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PROOF OF RELIABILITY CONVERGENCE TO 1 AT RATE OF SPEARMAN–BROWN
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It is shown that the psychometric test reliability, based on any true-scoremodel with randomly sampled
items and uncorrelated errors, converges to 1 as the test length goes to infinity, with probability 1, assuming
some general regularity conditions. The asymptotic rate of convergence is given by the Spearman–Brown
formula, and for this it is not needed that the items are parallel, or latent unidimensional, or even finite
dimensional. Simulationswith the 2-parameter logistic item response theorymodel reveal that the reliability
of short multidimensional tests can be positively biased, meaning that applying the Spearman–Brown
formula in these cases would lead to overprediction of the reliability that results from lengthening a test.
However, test constructors of short tests generally aim for short tests that measure just one attribute, so that
the bias problem may have little practical relevance. For short unidimensional tests under the 2-parameter
logistic model reliability is almost unbiased, meaning that application of the Spearman–Brown formula in
these cases of greater practical utility leads to predictions that are approximately unbiased.

Key words: reliability, Spearman–Brown prophecy formula, item sampling, parallel measures, conver-
gence.

What happens to the reliability of a test if items from an infinite pool are randomly added to
the test? We will argue that under general circumstances, the reliability will go to 1, and that the
rate of this is given by the Spearman–Brown formula (Brown, 1910; Spearman, 1910) . This is
different from the common belief that items or other test parts need to be parallel for the reliability
to go to 1. The Spearman–Brown formula is derived traditionally from the assumption that items or
test parts are parallel, but we show that it also works under more general conditions. For practical
test construction, this result shows that it always makes sense to add items to increase reliability,
a result that many researchers know from experience but without the fundamental theoretical
support our result provides. Prior to presenting the new results, to fresh up memory, we briefly
reiterate the theoretical basis of the Spearman–Brown formula.

A test or a questionnaire consists of items or test parts, such as testlets consisting of short
literary texts and a small number of questions identical with each text, that together produce a test
score. Often, the test score is the sum of the item scores or the testlet scores. Many methods exist
to estimate the reliability of the test score (e.g., Guttman, 1945, Jackson & Agunwamba, 1977,
Sijtsma & Van der Ark, 2020, Ten Berge & Zegers, 1978). The test constructor or the researcher
using a test or questionnaire may believe the test length is either too low or too high. The cause
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of the former concern is usually that she expects measurement precision or statistical power is
too low, and the cause of the second concern may be that the test uses too many items putting
too much mental burden on young children, busy teachers, or clinical patients. A well-known
strategy for increasing or decreasing reliability is to add items or delete items until a desired value
is obtained.

Let n be the factor bywhich the number of items or test parts is increased (n > 1) or decreased
(0 < n < 1), then the (generalized) Spearman–Brown formula states that if a test with reliability
ρ1 is lengthened or shortened with factor n, the reliability of the new test will be

ρn = nρ1
1 + (n − 1) ρ1

In the derivation of this formula, it is usually assumed that items are parallel (Lord & Novick,
1968) , and it is often emphasized that the formula holds only for parallel items. We will show
that it provides a close approximation much more generally.

If the items are parallel with ρ1 > 0, then the Spearman–Brown formula implies that the
reliability approaches 1 if n → ∞. However, it is easily seen that reliability will much more
generally approach 1 if the number of items increases. One argument for this is based on coefficient
alpha (Guttman, 1945) . Coefficient alpha is often regarded as a lower bound to the reliability
(see Sijtsma & Pfadt, 2021, for a discussion). For a test consisting of n items with inter-item
covariances ci j and item variances vi , if we denote the mean off-diagonal inter-item covariance

as c̄n :=
n∑

i=1

n∑

j=1, j �=i
ci j/n(n − 1) and the mean item variance as v̄n :=

n∑

i=1
vi/n, and their ratio

as ρ̄n := c̄n/v̄n , then coefficient alpha, denoted αn and known as

αn = n

n − 1

⎛

⎜
⎜
⎜
⎝
1 −

∑n
i=1 vi

n∑

i=1

n∑

j=1
ci j

⎞

⎟
⎟
⎟
⎠

can be written as

αn = nρ̄n

1 + (n − 1)ρ̄n

(e.g., Warrens 2015, p. 130). The result has the structure of the Spearman–Brown formula. From
this result it follows that, as n → ∞, αn approaches 1 if and only if nρ̄n → ∞, for which it
is sufficient—but not necessary—that ρ̄n remains greater than some ε > 0 Furthermore, under
random sampling of items, if we denote the expected off-diagonal inter-item covariance as c̄∞ and
the expected variance as v̄∞, and if we define ρ̄∞ := c̄∞/v̄∞, the law of large numbers suggests
that if the second moment of the vi s is finite and ρ̄∞ > 0, then ρ̄n → ρ̄∞ > 0 and therefore
αn → 1.

The above argument is not compelling, however, because even if the items are sampled
independently, the inter-item covariances are not independent samples, and therefore application
of the ordinary law of large numbers is not allowed. Furthermore, even if αn → 1, the true
reliability of the test might approach 1 at a faster rate if αn is merely a lower bound. Therefore,
we provide a more formal proof. We start with briefly reviewing the Spearman–Brown formula in
classical test theory and generalizability theory. Then we explicate our notation and assumptions
and present a theorem and its proof. We discuss a simulation study that investigates the effects
of dimensionality on accuracy of the Spearman–Brown predictions for short tests. Finally, we
discuss the consequences of our theorem for practical test construction.
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1. The Spearman–Brown Formula in Classical Test Theory

Because it is central in this article, we reiterate the (generalized) Spearman–Brown formula,

ρn = nρ1
1 + (n − 1) ρ1

Many psychometric textbooks discuss the Spearman–Brown formula as an aid to “prophesize”
what the reliability of a test would be after changing its length (e.g., Allen & Yen, 1979, pp.
85–88; Furr & Bacharach, 2008, p. 127; Nunnally, 1978, p. 243; Reynolds & Livingston, 2012, p.
131; Webb et al., 2006). The formula has also been used in studying how the power of statistical
tests depends on the test length (Feldt, 2011, p. 425; Ellis, 2013, p. 19). Many textbooks mention
the limitation that the formula assumes that the test parts are parallel (e.g., Lord & Novick, 1968,
p. 139), an assumption that is usually not realistic. Is it possible to relax this assumption while
maintaining the usefulness of the Spearman–Brown formula? An obvious but trivial relaxation is
that it is also sufficient if the test components are parallel up to an additive constant, since adding
a constant to one component would affect neither ρ1 nor ρn , but the question remains whether it
is possible to relax this assumption further in a more meaningful way.

Lord (1955) and Cronbach et al. (1972) argued that the assumption of parallel items is not
needed to estimate reliability if one assumes that the items are randomly drawn from a large pool.
It can be argued that this is also true for the Spearman–Brown formula. This article investigates
the matter from the perspective of the test constructor. We assume that the test constructor starts
with a test of given length, for example 10 items, and that she knows the reliability of the test
score. Suppose she wishes to predict what the reliability will be after lengthening the test length
to 25 items, randomly drawn from the same pool. In this study, we ask under which circumstances
the Spearman–Brown formula provides reliability estimates with no or little bias. Specifically,
does the accuracy of the Spearman–Brown formula depend on the dimensionality of the items, as
is suggested by the condition that the items need to be parallel, or is random sampling of items
sufficient to guarantee estimation accuracy?

2. The Spearman–Brown Formula in Generalizability Theory

In generalizability theory (Cronbach et al., 1972; Gleser et al., 1965; Webb et al., 2006) ,
it is assumed that the items are randomly sampled, while the assumption of parallel test items is
often considered unnecessary. For example, Rajaratnam et al. (1965, p. 40) discuss the concept
of “randomly parallel tests,” which “are formed by drawing items randomly from the universe as
a whole,” and they state, “For randomly parallel tests, α obeys the Spearman–Brown formula as
k

′
/k(n/n′; the authors) departs from 1.00” (p. 50). A version of the Spearman–Brown formula is

often used implicitly in generalizability theory. For example, consider a one-facet design of items
and denote the observed-score variance σ 2

n , universe-score variance τ 2, residual variance ε2n , and
generalizability ρn for a test of length n. Assuming σ 2

n = τ 2 + ε2n and defining ρn = τ 2/σ 2
n , we

have the following equivalence:

The Spearman–Brown formula holds for ρn if and only if ε2n = ε21/n

The identity ε2n = ε21/n, or versions of it for more complex designs, is routinely assumed in studies
on the optimization of generalizability (e.g., Marcoulides, 1993,Marcoulides, 1995,Marcoulides,
1997, Marcoulides & Goldstein 1990, 1992; Meyer et al., 2013; Peng et al., 2012, Sanders, 1992,
Sanders et al., 1989, 1991, Woodward & Joe, 1973).
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We focus primarily on reliability, not generalizability. To clarify the difference, consider the
situation of a test of n items selected from an infinite pool. Let Xn be the observed-score variable
of the test, Tn the associated true-score variable, and T∞ the universe-score variable, defined
on the entire item pool. We study the correlation between Xn and Tn as n increases, whereas
generalizability theory would study the correlation between Xn and T∞. Obviously, these topics
are closely related but not identical. The reliability coefficient may be estimated without reference
to generalizability for example, in a confirmatory factor analysis framework, such as McDonalds
omega (see Zinbarg et al., 2005; 2006) or in IRT models (e.g., Kim & Feldt, 2010). The question
is what happens to this reliability if the number of items changes.

3. Notation and General Assumptions

3.1. Notation of Conditional Expectations

We use results from the measure-theoretical foundations of conditional expectation (e.g.,
Billingsley, 1986, Majerek et al., 2005), and to do so smoothly, we use the notation that is
common in the theory of conditional expectations, which differs from the conventional notation
in generalizability theory: If X and Y are random variables on a common probability space, then
the conditional expectation of X given Y will be denoted as E(X |Y ). This is a random variable, a
function of random variable Y , and for a specific value y this random variable assumes the value
E(X |Y = y).

3.2. Definition of Item True scores and Item Error Scores

Assume that we have a set of test items denoted � where individual items are indicated by
subscript ω ∈ �. Assume that each item ω ∈ � has an observed-score random variable Xω

with finite nonzero variance, and that a joint distribution exists for the {Xω| ω ∈ �}. Let F be a
collection of variables in the same probability space. We define

Tω := E(Xω|F)

and Eω := Xω − Tω for each item ω ∈ �. Assuming these conditional expectations exist, this
implies that E (Eω) = 0 and cov(Eω, Tν) = 0 for all ω, υ ∈ �. Henceforth, the Tω are called
the true-score variables and the Eω are called the error-score variables, but we do not assume that
these variables necessarily have the interpretation that is often given to them in texts on classical
test theory (e.g., Lord & Novick, 1968, chap. 2). For example, we do not say that Tω should be
defined by an infinite series of replications within subjects. We say that the error-score variables
are uncorrelated if

cov(Eω, Eν) = 0 for all ω, υ ∈ �,ω �= υ

We do not create a new concept of true scores but rather aim at a definition that allows maximal
generality of our results. Our definition of true scores is very general: True scores are conditional
expectations. This encompasses multiple true-score concepts that have been defined earlier in the
literature. Some examples are the following:

1. Assume that the items satisfy a common factor model Xω = ∑

d
λωd Fd +Uω, where the

Fd are common factors, the Uω are unique factors, and the Fd and Uω have a centered
multivariate normal distribution with correlations 0. With F = (F1, F2, ...), we have
Tω = ∑

d
λωd Fd and Eω = Uω.
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2. Assume that the items satisfy an item response theory model where the Xω are condi-
tionally independent given some latent variable vector �. Note that we do not put any
restriction on the dimensionality of�. FollowingDimitrov (2003), Ellis (2021), Holland
and Hoskens (2003), Kim and Feldt (2010, p. 180), Lord (1980, p. 46), and Stout (1990),
among others, we can use this point of departure to define “model-based” true-score
variables Tω = E(Xω|�), and corresponding error-score variables Eω = Xω − Tω.
This is a special case of the general definition if we set F = �. Zimmerman (1976)
gave a comparable definition, albeit without explicit reference to a latent variable. The
assumption that the {Eω|ω ∈ �} are uncorrelated now follows from the assumption of
“local independence” of item response theory.

3. If sampling of observed scoreswithin persons is defined, as described inLord andNovick
(1968, Chapter 2), and V is a variable that indicates the persons, then let F = V and
hence Tω = E(Xω|V ), and Eω = Xω − Tω. Lord and Novick’s assumption of “linear
experimental independence” now implies that the error-score variables are uncorrelated.

4. Assume that the items satisfy a linear or nonlinear regression model with a set of
predictors U. If we set F = U, the predicted scores are Tω = E(Xω|U), and the
residuals are Eω = Xω − Tω. The assumption of uncorrelated errors now corresponds
to uncorrelated residuals.

5. Ellis and Junker (1997) and Junker and Ellis (1997) argue that one can define “tail-
conditional” true-score variables Tω = E(Xω|τ (X)), where τ (X) is the tail sigma-field
of the observed-score variables. This corresponds to F = τ (X).

Assume that the variables Xω, Tω, and Eω have finite and positive variance. Let the standard
deviations of Xω, Tω, and Eω be σ(ω), τ (ω) and ε(ω), respectively.

3.3. Assumption of Random Selection of Items

LikeHunter’s (1968) probabilistic foundation of generalizability theory, we assume that some
probability space is defined for �, which means that the items can be drawn randomly. Let � be
the common sample space upon which the Xωs are defined; then henceforth we use the product
probability space of�×�. This means that after drawing an item ω ∈ �, we can observe Xω. Let
R1, R2, ... be an infinite sequence of independent identically distributed (i.i.d.) random variables
with range in�. Here, Ri is supposed to be the name or number of the i-th item during the random
selection. Consistent with large parts of generalizability theory (e.g., Cronbach et al., 1972), we
assume in the sequel that the item pool is infinitely large and that it is almost impossible that the
same the item is included twice, that is, P

(
Ri = R j

) = 0 for i �= j; i, j ∈ N. We furthermore
assume that the R1, R2, ... are independent of F , Xω, Tω, and Eω for all ω ∈ �.

3.4. Assumptions on Moments

We assumed that 0 < var(Xω) < ∞, var(Tω) < ∞, and var(Eω) < ∞ for all ω ∈ �, and
we furthermore assume that var(ε2(Ri )) < ∞ and var(τ 2(Ri )) < ∞ and |E(TRi )| < ∞ and
E(T 2

Ri
) < ∞ for all i ∈ N.

3.5. Definition of Test True Scores and Universe Scores

Test length is denoted by n ∈ N. Let Sn := (R1, R2, ..., Rn); this is a random vector, and each
realization of it is a random test form of length n. The observed-score variables of the random
test form are

XR1 , XR2 , ..., XRn
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These are different from the original observed-score variables in that the items are shuffled. For
example, if A, B ∈ �, then XR1 = XA for some realizations, but XR1 = XB for some other
realizations. For random test formSn , we define the test observed-score, true-score, and error-score
variables as

XSn :=
n∑

i=1

XRi /n

TSn :=
n∑

i=1

TRi /n

ESn :=
n∑

i=1

ERi /n

respectively. Since it is assumed that |E(TRi )| < ∞, we can define

T∞ := E
(
TR1 |F)

which may be called the universe-score variable.

3.6. Definition of Reliability

We define the reliability of test form Sn as

ρ(Sn) := var
(
TSn |Sn

)

var
(
XSn |Sn

)

For example, if the item pool is � = {A,B,C, ...} and n = 3 then one possible realization of the
random test form is S3 = (R1, R2, R3, ) = (A, D,C) with reliability ρ((A, D,C)), and another
possible realization is S3 = (R1, R2, R3, ) = (E, A, B) with reliability ρ((E, A, B)).

The reliability definition does not introduce a new concept of reliability; it simply denotes
the population value of the reliability of total scores of a set of items Sn . In an earlier section we
discussed different true-score variables, all special cases of our general definition, and the choice
for a specific kind of true-score variables determines which estimation methods are appropriate.
For example, if the true-score variables are defined by a linear factormodel,ρ(Sn) is the population
value that can be estimated by McDonald’s ωt (in the notation of Revelle and Zinbarg (2009)).
In the same vein, if the true-score variables are defined on an item response theory model, ρ(Sn)
can be estimated as the “IRT reliability” described by Kim and Feldt (2010) and the “manifest
reliability” described by Milanzi et al. (2015), also described by Dimitrov (2003). If the true
scores are defined as within-subject expectations, and an experimentally independent retest with
the same true-score variables exists, ρ(Sn) can be estimated as the test–retest reliability of the
test form Sn . As an aside, this is an important insight because psychometricians who estimate
reliability with factor analysis tend to assume that a factor model is needed for classical test theory.
It is not.
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4. Theorem on Reliabilities in Long Random Test Forms

In this section the effect of test length on reliability is studied theoretically. Note that for
random test forms, at any length n there are multiple reliabilities, because ρ(Sn) is a random
variable. Nevertheless, we sometimes use the phrase “the reliability,” in singular, in informal
texts. The question is whether reliabilities of random tests approach 1 as the test length increases,
and whether the rate of convergence is given by the Spearman–Brown formula. For the latter
question, we use the function

SB(x, n) := nx

1 + (n − 1) x

For fixed n, the inverse function for x is SB−1(x, n) = SB(x, 1/n), which is often implicitly
used in calculations of lengthening or shortening the test with the Spearman–Brown formula. We
will therefore study whether

SB

(

ρ(Sn),
1

n

)

converges to a real number for n → ∞

If so, we may say that rate of convergence is given by the Spearman–Brown formula.
Recall that the section “Notation and general assumptions” described assumptions that hold

throughout this article: randomly selected items, uncorrelated error-score variables, finite second
moments. We now state the theorem that is our main result.

Theorem. Assume that the error-score variables are uncorrelated and that the true-score vari-
ables are bounded by some square integrable random variable Tmax, that is, |Tω| < Tmax for all
ω ∈ � and E |Tmax|2 < ∞. For the reliabilities ρ(Sn), as n → ∞ it holds that

SB

(

ρ(Sn),
1

n

)

→ var(T∞)

var(T∞) + E(ε2(R1))

with probability 1.

The proof of the theorem is deferred to the appendix, but the basic idea of the proof is that
TSn → T∞ by the strong law of large numbers for conditional expectations (Majerek et al., 2005;

Walk, 2008) , and
n∑

i=1
ε2(Ri )/n → E(ε2(R1)) by the ordinary strong law of large numbers. Note

that the convergence type in the theorem is specified as “with probability 1.” This means that the
event of pointwise convergence has probability 1 (e.g., Billingsley, 1986, pp. 54, 290).

Corollary 1. Under the conditions of Theorem 1, if furthermore var(T∞) > 0, then the reliabil-
ities of the random test forms (i.e., the ρ(Sn)) converge to 1 with probability 1, and their rate of
convergence is given by the Spearman–Brown formula.

Note that this result does not require that the items are unidimensional in any sense; it suffices
to have uncorrelated error-score variables and randomly selected items, together with finiteness
of the relevant moments. Finiteness of the relevant moments is assured if the observed-score
variables are bounded, which is usually the case in real psychometric applications. Furthermore,
this result pertains to “true” reliability. That is, it assumes that reliability is correctly estimated
for each test length, and the theorem does not claim that a similar convergence would also hold
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for estimates such as Cronbach’s alpha, which may underestimate the true reliability (the theorem
does not contradict it either).

Although reliability usually converges to 1, it is possible to create—rather artificial—
examples in which reliability does not converge to 1:

1. If the conditions of Theorem 1 hold while var(T∞) = 0, then reliability converges to
0. The case of var(T∞) = 0, however, seems rather exceptional. For this to happen, we
need that either all correlations between the observed-score variables are exactly 0 or
that the positive and negative covariances cancel against each other exactly in the total
item pool.

2. If, under the sampling of items, the error variances are equal to the square of a variable
with aCauchydistribution, then the samplemeanof the error variances does not converge
to 0. For essentially τ -equivalent items, this implies that reliability does not converge to
1, since the sample mean of the true-score variables is constant. However, the Cauchy
distribution is considered unrealistic since the time of its invention, especially for errors
ofmeasurement instruments (Stigler, 1974) .Observed scores of items in psychometrics
are usually on a scale with finite minimum and maximum, like 0 and 1, which excludes
a Cauchy distribution.

5. Simulation Studies

5.1. Simulation Study 1: Unidimensional versus Multidimensional

In this section, we study how well the approximation established in the theorem holds in
relatively short tests. To this end, Monte Carlo simulations generated item pools of 1000 items
that satisfied the multidimensional 2-parameter logistic (2PL) model with up to five dimensions,
� = (1, ...,5) where each item loaded on precisely one dimension, denoted as dim(ω). The
probability of a positive response is then

P (Xω = 1 | �) = 1

1 + exp
(−Daω

(
dim(ω) − bω

))

with D = 1.7. The item parameters aω and bω were generated by a 4-parameter beta distribution
with hyperparameters α, β, minimum, and maximum. Note that the item parameters are written
with Roman letters, aω and bω, while the Greek letters α, β are parameters of the distribution
where aω or bω is drawn from; that is, α and β are characteristics of the entire item pool rather
than of individual items. The item pools were designed with the following characteristics:

1. Number of dimensions. Item pools of 1, 2, or 5 dimensions were studied. Each item
loaded on only one dimension. Each dimension in the pool was equally probably in the
sense that each dimension was expected to be represented by approximately the same
number of items.

2. Maximum discrimination parameter. The discrimination parameter aω was sampled
from a beta distribution with minimum 0 and maximum either amax = 2 or amax = 5.
The maximum 5 is rare in psychological tests but is sometimes obtained in healthcare
applications (Hays et al., 2000, p. 4; Yang & Kao, 2014, p. 172).

3. Shape of the distribution of discrimination parameter. The α and β hyperparameters of
the beta distribution of the discrimination parameter aω were set such that the distribution
was unimodal with α + β = 12 or (reverse) J-shaped with α + β = 2.
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4. Mean discrimination parameter. The α and β hyperparameters of the beta distribution
of the discrimination parameter were set such that the mean of aω could be 0.83, 2.5, or
4.17 if amax = 5, or 0.33, 1.0, or 1.67 if amax = 2.

5. Mean difficulty parameter. The difficulty parameters bω were drawn from a beta distri-
bution with minimum −2 and maximum 2, with a unimodal distribution (α + β = 4)
having mean −1, 0, or 1.

For each value of the number of dimensions (1, 2, or 5) and each value of the maximum discrimi-
nation parameter (2 or 5) there were 18 “parameter cases” characterized by the distributions of the
discrimination and difficulty parameters (6 possible distributions of aω × 3 possible distributions
of bω). For each parameter case, we generated an item pool of 1000 items and used this pool to
generate 1000 random test forms of 50 items, in steps of 5 items. At each step the reliability was
computed for each test form by numerical integration, assuming a standard normal distribution
of the latent ability on each dimension, where the dimensions were independent of each other.

Figures 1, 2 and 3 show how the mean of the reliabilities ρ(Sn) and mean of the rescaled
reliabilities SB

(
ρ(Sn), 1

n

)
depend on the test length in all cases with amax = 2. The left-hand

panels show how the mean reliabilities increase with test length: They follow largely the pattern
expected if the Spearman–Brown formula holds. The right-hand panels give a more detailed
account via the mean rescaled reliabilities, which should stabilize according to theorem 1. For the
one-dimensional tests in Fig. 1, the approximately horizontal lines suggest that the mean rescaled
reliabilities are indeed stable. A Friedman rank test revealed that differences were significant in
10 out of 18 cases, but the effects were small. Across all 18 cases, the largest absolute deviation
between means of rescaled reliabilities from the same case with different test lengths was 0.0098,
which occurred when the mean rescaled reliability equaled 0.38. For the two-dimensional tests
of Fig. 2, however, the mean rescaled reliabilities decreased gradually for the first 20 to 30 items,
which implies that these reliabilities have a positive bias for short tests. For the five-dimensional
tests of Fig. 3 the positive bias was larger. The rescaled reliabilities are also lower here than in
the unidimensional cases, and one may wonder whether the rescaled lower reliabilities cause the
bias. However, Fig. 4 shows the rescaled reliabilities in the five-dimensional cases with amax = 5;
they have about the same magnitude as in the unidimensional cases with amax = 2, and yet there
is a clear bias in the five-dimensional case and not in the unidimensional case. The other results
with amax = 5 are essentially the same as with amax = 2 and are therefore not displayed.

A related question is whether the reliability with a given test length can predict the reliability
at another test length. In this setting, lengthening and shortening of the test are associated with
different knowledge states. If the investigator starts with a long test of which the reliability
is known, then the item parameters can usually also be estimated and used to calculate what
the reliability of any shortened version is (e.g., Raborn et al., 2020). For example, suppose the
test constructor starts with 100 items, numbered 1–100 and she estimates the reliability with
McDonald’sωt , andwants to knowwhat the reliability will become if only the itemswith numbers
40–60 are used. McDonald’s ωt is computed from the factor loadings and unicities, so the test
constructor apparently has estimates of the factor loadings and unicities of all items 1–100, and
therefore she can compute the value ofωt for items 40–60 directly from the available data, without
using the Spearman–Brown formula. She might still apply the Spearman–Brown formula, but this
seems futile because she already has a better answer. On the other hand, if the investigator starts
with a short test, the additional items often not exist yet, and the Spearman–Brown formula may
yield an incorrect prediction. In this setting, shortening the test requires in-sample prediction,
whereas lengthening the test requires out-of-sample prediction.

For each of the mean reliabilities shown in Figs. 1, 2, and 3, we computed how well it can
be predicted out-of-sample from the mean reliabilities with smaller test length, and how well
it can be predicted in-sample from the mean reliabilities with larger test lengths The reliability
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Figure 1.
Mean reliabilities in Simulation Study 1 for unidimensional caseswith amax = 2.Note.Mean reliability andmean rescaled
reliability as a function of test length, in 18 cases of unidimensional models. The cases are represented by different colors.
Each point is based on 1000 random test versions.

Figure 2.
Mean reliabilities in Simulation Study 1 for two-dimensional cases with amax = 2. Note. Mean reliability and mean
rescaled reliability as a function of test length, in 18 cases of two-dimensional models. The cases are represented by
different colors. Each point is based on 1000 random test versions.

of one random test form of n items is ρ(Sn) (computed with numerical integration from the
2PL model), and for each parameter case we generated 1000 random test forms; let ρ̄n be the
mean of ρ(Sn) over these 1000 test forms. If the mean reliability of tests of length n is predicted
from the mean reliability of tests of length m, then the observed value of the mean reliability
is ρ̄n , the predicted mean reliability is SB

(
ρ̄m, n

m

)
, and the error is ρ̄n − SB

(
ρ̄m, n

m

)
. In some

cases we consider the rescaled reliability, and then the rescaled mean reliability is SB
(
ρ̄n,

1
n

)
and

the predicted rescaled mean reliability is SB
(
ρ̄m, 1

m

)
. The following patterns can be expected.

We noted already that in Figs. 1, 2, and 3, the rescaled reliabilities tend to decrease with test
length, especially in the multidimensional cases, and we described this as a positive bias of short
tests. Since the function SB(ρ, n) is increasing in ρ, this implies that out-of-sample predictions,
relevant in test lengthening, have a positive bias too, especially in the multidimensional cases;
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Figure 3.
Mean reliabilities in Simulation Study 1 for five-dimensional cases with amax = 2. Note. Mean reliability and mean
rescaled reliability as a function of test length, in 18 cases of five-dimensional models. The cases are represented by
different colors. Each point is based on 1000 random test versions.

that is, the observed reliability of the lengthened test tends to be less than the predicted reliability
in multidimensional cases. Conversely, for test shortening, the observed reliability tends to be
greater than the predicted reliability in multidimensional cases. For unidimensional cases, Figs. 1,
2 and 3 show that the rescaled reliabilities are approximately stable with test length, and therefore
both prediction errors will be small in these cases. These expected patterns are confirmed in
Fig. 5, which shows boxplots of the minimum and maximum errors in test lengthening as a
function of the number of dimensions. The figure shows that the size of prediction errors depends
strongly on the number of dimensions. The out-of-sample errors are between 0.00 and −0.02
in the unidimensional cases, whereas they were between 0.0 and −0.12 in the five-dimensional
cases. The prediction errors in test shortening, which are not displayed in Fig. 5, have the opposite
direction, as expected: between −0.01 and 0.02 for unidimensional cases and between 0.00 and
0.08 in the five-dimensional cases.

We used a two-factor ANOVA for estimating the explained variances. For test shortening,
the number of dimensions explained 84% of the variance in maximum absolute errors, while the
mean discrimination parameter and its interaction with the number of dimensions explained 2%
and 11%, respectively. Together these two factors explained 98% of the variance in maximum
absolute errors. For test lengthening these percentages were 62% (number of dimensions), 22%
(mean discrimination parameter), 8% (interaction), and 92% (together). In the unidimensional
cases the largest maximum absolute errors occurred when the discrimination parameters had a
low mean (0.17) with a J-shaped distribution. In the other unidimensional cases the maximum
absolute errors were at most 0.006, both in shortening and lengthening

We reject the hypothesis that the Spearman–Brown formula generally yields accurate pre-
dictions for short multidimensional tests, but we cannot yet reject the hypothesis that it yields
accurate predictions for short unidimensional tests. Therefore, we focus on unidimensional tests
in the second simulation study and put this hypothesis to the test.

5.2. Simulation Study 2: Unidimensional With Binary or Irregular Item Parameters

In this section, we test whether the Spearman–Brown formula yields accurate predictions of
mean reliability in unidimensional tests under the 2PL model. In the previous section, the item
parameters were drawn from beta-distributions, but in the present section, we use more irregular
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Figure 4.
Mean reliabilities in Simulation Study 1 for five-dimensional cases with amax = 5. Note. Mean reliability and mean
rescaled reliability as a function of test length, in 18 cases of five-dimensional models. The cases are represented by
different colors. Each point is based on 1000 random test versions.

Figure 5.
Boxplots of the minimum and maximum errors in prediction of mean reliabilities. Note. Each boxplot is based on 18
minima and maxima, corresponding to 18 cases with amax = 2. Each minimum or maximum is based on 36 predictions
of a mean reliability of one test length from a mean reliability of another test length, for 9 different test lengths.

distributions that may reveal violations of the hypothesis. We studied the following distribution
types.

1. Binary item parameters. To create extreme situations, we generated cases with aω ∈
{0.5, 2.0} and bω ∈ {−1.7, 1.7}. The probabilities of aω = 0.5 were 0.1, 0.3, 0.5, 0.7,
and 0.9, and the probabilities of bω = −1.7 were 0.1, 0.5, and 0.9. This created 15
parameter cases (5 values of P(aω = 0.5) by 3 values of P(bω = −1.7)). For each
parameter case, we created an item pool of 1000 items.

2. As point 1 but with bω ∈ {0, 1.7}
3. Irregular distributions of aω and bω. This was done by creating 100 cases of small item

pools of 10 items each, with of aω and bω drawn from uniform distributions on [0.5, 2.0]
and [−2.0, 2.0], respectively. In each item pool the distribution was irregular because
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Table 1.
Maximum Errors of Simulation Study 2.

Distribution type Maximum error in in-sample or
out-of-sample prediction of mean
reliabilities

Maximum absolute difference of
rescaled mean reliabilities

1 0.012 0.017
2 0.005 0.009
3 0.006 0.013
4a 0.002 0.003
4b 0.0004 0.003

of the small pool size. Moreover, the two item parameters can be correlated within a
small item pool.

4. Reported item parameters from the literature, two parameter cases:

a. Hays et al. (2000, their Table 4: 11 items) and
2. Pedraza et al.(2011, their Table 2: 60 items);

In each parameter case, 1000 random test versions of 50 items were created, and the reliabilities
were computed starting with a random 10-item test and adding batches of 5 random items, thus
creating additional test lengths of 15, 20, 25, 30, 35, 40, 45, and 50 items. We considered test
shortening by deleting batches of 5 items starting at 50 items. The maximum error of prediction,
where mean reliabilities associated with different test lengths were predicted from each other, was
computed for test shortening and lengthening situations separately. The rescaledmean reliabilities
SB

(
ρ̄n,

1
n

)
were computed for eachparameter case and each test length, and themaximumabsolute

difference between the values of SB
(
ρ̄n,

1
n

)
was computed in each parameter case. These are then

summarized per distribution type (points 1 through 4b above).
Table 1 provides the results. For the prediction of mean reliabilities, the maximum error from

all cases was 0.012. For the rescaled mean reliabilities, the maximum error from all cases was
0.017. These error margins are acceptable.

5.3. Simulation Study 3: Standard Deviations of the Reliabilities

The previous sections considered how well mean reliabilities can be predicted from each
other. In practical situations, however, the test constructor does not have several test versions but
rather a single test version. Even if the test constructor knows the correct reliability of this test
version based on a large subject sample, the test version’s reliability might be different from the
mean reliability of all test versions of the same length. To get an impression of the magnitude
of this variation, we computed the standard deviation of the reliabilities in each unidimensional
case and each test length used in the previous sections. Figure6 shows boxplots of the standard
deviations. As we expected, the standard deviations tend to decrease within each distribution type
as test length increases. Aggregated over all case, the medians of the standard deviations decrease
from 0.034 with n = 10 to 0.004 with n = 50. The largest standard deviation was 0.131. The
90th percentile of the standard deviations decreased from 0.074 for n = 10 to 0.031 for n = 50.

Finally, we also computed in the 18,000 item pools of 2PL parameter cases the correlation
between the observed reliability with 50 items, ρ(S50), and the predicted reliability for 50 items
based on the reliability with 20 items, SB(ρ(S20) , 2.5). The observed reliabilities have a mean
of 0.86 with standard deviation 0.14; the correlation was 0.96, with a mean absolute error of 0.02.
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Figure 6.
Boxplots of the standard deviations of the reliabilities as a function of the distribution type of the parameters and the
length of the test versions. Note. Only unidimensional items with amax = 2 were used in this plot. Each boxplot is based
on 54 (Beta) or 15 (Binary 1 and Binary 2) or 100 (Irregular) standard deviations, and each standard deviation is based
on 1000 reliabilities of random test forms drawn from the same item pool.

The 90th percentile of the absolute error was 0.06. The maximum absolute error was 0.43, so the
predictions are not infallible. When predicting from 10 items with SB(ρ(S10) , 5), the correlation
is 0.91, and we consider these predictions as an educated guess.

6. Discussion

We showed that in a one-facet universe with randomly sampled items with uncorrelated
error-scores and finite second moments, as the number of items increases, the reliability of the
total score approaches 1 at the rate of the Spearman–Brown formula. This result holds regardless
of the dimensionality of the items. That the reliability usually converges to 1 was presumed
widely but never proven; we have now produced a rigorous proof. That the convergence rate is
given by the Spearman–Brown formula is more surprising, because it is generally believed that
this formula requires parallel items or test parts. Our result shows that the Spearman–Brown
formula is asymptotically correct for randomly sampled items that are not parallel and not even
unidimensional.

We have investigated to which extent the Spearman–Brown formula can be used to predict
test-score reliability resulting from changing test length for nonparallel items. For short tests
simulations where random test versions of itemswith known item parameters of a 2PLmodel were
drawn and the IRT model-based reliabilities were computed with numerical integration, showing
that reliability had a substantial positive bias for multidimensional item sets. For unidimensional
items reliability was almost unbiased, and the mean reliabilities for different test lengths could
be predicted from each other using the Spearman–Brown formula. However, a single short test
version can have a reliability that deviates substantially from themean reliability of test versions of
the same length from the same item pool, although most cases that were considered had standard
deviation smaller than 0.034 even with n = 10.

Whether the accuracy of the Spearman–Brown formula depends on the dimensionality of the
items or that random sampling of items is sufficient, depends on the test length. The dimensionality
does not matter if the test is sufficiently long, as Theorem 1 established, but for short tests
dimensionality is important, as the simulation studies demonstrated.
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The conclusion is that the Spearman–Brown formula can reasonably be used to predict
reliability after changing the test length with randomly sampled items, provided that the initial test
is long or the test items are 2PL-unidimensional. In test lengthening the reliability of the original
test may deviate substantially from the mean reliability, contaminating the prediction. However,
for 2PL-unidimensional item pools bias was negligible (despite being significant), and therefore
prediction with the Spearman–Brown formula can be viewed as an educated guess, even though
reliability cannot be predictedwith certainty aswould be the casewith parallel items, an unrealistic
situation for sure. For multidimensional item pools positive bias of the reliability of short tests
was non-negligible. Consequently test constructors who use the Spearman–Brown formula in
multidimensional cases to predict reliability of a longer test will easily be too optimistic.

6.1. Is Random Selection of Items Realistic?

There are several examples where random selection of items is possible. First, we point out
that the concept of an “item” here is no more than a component of measurement, and therefore,
in addition to being a problem or a question as we are used to it may correspond to a time point
randomly selected from an interval, or a rater randomly selected from a population of raters. In
the latter examples, increasing the test length then means increasing the number of time points or
increasing the number of raters. Obviously, random selection is possible in these cases, and our
result applies to it. For example, in the experience sampling method (ESM) subjects are asked
to answer a short questionnaire about their current mood or thoughts on multiple occasions per
day. van Lankveld et al. (2018, 2021) and van Tuijl et al. (2022) used this method with mood
scales of intimacy and sexual desire administered on 10 moments per day for seven consecutive
days. Subjects wore a wristwatch that prompted them with beeps to fill in the questionnaire. The
beeps were “quasi-randomly” distributed around time points separated by 90min each, between
7:30 AM and 10:30 PM. Although the time points are a stratified random sample rather than a
simple random sample, this additional control is likely to reduce the error variance and accelerate
convergence of the reliability. In this research method, the subject means over time are not the
primary focus of interest, but they are used to compute “person-centered” data, and their reliability
is therefore important and reported (Van Lankveld et al., 2021, pp. 316–317).

If we confine the concept of an item to a test question, there are still examples of random
item selection. In Supplementary Material we show a webapp that generates statistics questions
about graphs of univariate or bivariate distributions. A test item here consists of a verbal question
(like “the correlation is greater at …”) and two graphs. The graphs are randomly generated with
continuous distributions, and therefore the app can generate infinitely many items. The user is
presented a random sequence of items whenever they start the app. The app evaluates the answer
of the student and keeps the score. Similar apps have been used in large-scale examinations by
one of the authors.

There are several neuropsychological tests where the items can be thought of as drawn from
an infinite item pool. In the Eriksen flanker task (Eriksen&Eriksen, 1974) , subjects are presented
letter strings (SSSSS, SSHSS, HHSHH, HHHHH) and are instructed to press a button with one
hand if the central letter is an H and with the other hand if the central letter is an S. On trials where
participants respond incorrectly, specific event-related potentials (ERPs) are measured from the
scalp with the use of electro-encephalography (EEG). The ERPs are averaged over error trials,
and their mean is used as the test score. There are several other neuropsychological tests with
the same design, such as the Stroop test. The number of trials is limited only by the will of the
subject and the researcher. The items here are only the trials on which the subject makes an error
(which provokes interesting neurological responses; correct trials lack such a response), which is
a sample from the total number of trials. One can debate whether this is truly a random process,
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because the error making is governed by internal processes of the subject, but at least one group
of authors advocates to treat this as a random factor (Clayson et al., 2021) .

An example in the domain of cognitive tests is mental rotation tasks, where subjects are
presented with two or more pictures of block figures that may or may not be a 3-dimensional
rotation of each other, and are asked which figures, if any, have the same shape. With a typical
number of blocks, like 11, the number of shapes is finite but large, and the number of rotations
is infinite, thus defining an infinite item pool of which a random sample can be generated with
an algorithm. Even if test constructors did not literally draw items from a pool, it is hard to see
why many other items would not be equally adequate, and random sampling seems a reasonable
model for this.

Note that for random selection of items it is not enough to have infinitely many items; their
order must be randomized too in the drawing process, but not necessarily in the presentation to the
subject. For example, consider the set of items of the form “2×n =?” with n ∈ N. Two examples
are “2×17 = ?” and “2×212 = ?” If a test of 10 items is created and one uses n = 1, ..., 10, that
would not be a random sample because it contains only the easiest items. Instead, a probability
distribution over N should be used, for example the geometric distribution with π = 0.02. The
random items numbers could then be, for example, 7, 30, 217, 1, 4, 8, 161, 33, 137, 24. Once it is
determined that only these items will be presented, they can be arranged in a different order for
presentation to the subjects. This example illustrates that random selection of items does not mean
that all items of the pool should have the same probability of being drawn. In fact, with a countable
infinite pool it is impossible that all items have the same probability, which is a well-known fact
in probability theory. Thus, a higher concentration of some kind of items does not refute random
selection of items.

Formost psychological tests it is true that, although the items are not literally randomly drawn
from a larger pool, many similar items are conceivable. We contend that this may be modelled as
random drawing of items, provided that there is no systematic drift in item parameters.

7. Consequences For Practitioners

Until now, only if items were parallel, a condition impossible to satisfy with real items was
the user certain that test lengthening yielded a higher reliability, but in practice, (s)he had to rely on
experience and intuition for expecting this effect. With our result, the user now knows that adding
items, also if they are not parallel, eventually increases reliability. The importance may escape the
user and the reader as well, but this would mostly be because decades of test construction have
fostered the belief that adding items has the expected effect, but without proof. We provide this
proof now and theoretically justify the wisdom test constructors practiced for decades. Here are
some specifics.

1. In domains where test constructors can generate arbitrarily many items in a stable
manner, they can take the test reliability as close to 1 as they wish by adding enough
items. This is true even if the test is multidimensional. Note that different kinds of
reliability pertain to different kinds of items: If the items are questions from a large
question pool, add questions from the same pool; if the items are time points in a time
interval, add time points from the same interval; if the items are trained raters from a
certain population, add trained raters from the same population.

2. A limited reliability therefore often reflects the decision of the test constructor to stop
generating items rather than a fundamental property of the domain. For example, per-
sonality tests usually have a reliability coefficient of about 0.80, whereas intelligence
tests usually have a reliability coefficient of about 0.95. These values are not properties
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inherent to the domains of personality and intelligence; they rather reflect decisions of
test constructors to stop adding items.

3. Conversely, a high reliability does not say anything about the quality of the items; it
may just reflect that the test contains a large number of items. Similar remarks have
been made with respect to coefficient α (Sijtsma, 2009) . However, in the context of α

there is often a discussion whether it is a sound estimate of reliability. In this article we
showed that even if we have the “true” reliabilities, they go to 1 if we continue adding
items from the same pool.

4. If you want to know how much the reliability will improve with a given lengthening
factor for unidimensional items, then the Spearman–Brown formula gives a reasonable
estimate. It is well-known that the estimate is exactly correct only for parallel items, but
for randomly selected items from a unidimensional pool the Spearman–Brown formula
still describes correctly how the expected value of the reliability increases with test
length.

5. This result with respect to the Spearman–Brown formula is also true for long tests with
items that are randomly selected from multidimensional pools.
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Appendix

This appendix contains the proof of the theorem in themain text.A lemma is first stated and proved,
and after that the theorem is stated and proved. Recall that the section “Notation and general
assumptions” described assumptions that hold throughout this article (randomly selected items,
uncorrelated error-score variables, finite second moments). The definition of F needs further
attention. Let (A,A, P) be the probability space on which the observed-score variables {Xω| ω ∈
�} are defined.We assume thatF ⊆ A is a σ -field. In themain text we describedF as a collection
of variables, which is consistent with the notational conventions of conditional expectations to
replace the sigma field generated by conditioning variables by the variables themselves. More
precisely however, F is a sigma field that is contained in A. No other direct assumptions about
F are needed. However, some choices of F may lead to violation of other assumptions, such as
uncorrelated error variables, and such Fs are excluded.

Proposition 1. If the error-score variables are uncorrelated, then var
(
ER1 + ER2 |(R1, R2)

) =
var

(
ER1 |(R1, R2)

) + var
(
ER2 |(R1, R2)

)

https://osf.io/v7k94/?view_only=b724b2f74c9949828f52154c7e06a6eb
https://osf.io/v7k94/?view_only=b724b2f74c9949828f52154c7e06a6eb
http://creativecommons.org/licenses/by/4.0/
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Proof of Proposition 1. Recall that (R1, R2) just fixates the first two items, and there is probability
0 that these two items are equal. For any two items ω, υ ∈ �,ω �= υ, we have

var
(
ER1 + ER2 | (R1, R2) = (ω, υ)

) = var(Eω + Eυ | (R1, R2) = (ω, υ))

It was assumed that the R1, R2, ... are independent of {Eω|ω ∈ �}, therefore

= var(Eω + Eυ)

and because of the uncorrelated errors we have

= var(Eω) + var(Eυ)

and again using that the R1, R2, ... are independent of {Eω|ω ∈ �}

= var(Eω| (R1, R2) = (ω, υ)) + var(Eυ | (R1, R2) = (ω, υ))

= var
(
ER1 |(R1, R2) = (ω, υ)

) + var
(
ER2 |(R1, R2) = (ω, υ)

)

�	
Proposition 2. If the error-score variables are uncorrelated, then

var
(
ESn |Sn

) =
n∑

i=1

var
(
ERi |Sn

)

n2

Proof of Proposition 2. Similar to the proof of Proposition 1, but with more variables. �	
Let

ε̄2(Sn) =
n∑

i=1

ε2(Ri )/n

This is a mean of n i.i.d. variables ε2(Ri ).

Lemma 1. If the error-score variables are uncorrelated, then var
(
ESn |Sn

) = ε̄2(Sn)/n and

E

(
ε̄2(Sn)

)
= E(ε2(R1))

Proof of Lemma 1. Using Proposition 2,

var
(
ESn |Sn

) =
n∑

i=1

var
(
ERi |Sn

)

n2

The Ri are independent, and therefore var
(
ERi |Sn

) = var
(
ERi |Ri

) = ε2(Ri ). This yields

=
n∑

i=1

ε2(Ri )

n2
= ε̄2(Sn)/n
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Furthermore, since the Ri are i.i.d, E(ε2(Ri )) = E(ε2(R1)), and therefore

E

(
ε̄2(Sn)

)
= E

(
n∑

i=1

ε2(Ri )/n

)

=

n∑

i=1
E

(
ε2(Ri )

)

n
= E

(
ε2(R1)

)

�	
Theorem 1. Assume that the error-score variables are uncorrelated and that the true-score vari-
ables are bounded by some square integrable random variable Tmax, that is, |Tω| < Tmax for all
ω ∈ � and E |Tmax|2 < ∞. For the reliabilities ρ(Sn), as n → ∞

SB

(

ρ(Sn),
1

n

)

→ var(T∞)

var(T∞) + E(ε2(R1))

with probability 1.

Proof of theorem 1. By the definition of ρ (Sn) and Lemma 1,

ρ (Sn) = var
(
TSn |Sn

)

var
(
TSn |Sn

) + ε̄2(Sn)/n

which implies

SB

(

ρ(Sn),
1

n

)

= var
(
TSn |Sn

)

var
(
TSn |Sn

) + ε̄2(Sn)

Consider first convergence of the true-score variance. Note that the TRi are exchangeable. Since it
is assumed that

∣
∣E

(
TRi

)∣
∣ < ∞, one can define T∞ := E(TR1 |F) and show that the TRi are i.i.d.

given F with lemma 4.1 of Dawid (1980). By the strong law of large numbers for conditional
expectations (Majerek et al., 2005, theorem 4.2; Walk, 2008), TSn → T∞ with probability 1.
Write S∞ = (R1, R2, ...). Since Sn and (Rn+1, Rn+2, ...) are independent, var

(
TSn |Sn

) =
var

(
TSn |S∞

)
. We have already established that TSn → T∞ with probability 1, and therefore

var
(
TSn |S∞

) → var(T∞|S∞) with probability 1 by the dominated convergence theorem for con-
ditional expectations (e.g., Billingsley, 1986, Th.34.2.v), using the hypothesis that the |Tω| are
dominated. However, T∞ is defined solely in terms of F , which is independent of S∞; therefore
var(T∞|S∞) = var(T∞). In sum, var

(
TSn |Sn

) → var(T∞).
Next, consider convergence of the error variance. By the strong law of large numbers (which may
be applied because the Ri are independent and var(ε2(Ri )) < ∞),

ε̄2(Sn) → E(ε2(R1))

with probability 1, and therefore (note that it was assumed that ε2(R1) > 0)

SB

(

ρ(Sn),
1

n

)

→ var(T∞)

var(T∞) + E(ε2(R1))

with probability 1. �	
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