a

19 13.3 91 105

27 16.7 114 126

37 23.5 161 166

55 38.8 265 252
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parameters, or for comparing DIC measurements with other
full-field measurement methods.
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