
psychometrika
https://doi.org/10.1007/s11336-024-09953-w

USING EXTERNAL INFORMATION FOR MORE PRECISE INFERENCES IN GENERAL
REGRESSION MODELS

Martin Jann

UNIVERSITY OF HAMBURG

Martin Spiess

UNIVERSITY OF HAMBURG

Empirical research usually takes place in a space of available external information, like results from
single studies, meta-analyses, official statistics or subjective (expert) knowledge. The available information
ranges from simplemeans and proportions to known relations between amultitude of variables or estimated
distributions. In psychological research, external information derived from the named sources may be used
to build a theory and derive hypotheses. In addition, techniques do exist that use external information
in the estimation process, for example prior distributions in Bayesian statistics. In this paper, we discuss
the benefits of adopting generalized method of moments with external moments, as another example for
such a technique. Analytical formulas for estimators and their variances in the multiple linear regression
case are derived. An R function that implements these formulas is provided in the supplementary material
for general applied use. The effects of various practically relevant moments are analyzed and tested in
a simulation study. A new approach to robustify the estimators against misspecification of the external
moments based on the concept of imprecise probabilities is introduced. Finally, the resulting externally
informedmodel is applied to a dataset to investigate the predictability of the premorbid intelligence quotient
based on lexical tasks, leading to a reduction of variances and thus to narrower confidence intervals.
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1. Introduction

Whenplanningnewempirical studies, researchers are confrontedwith a variety of information
from previous studies, including statistical quantities such as means, variances or confidence
intervals. However, this external information is mostly used qualitatively, i.e., to develop new
theories, and rarely in a quantitative way, i.e., to estimate parameters. One advantage of using
external information to estimate a parameter is that some parameter values can be excluded or
considered less likely than without the external information, potentially leading to more efficient
estimators. The usage of informed prior distributions, where the external information can be
used to specify (certain aspects of) the prior distribution, is well known in Bayesian statistics
(Bernardo & Smith, 1994). The underlying goal for its use must be clear. On the one hand,
external information can facilitate the fitting or tuning of a model. On the other hand, it can
make estimators more robust or efficient. This paper aims to achieve the latter of the two goals.
Bayesian statistics refers to this as statistical elicitation (Kadane &Wolfson, 1998). The objective
is to translate expert knowledge into a prior distribution. Therefore, many psychological biases,
such as judgment by representativeness, availability, anchoring, adaptation, or hindsight bias and
the intentional misleading by experts, must be considered. It should be noted that the aim is not
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to achieve objectivity but to ensure a proper statistical representation of subjective knowledge
(Garthwaite et al., 2005; Lele & Das, 2000). However, we believe that in applied psychological
research, the researcher is usually the onewho selects the external information, but is susceptible to
the same psychological biases, e.g., in decidingwhich studies to include.Moreover, the difficulties
in eliciting a (multivariate) prior distribution are well documented (Garthwaite et al., 2005, pp.
686–688). The method proposed in this paper allows a simplification of the elicitation compared
to Bayesian statistics, since onlymoments need to be elicited. The elicitation of moments has been
well studied for correlations, means, medians, or variances (Garthwaite et al., 2005). In Bayesian
elicitation, there are several possible prior distributions for these externally given moments, e.g.,
with the same expected value or the same correlation, leading to different posterior distributions
and thus potentially different results. This problem of prior sensitivity was addressed by Berger
(1990) and led to work on robust Bayesian analysis (for an overview, see Insua & Ruggeri, 2000).
However, it is somewhat arbitrary to choose the class of distributions for which one wants to
make the analysis robust (Garthwaite et al., 2005, p. 695). In our framework, no restriction to a
particular class of distributions is required, since it relies solely on moment information and a
central limit theorem.

Another important point is that external informationmay not in general be precise and correct.
As nearly all of the external quantities are estimates themselves, they are at least prone to sampling
variation. If the external information is not correct (e.g., due to poor sampling or measurement
protocols), its use can lead to biased conclusions that may even be worse than without external
information. To address this problem, we suggest using an interval for the external information
instead of point values, enabling researchers to incorporate any uncertainty about the external
moments into the analysis. Inserting external intervals into estimators results in the imprecise
probabilistic concept of feasible probability (F-probability) discussed in Sect. 4 (Augustin et al.,
2014;Weichselberger, 2001). This approach provides an alternativeway to enhance the robustness
of elicitation compared to the classical Bayesian paradigm: Using intervals can reflect uncertainty
about moments, and the resulting inference is still coherent if the interval contains the true value.
However, researchers must be cautious of and avoid overconfidence bias when eliciting intervals;
that is, the tendency to select intervals that are too narrow to represent current uncertainty (Winman
et al., 2004). A test of the latter assumption is available,more specifically a test of the compatibility
of the external interval and the data, which could serve as a pretest before applying the methods
proposed here (Jann, 2023).

The insertion of intervals into estimators resembles creating fuzzy numbers (Kwakernaak,
1978; Zadeh, 1965), for which generalizations of traditional statistical methods already exist. This
is particularly true for the special case of triangular numbers (Buckley, 2004). The possibility
distributions induced by triangular numbers constitute special cases of imprecise probabilities
and are constructed based on only one distribution (Augustin et al., 2014, pp. 84–87). This is the
key difference between triangular numbers and F-probabilities, since the latter are constructed
from a set of possible probability distributions, which can enhance the robustness of the outcomes
compared to constructions based on only one distribution. Another difference lies in the fact that
triangular numbers are constructed by varying the confidence probability of a confidence interval
based on the estimator, while the external interval we use in this paper is fixed. Moreover, there
is no probabilistic statement about the values within that interval.

In the present study,we analyze the frequentist properties of estimators if external information
is used, that can be expressed asmoment conditions and thus does not use complete distributions as
prior information. Toour knowledge, there is no general framework for robustly incorporating such
quantitative external information into frequentist analysis. Since this would offer the advantage
of improving upon classical inference procedures widely used in psychology, our goal is to
present such a framework. The use of these external moment conditions in addition to the moment
conditions used to estimate the model parameters leads to an overidentified system of moment
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conditions. The main idea to find well performing estimators for such “externally” overidentified
systems is the framework of the Generalized Method of Moments (GMM) (Hansen, 1982). This
idea has already been used in the econometric literature, for example, by Imbens and Lancaster
(1994) who combine micro- and macro-economic data and by Hellerstein and Imbens (1999) by
constructing weights for regression models based on auxiliary data. A different yet related way to
incorporate externalmoment-information is the empirical likelihood approach (Owen, 1988). This
technique is quite frequently used in the literature, for example, in finite population estimation
(Zhong & Rao, 2000) and for externally informed generalized linear models (Chaudhuri et al.,
2008). Both approaches have in common that the use of external information may increase the
efficiency of an estimator and/or reduce its bias.

Actually, in Sect. 3, we show that there will always be a variance reduction, if the external
moment conditions and the ones for the model are correlated and if the covariance matrix of
all moment conditions is positive definite. As the GMM allows the estimation of a large class
of models, and many statistical measures like proportions, means, variances and covariances are
statistical moments, the range of possible applications is large but far from being implemented
in psychological research. For a multiple linear model, we derive the estimators analytically in
Sect. 3. The use of imprecise probabilities will increase the overall variation of the estimator, and
moreover, the effect of the variance reduction will decrease. As we will demonstrate, however,
variance reduction will still be possible while increasing the robustness of the estimation. The
proposed method and techniques allow more precise and robust inferences, which is particularly
relevant in small samples. To illustrate the small sample performance of the externally informed
models in multiple linear models, a simulation study is presented in Sect. 5. An application to a
real data set analyzing the relation of premorbid (general) intelligence and performance in lexical
tasks (Pluck & Ruales-Chieruzzi, 2021) is presented in Sect. 6.

2. Externally Informed Models

In a first step, we assume that precise external information is available, an assumption that
will be relaxed in Sect. 4. Throughout, we assume that all variables will be considered as random
variables if not given otherwise. For notational clarity, we will always write single-valued random
variables in italic small letters. Vectors as well as vector-valued functions will be written in small
bold letters and matrices in bold capital letters.

Although the basic concepts are presented in the following section, for the class of general
regression models, we will consider the family of linear models for their illustration in a concrete
class of models due to their frequent use. Note that, for example, ANOVA models are special
cases of this model, however, with fixed factors instead of random covariates. Nevertheless, the
results derived in this paper carry over to these models.

Let z = (z1, . . . , z p)T be a real-valued random vector and zi , i = 1, . . . , n, be i.i.d. random
vectors distributed like z, representing the data. Suppose we want to fit a regression model to this
data set with fixed parameter θ ∈ R

p, where the adopted model reflects the interesting aspects of
the true data-generating process and θ0 is the true parameter value. In linear regression models,
the parameter of scientific interest is usually the parameter of the mean structure denoted as
β = (β1, . . . , βp)

T with true value β0. The notation β will only be used for linear regression
models, while wewill use θ to denote the regression coefficients in general regressionmodels. The
random vector z is given by z = (xT , y)T with random explanatory variables x = (x1, . . . , xp)T

and dependent variable y. Accordingly, the unit specific i.i.d. random vectors z are written as
zi = (xTi , yi )T for i = 1, . . . , n. Hence, the random (n× p)-design matrix isX = (x1, . . . , xn)T ,
and we write y = (y1, . . . , yn)T .
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The multiple linear model can now be written as y = Xβ0 + ε with random error terms
ε = (ε1, . . . , εn)

T . As an illustration, suppose we want to investigate the effect of the explanatory
variables fluid intelligence and depression on the dependent variable mathematics skills. We
could design a study, in which fluid intelligence and math skills are measured via Cattell’s fluid
intelligence test, in short CFT 20-R, (x2) and the number sequence test ZF-R (y), respectively
(Weiss, 2006). Depression could be measured as a binary variable indicating if a person has a
depression-related diagnosis (x3). The model could be a linear multiple regression of the ZF-R
score on the depression indicator and the CFT 20-R score for fluid intelligence. To include the
intercept, x1 is a degenerate variable with value 1.

In addition to the observed data and the assumptions justifying the model, we often have
available external information like means, correlations or proportions, e.g., through official statis-
tics, meta-analyses or already existing individual studies. In our applied example, there are various
German normgroups for theCFT20-R and theZF-R, even for different ages (Weiss, 2006).Hence,
we could always transform the results into scores with known expected value and variance, i.e.
the CFT 20-R score can be transformed into an IQ-score based on a recent calibration sample
from 2019, reported in the test manual (Weiss, 2019). Regarding the relation of fluid intelligence
and math skills, a recent meta-analysis based on more than 370,000 participants in 680 studies
from multiple countries suggests a correlation of r = 0.41 between the two variables (Peng et
al., 2019). In addition, based on a study covering 87% of the German population aged at least
15 years, Steffen et al. (2020) report a prevalence of depression, defined as a F32, F33 or F34.1
diagnosis following the ICD-10-GM manual, of 15.7% in 2017.

Let us assume that these values can be interpreted as true population values, an assumption
that will be relaxed later. Note that they have the form of statistical moments. For example, the
observable depression prevalence is assumed to equal the expected value of the binary depression
indicator (first moment), the mean (now considered as expected value) and variance of the test
scores are set equal to the first moment and the second central moment, respectively, of the random
variables CFT 20-R-score and ZF-R-score. Finally, the correlation is assumed to equal the mixed
moment of the standardized CFT 20-R-score and ZF-R-score. Taking q to be the number of known
external moments, we state

Definition 1. Let M be a statistical model. Further let u be a (q ×1)-vector of statistical moment
expressions and μex the corresponding (q × 1)-vector of externally determined values for the
statistical moments in u. Then the model combining M and the conditions u = μex is called
externally informed model.

To illustrate the definition, we will use the applied example from above in which case the
model M is a multiple linear regression model. Interpreting the norms for the dependent variable
ZF-R from the calibration sample as population values, external knowledge about the correspond-
ingmoments, for example themeans of ZF-R, is available. Let us assume that ZF-R is transformed
into the IQ-scale. Then, if u = E(y) and μex = 100, we get E(y) = 100× 1n = E(X)β0, where
1n is a (n × 1)-vector of ones. Thus, u = μex imposes conditions on β.

3. Estimation and Properties of Externally Informed Models

3.1. Generalized Method of Moments with External Moments

The GMM approach (Hansen, 1982) allows to estimate (general) regression models and to
incorporate external moments into the estimation (Imbens & Lancaster, 1994). To estimate the
parameter of a general regressionmodel, a “modelmoment function”m(z, θ)must be given,which
satisfies the conditions E[m(z, θ)] = 0 only for the true parameter value θ0. The corresponding
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“sample moment function” for zi will be denoted as m(zi , θ). In case of the linear regression
model from Sect. 2, the model moment function corresponding to the method of Ordinary Least
Squares (OLS) is m(z,β) = x(y − xTβ) (Cameron & Trivedi, 2005, p. 172). Given the model
is correctly specified, for true parameter value β0, E[m(z,β0)] = E[x(y − xTβ0)] = 0 holds.
Replacing these population model moment conditions by corresponding sample model moment
conditions,

0 = 1

n

n∑

i=1

m(zi ,β) = 1

n

n∑

i=1

xi
(
yi − xTi β

)
= 1

n
XT (y − Xβ) ,

and solving these estimating equations for β, leads to an estimator β̂ for β0. The above conditions
are identical to the estimating equations resulting from the least-squares or, if normality of the
errors is assumed, the maximum likelihood method. Furthermore, the general classes of M- and
Z-estimators can be written using estimating equations that have this moment form. This leads
to broad applicability, since these classes, for example, include the median and quantiles (Vaart,
1998).

The possibly vector-valued “externalmoment function”will be denoted ash(z) = u(z)−μex,
where the functional form of u(z) depends on the external information included into the model.
We assume that μex = E[u(z)], so that E[h(z)] = 0. If, for example, the expected value of y is
known to be E(y) = 100, then u(z) = y, μex = 100 and h(z) = y − 100. The corresponding
sample moment condition is 0 = 1

n

∑n
i=1(yi − 100) (Imbens & Lancaster, 1994).

To simplify the presentation, we define the combined moment function vector in gen-
eral regression models as g(z, θ) = [m(z, θ)T ,h(z)T ]T in what follows and assume that
E[ 1n

∑n
i=1 g(zi , θ0)] = 0 holds. Note that the number of moment conditions exceeds the number

of parameters to be estimated, i.e. the externally informed model is overidentified. This means
that there will in general be no estimator θ̂ that solves the corresponding sample moment condi-
tions 1

n

∑n
i=1 g(zi , θ) = 0. To deal with the overidentification problem, we will use the GMM

approach (Hansen, 1982), that finds an estimator as “close” as possible to a solution of the sample
moment conditions. This is done by maximizing a quadratic form defined by a chosen symmetric,
positive definite weighting matrix W in the moment functions of the sample. The efficiency of
the estimator is affected by W, and this can be chosen to maximize the asymptotic efficiency of
the estimator in the class of all GMM-estimators based on the same sample moment conditions
(Hansen, 1982). This optimal weighting matrix is W = �−1, where � = E[g(z, θ0)g(z, θ0)T ].
However, this optimalW is unknown in practice and must be estimated by a consistent estimator
Ŵ.

Definition 2. (Newey & McFadden, 1994, p. 2116) Let g(z, θ) be a vector-valued function with
values in R

K , that meets the moment conditions E[g(z, θ0)] = 0. Further let Ŵ ∈ R
K ,K be a

positive-semidefinite, possibly randommatrix, such that (rT Ŵr)1/2 is a measure of distance from
r to 0 for all r ∈ R

K . Then, the GMM-estimator θ̂ex is defined as the θ , which maximizes the
following function:

Q̂n(θ) = −
[
1

n

n∑

i=1

g(zi , θ)

]T

Ŵ

[
1

n

n∑

i=1

g(zi , θ)

]
.

The GMM approach provides consistent and normally distributed estimators under mild
regularity conditions (Newey &McFadden, 1994, p. 2148) for a wide range of models, like linear
or nonlinear, cross-sectional or longitudinal regressionmodels. Note thatwe have not assumed that
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Ŵ is invertible because we will mainly derive asymptotic expressions based on W for which the
invertibility of Ŵ is not necessary. However, when deriving estimators, additional assumptions
about invertibility must be made, which we explain in Sect. 3.2. Let G = E[∇θg(z, θ0)] be a
fixed matrix and W the optimal weighting matrix, then Var(θ̂ex) = 1

n (GTWG)−1. This variance
expression is not informative with respect to a possible efficiency gain of the GMM-estimator
if external information is used. Hence, the following corollary explicitly shows the effect of the
external information on the variance of θ̂ex.

Corollary 1. Assume θ̂M is the GMM-estimator based on the model estimating equations alone
(ignoring the external moments), and that m(z, θ) and θ have the same dimension. Using the
prerequisite g(z, θ) = [m(z, θ)T ,h(z)T ]T it follows, that � has the block form

� =
(
E[m(z, θ)m(z, θ)T ] E[m(z, θ)h(z)T ]
E[h(z)m(z, θ)T ] E[h(z)h(z)T ]

)
=

(
�M �T

R
�R �h

)

and that

{
E[∇θm(z, θ0)]T

}−1
�T

R�−1
h �R {E[∇θm(z, θ0)]}−1 (1)

A proof of Corollary 1 can be found in the supplementary materials online. Note that (1) shows
that Var(θ̂ex) is equal to the conditional variance of θ̂M under the external moment conditions,
since the asymptotic distribution is normal. This equality shows why there is a reduction in the
variance. Let the second term on the right-hand side of (1) be denoted by D, then Var(θ̂ex) can
be written as Var(θ̂ex) = Var(θ̂M ) − D. If D is nonnegative definite and not equal to 0, then
including external moments leads to an expected efficiency gain in θ̂ex as compared to θ̂M . That
D �= 0 is nonnegative definite if �R �= 0 is easily seen by noting that �−1

h is positive definite

and therefore can be written as �−1
h = �

−1/2
h �

−1/2
h , where �

−1/2
h is the positive definite square

root of �−1
h . Since nD can be written as the product of {E[∇θm(z, θ0)]T }−1�T

R�
−1/2
h with its

transpose, D is nonnegative definite. In summary, �R �= 0 is a necessary and sufficient condition
for the presence of variance reduction based on Corollary 1. Finally, it should be noted that
Var(θ̂ex) can consistently be estimated via the plug-in approach (e.g. Newey &McFadden, 1994,
pp. 2171–2173) by replacing all unknown expected values by sample means.

3.2. The Externally Informed Multiple Linear Model

In linear models, θ̂ex is denoted as β̂ex. For analytical simplicity, in this section, we assume
the Gauss–Markov assumptions hold, specifically E(εi ) = 0, Var(εi ) = σ 2,Cov(εi , ε j ) = 0
for all i �= j with i, j = 1, . . . , n, and independence of the explanatory variables and the error
terms ε. Furthermore, we assume the errors to be normally distributed in small samples. Analytical
solutions to the estimating equations exist under these assumptions:

Theorem 1. Let H = [h(x1, y1), . . . ,h(xn, yn)]T be the (n × q) random matrix containing the
externally informed sample moment functions and 1n a (n×1)-vector of ones. Further let �̂h and
�̂R be consistent estimators of the corresponding matrices in Corollary 1. Then, the (consistent)
externally informed OLS estimator is:

β̂ex = (XTX)−1XT y − (XTX)−1�̂
T
R�̂

−1
h HT 1n

and its variance is
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Var(β̂ex) = Var(β̂) − D

= 1

n
σ 2

[
E

(
xxT

)]−1 − 1

n

[
E

(
xxT

)]−1
�T

R�−1
h �R

[
E

(
xxT

)]−1
,

where σ 2 is the variance of the error in the assumed linear model.

The proof of Theorem 1 is given in the supplementary materials online. Note that only
the assumption of invertibility of �̂h is made, which is weaker than the assumption that �̂ is
invertible. From Theorem 1, it is not immediately obvious which of several possibly available
functions may lead to a variance reduction. Therefore, let us consider some external moment
functions and their possible effects on the variance of β̂ex. Note that inclusion of external moment
functions into the estimating equations may lead to expected efficiency gains only if �T

R =
E[x(y − xTβ0)h(x, y)T ] = E[x ε h(x, y)T ] �= 0 holds.

Let the expressions σx j and σy denote the population standard deviations of x j and y, respec-
tively, whereas σx j ,y indicates the covariance of x j and y. To denote the covariance vector
(σx1,x j , . . . , σxp,x j )

T of x and x j the expression σ x·,x j is used, including σ 2
x j at the j-th posi-

tion. Finally, ρx j ,y is the population correlation of x j and y.
First, consider some function f(x) of x, i.e. h(x) = f(x) − E[f(x)]ex, where E[f(x)]ex is

the known expected value of f(x). If the assumptions underlying the linear model hold, then
�R = E[x ε h(x)T ] = 0 because ε is independent of f(x) and E(ε) = 0. Thus, according to
the results of Sect. 3.1, there will be no variance reduction if the external moment function is a
function of the explanatory variables only. In the example described in Sect. 2, there will be no
efficiency gain if the 15.7%-prevalence of depression is used as external information to estimate
the linear regression model.

On the other hand, if the external moment function is a function of ε, then generally,
E[x ε h(x, y)T ] �= 0. In the example, assume that the correlation between fluid intelligence
and math skills reported in Peng et al. (2019) is taken as external information, in which case
h(x, y) = h(x2, y) = [y − E(y)][x2 − E(x2)]/(σx2σy) − ρ(x2, y)ex, where ρ(x2, y)ex = 0.41.
Then E[x ε h(x2, y)] = [σ 2/(σx2σy)]σ x·,x2 will not in general be zero, and hence, there will,
in general, be efficiency gains with respect to β̂ex. For more examples, see Table 1 and for the
derivation of the results, see the supplementary materials online. It should be noted that if the
distribution of the errors is not symmetrical, then E(x)E(ε3) has to be added to the entries in
column �T

R of Table1 for the cases E(y2) and σ 2
y , see the supplementary materials online for

further details.
Table 2 presents, in the second column, the absolute variance reduction for the parameters if

the external information given in the first column is used to estimate the regression model. The
third column in Table2 shows which entries of the parameter β can be estimated more precisely if
the external information is used. The results of Table2 are derived in the supplementary materials
online. Note that �h is written as ωh here, as it is single-valued. It holds that ωh = E[h(x, y)2],
where h(x, y) is of the form given for various moments in Table1. However, this expression
often includes the terms E(ε) and E(ε3), which are already set to zero in �T

R (see supplementary
materials online). In order to avoid invalid estimates, E(ε) and E(ε3) should be set to zero in ωh .
For example, if the correlation between fluid intelligence and math skills reported in Peng et al.
(2019) would be used in the regression from math skills on fluid intelligence and depression, then
the variance of the estimator weighting the variable fluid intelligence would be reduced by:

σ 4

nωhσ 2
y σ 2

x2

= σ 4

nVar{[x2 − E(x2)][y − E(y)]} .
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Table 1.
Forms of �T

R for various single moments.

Moments h(x, y) �T
R

E(y) y − E(y)ex σ 2E(x)
E(x j y) x j y − E(x j y)ex σ 2E(x j · x)
E(y2) y2 − E(y2)ex 2σ 2E(xxT )β0
σ 2
y [y − E(y)]2 − (σ 2

y )ex 2σ 2[E(xxT )β0 − E(y)E(x)]
σx j ,y [y − E(y)][x j − E(x j )] − (σx j ,y)ex σ 2σ x·,x j
ρx j ,y

[y−E(y)][x j−E(x j )]
σx j σy

− (ρx j ,y)ex
σ 2

σx j σy
σ x·,x j

βx j ,y
[y−E(y)][x j−E(x j )]

σ 2
x j

− (βx j ,y)ex
σ 2

σ 2
x j

σ x·,x j

The subscript ex indicates externally determined values. In the last line, βx j ,y represents the expected value
of the estimator of the slope from a simple linear regression model, which is identical to the true value of
the slope only if x j is independent of the other explanatory variables.

Table 2.
Effects of various single moments in terms of variance reduction.

Moments D Effect on

E(y) σ 4

nωh
e1eT1 Only β1

E(x j y)
σ 4

nωh
e j eTj Only β j

E(y2) 4σ 4

nωh
β0β

T
0 All β j �= 0

σ 2
y

4σ 4

nωh
[β0 − E(y)e1][β0 − E(y)e1]T All β j �= 0 and β1

σx j ,y
σ 4

nωh
ẽ j ẽ

T
j β j and β1

ρx j ,y
σ 4

nωhσ
2
y σ 2

x j

ẽ j ẽ
T
j β j and β1

βx j ,y
σ 4

nωhσ
4
x j

ẽ j ẽ
T
j β j and β1

The expression e j denotes the (p × 1)-vector with 1 at the j-th position and zeros elsewhere. Further we
set ẽ j := −E(x j ) · e1 + e j . In the last line, βx j ,y represents the expected value of the estimator of the
slope from a simple linear regression model, which is identical to the true value of the slope only if x j is
independent of the other explanatory variables.

This means that there will be a variance reduction in all practically relevant cases, where σ 2 �= 0
andVar{[x2−E(x2)][y−E(y)]} < ∞hold. For a comparisonof the effects of the different external
moments, the corresponding relative variance reductions may be of interest. These are obtained by
dividing the j-th diagonal element of the absolute reductions in Table2 by 1

nσ 2E(xxT )−1
( j, j), where

E(xxT )−1
( j, j) denotes the element of the inverse of E(xxT ) in the j-th row and the j-th column.

For the resulting expressions it is clear that n factors out, as D also includes 1
n as the only factor

depending on n, while the rest are fixed values. Hence, the relative efficiency gains do not vanish
with increasing n, but are constant. In our example, the known correlation ρx2,y = .41 exerts an
expected relative variance reduction of

σ 2

E(xxT )−1
(2,2)Var{[x2 − E(x2)][y − E(y)]} ,
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which is independent of n and does not vanish for large σ 2. Including more than one external
moment is straightforward. In that case �h includes not only variances but also covariances of
the external moments which may lead to additional variance reduction. To illustrate this effect,
consider the example from Sect. 2 using the external moments ρ(x2, y)ex = 0.41 and E(x2)ex =
100. For the sake of simplicity andwithout loss of generality we assume x2 and y to be centralized.
In this example, the external moments ρx2,y and E(x2) are included in the externally informed

multiple linear model, leading to �T
R =

(
0 σ 2

σx2σy
σ x·,x j

)
according to Table1, and

�h =
⎛

⎝
Var(x2)

Cov(x22 ,y)
σx2σy

Cov(x22 ,y)
σx2σy

Var(x2y)
σ 2
x2

σ 2
y

⎞

⎠

via definition, wherein Var(x2y) is the scalar variance of x2 times y. Using the notation of Table2,
the explicit inversion formula for (2 × 2)-matrices implies

D = 1

n

[
E

(
xxT

)]−1
�T

R�−1
h �R

[
E

(
xxT

)]−1

= 1

n

[
E

(
xxT

)]−1 σ 2

σx2σy
σ x·,x j (�

−1
h )(2,2)σ

T
x·,x j

σ 2

σx2σy

[
E

(
xxT

)]−1

= σ 4(�h)(1,1)

n det(�h)σ 2
x2σ

2
y
ẽ2ẽ

T
2 = σ 4

n

[
Var(x2y) − Cov

(
x22 ,y

)2

σ 2
x2

] ẽ2ẽT2 ,

where det(A) denotes the determinant of matrix A. Assuming both variances to be finite and
positive and invoking the Cauchy–Schwartz inequality, the fraction Cov(x22 , y)

2/σ 2
x2 will not

exceed Var(x2y) and henceDwill be nonnegative. Further, if x22 and y have a covariance different
from 0, the variance will decrease even further, compared to the reduction due to ρx2,y alone.
Hence, β1 and β2 can in general be estimated even more efficiently, if E(x2) is used in addition.

3.3. Additional Remarks

Using many moments, however, increases the risk of a near-singular � matrix, especially if
the moments are strongly mutually (linear) dependent. Calculation of the GMM-estimator with
additional external moment functions often includes unknown population moments, like E(x) or
σ 2
y (see Table1), which may be replaced by the corresponding sample moments. However, �R

and �h may in addition be functions of unknown σ 2 or β0, as can be seen in Table1. Hence,
the externally informed GMM-estimator is calculated iterating over the following steps until
convergence: First estimate the model using the ordinary least squares approach without external
moments to get σ̂ 2 and β̂ and then estimate β̂ex based on the estimates from the former step.

Statistical inference with a GMM-estimator can be based on the Wald test, which simplifies
to a t-test if single regression coefficients are tested and its approximative normality can be used
to construct confidence intervals (Cameron & Trivedi, 2005). However, in small samples or when
dealing with complex models, it is sometimes better to use a bootstrap method (Cameron &
Trivedi, 2005; Spiess et al., 2019, p. 177).
As this approach combines data from different sources, one should take into account the issues
arising in meta-analyses in general. The Cochrane Handbook for Systematic Reviews of Interven-
tions (Higgins et al., 2019) and the PRISMA statement (Page et al., 2021) should be considered
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to select proper sources of external information, which are as up-to-date and as close as possible
to the same population, method and design of the study one wishes to use the externally informed
model in. This is important because a core regularity condition of the GMM is that the expected
values of the moment functions are zero, which can be violated, if the external moment and the
data were taken from different populations. As a possible approach to deal with this compatibility
issue, the GMM framework incorporates the Sargan–Hansen test to test if the overidentification
due to the additional moment conditions causes a Q̂n(θ̂ex) significantly larger than 0 (Hansen,
1982; Sargan, 1958). Another option to test for incompatibility especially in linear regression
models is the Durbin–Wu–Hausman test (Hausman, 1978), as it compares two estimators of the
same parameter. We will take a different approach here, as we will instead relax the assumption
of correct external point-values to intervals containing the true value.

4. Robustness due to Interval Probability

External information is only an estimate itself and thus prone to uncertainty. A classical
approach to analyze and prevent the issues of misspecification and thus misleading inferences
is to use robust models (Huber, 1981). Hence, it is important to use techniques to robustify the
estimation of the externally informed model. In this paper, we will adopt an approach based on
the theory of imprecise probabilities due to Weichselberger (2001), that is capable of dealing
with probabilistic and non-probabilistic uncertainty, not depending on a fully specified stochastic
model. The advantage is that instead of distributional assumptionswe only need bounds for the true
external values. It would be possible to model the uncertainty in the external information within
a probabilistic, e.g., a Bayesian, framework. However, this framework would replace uncertainty
in the external information by assuming an additional parametric model of its estimation process
in form of precise prior distributions. Moreover, it is not straightforward to represent only certain
distributional aspects (moments) within a Baysian approach, e.g., the external information 100 =
E(y) = E(x)Tβ0 presented in Sect. 2.

4.1. Externally Informed Models Based on Interval Information

Assume that Iex is an interval containing the true value of an unknown external moment.
Hence every value in the interval could be the true one. To illustrate a possible way to construct an
Iex, we use our earlier example. In our application example, we have a 95% confidence interval
of [0.39, 0.44] for the correlation between fluid intelligence and mathematical skills (Peng et al.,
2019). This is, of course, an interval that includes the true value onlywith a positive probability, but
not with certainty. However, combining this confidence interval with the results of other studies on
this or a similar correlation, and thus possibly widening the interval, the resulting interval serves
as a subjective, rough approximation for Iex. We illustrate the use of this technique in Sect. 6.
In this section, we discuss another way of constructing Iex. Regarding the estimated depression
prevalence of 0.157 in Steffen et al. (2020), we know that 87% of the population has been
investigated. Thus, we can construct an interval by the technique proposed, e.g., in Manski (1993,
2003), Manski and Pepper (2013), Cassidy and Manski (2019). The two extreme cases that could
occur are that no person of the 13% unobserved individuals has a depression and on the other
extreme that all of these individuals have a depression. As 87% of 0.157 is 0.137, we get the
interval [0.137, 0.267] for the prevalence. The advantage of such intervals is that they completely
compensate for the missing values without any further assumptions. Having available an interval
for the external information, one can adopt a technique denoted as cautious data completion
proposed by Augustin et al. (2014, p. 182) to determine based on Iex the sets of possible values
for the estimator itself and its variance estimator. In our setting, this amounts to evaluating the
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estimator for the externally informed linear model and its variance estimator from Theorem 1
traversing Iex. This leads to a set Bex of possible parameter estimates and a set Vex of possible
variance estimates. These sets of estimates are compact and connected in the strict mathematical
sense, since both estimators are continuous functions on the external interval.

4.1.1. F-Probability Interval-based inferences can be justified by adopting the concept of
F-probabilities (Augustin, 2002; Weichselberger, 2000).

Definition 3. (Augustin 2002) Let � be a set and A be a σ -algebra on �. Further, let K(�,A)

be the set of all probability measures on (�,A). Then, a set-valued function F(·) on A is called
F-probability with structureM, if

1. there are functions L(·),U (·) : A → [0, 1] such that for every event A ∈ A it holds
that L(A) ≤ U (A) and F(·) has the form

F(·) : A → {[a, b] | a, b ∈ [0, 1] and a ≤ b}
A �→ F(A) := [L(A),U (A)] for every event A ∈ A,

2. the set M := {P(·) ∈ K(�,A) | L(A) ≤ P(A) ≤ U (A), for all A ∈ A} is not empty,
3. for all events A ∈ A it holds that inf P(·)∈M P(A) = L(A) and

supP(·)∈M P(A) = U (A).

Formost applications, it is sufficient to restrict to the case� = R
d and letAbe the correspond-

ing Borel σ -algebra. F-probabilities are best understood as a representation of a “continuous” set
of probability measures. For example, consider all normal distributions with a variance of 1 and a
mean between−0.5 and 0.5. If we consider all these distributions as possible true distributions for
a random variable X and evaluate an event in terms of its probability, we obtain a set of possible
probability values. Consider the event A = {X ≤ 0}, its possible probability ranges from 0.3085
(for mean 0.5) to 0.6915 (for mean −0.5) and thus P(A) ∈ F(A) := [0.3085, 0.6915]. If this
procedure is performed for all A ∈ A, the resulting F(·) is an F-probability. In general, given any
nonempty setP of probability measures, one can construct the narrowest F-probability containing
P by defining F(A) := [inf P∈P P(A), supP∈P P(A)] for each event A ∈ A, cf. Remark 2.3. in
Augustin (2002). If the intervals F(A) consist of one element for all A, the F-probability simply
corresponds to a single probability measure. Thus, it is a natural generalization of the conven-
tional notion of probability, using simultaneously a range of probability measures between a lower
bound and an upper bound. An important property of F-probabilities for ensuring robustness is
that their structureM (all the probability measures covered by F(·), in the sense of condition 2 in
Definition 3) is generally larger than the set P (called pre-structure) of probability measures used
to construct them, since the structure is closed under convex combinations (Augustin, 2002). For
two probability measures P and Q, this follows by the basic inequality that for all 0 ≤ ε ≤ 1 and
A ∈ A it holds that

min(P(A), Q(A)) ≤ εP(A) + (1 − ε)Q(A) ≤ max(P(A), Q(A)).

For example, convex combinations of normal distributions are not themselves normally distributed
and include skewed and bimodal distributions. This illustrates that robustness with respect to
distributional assumptions increases compared to using normal distributions alone. Unlike other
concepts that reflect uncertainty about probability measures, such as triangular numbers (fuzzy
numbers), there is no preference for one distribution over another caused byweighting functions or
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possibility distributions. This agnosticism regarding the true distribution also covers deterministic
ambiguity to some extent. For instance, in our example, a deterministic alteration of μ over time,
where μ(t) ∈ [−0.5, 0.5] for all t , like μ(t) = 0.5 sin(t), would still be covered by the F-
probability at any time t because the F-probability covers the range of μ(t). In applied research,
the exact form of deterministic variation of μ is typically unknown, but if its bounds are known to
lie within an interval, the F-probability based on this interval would account for it. Of course, these
advantages come at the cost of greater conservatism than using a single probability distribution.

In our framework, the assumption of knowing the true moment value can be relaxed to
assuming that an interval is known containing the unknown true moment value. As the GMM-
estimator is asymptotically normally distributed for the true value of the external moment, we
asymptotically get a pre-structure consisting of all normal distributions for estimator β̂ex with
expected value insideBex and with variance inside Vex. This pre-structure is guaranteed to contain
the normal distribution based on GMM asymptotics, since the true external moment value is
assumed to be in Iex. Therefore, for each event, the probability assigned to an event by this true
normal distribution will lie between the lower and upper bounds assigned to that event by F(·),
possibly leading to more conservative but valid statistical inference. Based on this pre-structure,
we get an F-probability. Statistical inference based on F-probabilities is done by treating the
probability intervals as a whole, e.g., by interval arithmetic. We demonstrate this principle by
constructing an equivalent to confidence intervals in the context of F-probabilities in the next
section.

4.1.2. Confidence Intervals for the Externally Informed Model Under F-Probabilities The
construction of confidence intervals (point-CIs) is in general not possible in the framework of
F-probabilities, because instead of a single probability value lower and upper bounds are assigned
to an event. One possibility, however, is to use the union of all possible point-CIs traversing
Iex. The idea to calculate unions of intervals already has been investigated for Bayesian highest
density intervals in an imprecise probability setting by Walter and Augustin (2009). Let θ̂e, j be
the j-th entry of the externally informed GMM-estimator θ̂ex using external value e, we define
the (1 − α) · 100% confidence union for θ j to be

⋃
CI1−α :=

[
inf
e∈Iex

[θ̂e, j − t1− α
2 ,n−p

√
V̂ar(θ̂e, j )], sup

e∈Iex
[θ̂e, j + t1− α

2 ,n−p

√
V̂ar(θ̂e, j )]

]

Because the true external moment value is in Iex, the borders of the point-CI constructed via the
true moment value lie between the infimum and the supremum of the lower and upper borders,
respectively, of all point-CIs on Iex. Therefore,

⋃
CI1−α covers the point-CI constructed via the

true moment value. The asymptotic normal distribution of β̂ex at the true value of the external
moment implied by the asymptotic properties of GMM-estimators described in Sect. 2 ensures
that the confidence union covers the true parameter asymptotically with probability at least 1−α.
An approximation of the confidence union can be calculated using grid search traversing Iex. If
the point-CIs used to construct

⋃
CI1−α differ, then the resulting interval is wider than every of

these point-CIs. This demonstrates that the positive effect of the variance reduction (a shorter
CI) can be reversed by the length of Iex. The reason is that a broader Iex increases the set over
which infimumand supremumare taken, possibly expanding

⋃
CI1−α . However,wewill show in a

simulation study in Sect. 5 that in some cases it is possible to get a
⋃

CI1−α shorter than the (1−α)

confidence interval based on theOLSmultiple linear regression. Hence, the variance reduction can
compensate the broadening of

⋃
CI1−α introduced by Iex. Finally, using

⋃
CI1−α strengthens

the robustness through the F-probability, on which
⋃

CI1−α is based, as it also includes, e.g.,
bimodal and skewed distributions.



MARTIN JANN, MARTIN SPIESS

5. A Simulation Study

5.1. Settings

To test the externally informed GMM approach for multiple linear models in small samples,
we conducted two simulation studies. The first setting illustrates possible variance reduction if
correctly specified external moments are used and shows that the usage of small external moment
intervals can lead to confidence unions that may even be shorter than the OLS confidence interval.
In the second setting, we focus on misspecified external information and non-normal errors. In
this case, it is interesting to see, if inferences are still valid and whether the effects of the variance
reduction illustrated in the first setting still occur. The simulation scriptwaswritten and executed in
Rversion 4.2.1 (RCoreTeam, 2022), the script can be found in the supplementarymaterials online.
The function interval_gmm() implements the calculation of intervals of estimators and of
their standard deviation, aswell as confidence interval unions. In both settings,weused an intercept
(x1 = 1), a normally distributed variable x2 ∼ N (2, 4) and a binary variable distributed according
to Bernoulli distribution x3 ∼ Bernoulli(0.4) as explanatory variables. The response variable was
generated according to y = x1 + 0.5x2 + 2x3 + ε, where ε ∼ N (0, 9) in the first setting. In the
second setting, the errors were generated by affine transformation of a χ2

1−distributed random
sample, so that its mean is 0 and its variance is 9. The settings were selected, so that all required
moments can easily be calculated, which is done before the simulations. The ratio of explained
variance to total variance was 1 − 9/Var(y) = 1 − 9/10.96 = 0.178 a value which is similar to
often reported values in psychological research. This amounts to a relatively high error variance,
a factor for possibly large variance reduction for some external moments (see Sect. 3).

Different moments have different scales, so a similar interval width of Iex does not imply
similar “sharpness” of the external information across scales. To create intervals for the external
information, that are comparable across the different scales of the external moments, we have
used external intervals where the ratio of half their width to their center is the same for all
external moments in each setting. It should be noted that this technique is different from the
design techniques discussed in Sect. 4.1. The reason for this difference is that the simulation study
aims to compare the different moments in terms of their effectiveness and statistical validity in a
context where the Iex are comparable in magnitude and contain the true value. To motivate this,
one could compare the given ratio to the coefficient of variation. For the standard IQ-scale, the
coefficient of variation is 15/100 = 0.15. For the first setting, we arbitrarily chose a ratio of 0.1
to represent somewhat more precise external information than one standard deviation in the IQ-
scale around the center. For the second setting, we have chosen a ratio of 0.3 to represent a radius
of two standard deviations in the IQ-scale and thus an approximate confidence interval width
that takes the IQ-scale as a basis. In the first setting, we created intervals that were symmetrical
around the true external value. Hence, if the true external value was e, then the interval was
Iex = [0.9e, 1.1e]. In the second setting, we first multiplied all true external moment values by
1.3. Since none of these true external values were equal to zero, this resulted in misspecified point
values. These misspecified values were used as external point values during the simulation to test
the sensitivity of the externally informed model based on point information. The constant 1.3
was again chosen arbitrarily and leads to a relative bias of 30%. Then, as in the first setting we
generated a symmetric interval around the misspecified value. If e again denotes the true external
value, 0.7 · 1.3e = 0.91e was the lower limit and 1.3 · 1.3e = 1.69e the upper limit of Iex, i.e.
Iex = [0.91e, 1.69e], which contains the true value e. As for sensitivity, tests with center width
ratio and misspecification values similar to 0.1, 0.3 and 1.3 gave similar results.

Sample sizes n chosen are 15, 30, 50, 100. The moments used are those listed in Table2
for both, x2 and x3. Given the results in Sect. 3, the expected relative variance reductions were
calculated to check if these settings are capable of providing enough variance reduction. For every



PSYCHOMETRIKA

moment condition in each setting we run 500 simulations. Only single moment conditions were
used.

In a first step, all explanatory variables were generated and y was calculated as described
above. In the second step, β̂ex and V̂ar(β̂ex) were calculated according to the following two-step
GMM algorithm:

1. Calculate β̂ and σ̂ 2 via the classical OLS method
2. Determine �̂R , ω̂h and β̂ex based on β̂ and σ̂ 2

3. Recalculate σ̂ 2, �̂R and ω̂h based on β̂ex

4. Update β̂ex and calculate V̂ar(β̂ex)

Then, 95% confidence intervals were calculated based on β̂ex and its estimated variance, using
a t-distribution with n − 3 degrees of freedom. Let β̂ex be one element of β̂ex, then it’s 95%
confidence interval is

CI0.95 =
[
β̂ex − tn−3,0.975

√
V̂ar(β̂ex), β̂ex + tn−3,0.975

√
V̂ar(β̂ex)

]
.

To calculate
⋃

CI0.95 a grid search algorithm was adopted. First we determined 101 equidistant
points in the given Iex (including the bounds of the interval). The number 101 was chosen after
some preliminary tests of the algorithm as a compromise between precision and computing time.
Then we traversed these grid points calculating β̂ex and V̂ar(β̂ex) using the two step procedure
from above at each point. Comparing the bounds of the CIs sequentially, the minimal lower and
maximal upper CI bounds on the grid points were determined and served as approximation for
the bounds of

⋃
CI0.95.

5.2. Results

As criteria to evaluate the statistical inferences, we calculated the mean ¯̂
βex of the

estimates β̂ex and their variances Var(β̂ex) over 500 simulations. The latter will be com-

pared to the corresponding means of estimated variances, V̂ar(β̂ex). To evaluate possible
variance reduction for β j , the mean ratio of variance reduction to OLS-variance, 
̂ j :=
[V̂ar(β̂OLS) − V̂ar(β̂ex)]( j, j)/[V̂ar(β̂OLS)]( j, j), will be considered. In addition, the actual cover-
age is calculated over simulations. For given α = 0.05 and 500 simulations, the actual coverage
should be between 0.93 and 0.97 for the point-valued moments (Spiess, 1998) and equal to or
greater than 0.93 for the external moment intervals, as the confidence union is used to calculate

the coverage in this case. Finally, |CI| := CI0.95 − CI0.95 and | ⋃CI| := ⋃
CI0.95 − ⋃

CI
0.95

were computed. They can be compared to the OLS-CI-length to evaluate the possible precision
gains or losses.

5.2.1. Results for the Correctly Specified Setting The detailed results for sample size n = 15
are presented in Table3, while the results for the other sample sizes are given in Tables 7 to 9 in the
supplementary materials. Consistent with the theory in Sect. 3, the use of the moment E(x2) had
no effect on the variances, neither for the correctly specified nor for the misspecified setting, and
estimation results were equal to OLS estimation results. The corresponding results are presented
for comparison. For all moments except E(y2) and σ 2

y both the coverages for the point valued
moments as well as the coverages for the external intervals exceeded 0.93. The coverages for σ 2

y

were in the valid range only for n = 100, while for E(y2) they were in the valid range already for
n = 50. The undercoverage for sample sizes below n = 100 can be explained by the skewness
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Table 3.
Results of the simulations with correctly specified external moments for sample size n = 15.

Moments β j
¯̂
βex Var(β̂ex) V̂ar(β̂ex) 
̂ j Cov CovI |CI| |

⋃
CI|

E(x2) β1 1.045 1.929 1.968 0 0.944 0.944 5.866 5.866
= OLS β2 0.499 0.205 0.211 0 0.950 0.950 1.909 1.909

β3 1.955 3.422 2.976 0 0.940 0.940 7.292 7.292
E(y) β1 1.048 1.453 1.593 0.217 0.942 0.964 5.215 5.639
E(x2y) β2 0.560 0.174 0.177 0.169 0.950 0.956 1.740 1.832
σx2,y β1 0.802 1.478 1.456 0.239 0.954 0.954 5.054 5.222

β2 0.625 0.096 0.080 0.616 0.960 0.978 1.153 1.237
ρx2,y β1 0.928 1.405 1.418 0.258 0.944 0.948 4.984 5.141

β2 0.562 0.069 0.074 0.639 0.976 0.984 1.110 1.188
βx2,y β1 0.967 1.263 1.414 0.255 0.960 0.964 4.982 5.131

β2 0.543 0.054 0.072 0.633 0.986 0.986 1.107 1.180
E(x3y) β3 2.150 2.745 2.380 0.192 0.936 0.946 6.525 6.837
σx3,y β1 0.959 1.552 1.704 0.141 0.964 0.966 5.433 5.561

β3 2.202 0.783 0.949 0.689 0.976 0.976 3.952 4.273
ρx3,y β1 0.977 1.659 1.694 0.148 0.960 0.960 5.415 5.541

β3 2.136 0.888 0.919 0.699 0.964 0.970 3.891 4.208
βx3,y β1 0.942 1.545 1.700 0.143 0.964 0.970 5.426 5.559

β3 2.182 0.692 0.908 0.698 0.976 0.980 3.888 4.213
E(y2) β1 1.072 1.965 1.935 0.018 0.914 0.936 5.807 5.950

β2 0.507 0.207 0.204 0.031 0.942 0.946 1.875 1.929
β3 1.995 3.414 2.871 0.030 0.916 0.930 7.164 7.367

σ 2
y β1 0.905 1.951 1.708 0.142 0.920 0.928 5.434 5.667

β2 0.540 0.228 0.184 0.148 0.896 0.910 1.766 1.839
β3 2.092 3.646 2.584 0.151 0.858 0.878 6.725 7.005

The expressions ¯̂
βex, Var(β̂ex), V̂ar(β̂ex), 
̂ j ,|CI| and |

⋃
CI| are defined in the beginning of Sect. 5.2. The

results for the moment E(x2) are equivalent to the OLS results. Cov is the coverage for the external point
value and CovI symbolizes the coverage for the confidence interval union based on the external interval.
Only the affected coefficients are reported per moment. The true values are β1 = 1, β2 = 0.5 and β3 = 2.

of the distributions of their sample moment functions in small samples caused by the quadratic
terms y2, leading to higher sample size required for the asymptotic results to be applicable. Using
confidence unions only reduced these required sample sizes to n = 50 and n = 30, respectively,
showing that high skewness is also problematic for

⋃
CI-based coverage in small samples.

For βx j ,y with j = 2, 3, the coverage for β j was in many cases above 0.97 (up to 0.994)
for all n. This was also the case, though not as pronounced, when the external information about
the covariance between x j and y was used. The reason for this is that the variances were mostly
overestimated in these cases, as can be seen in Tables3 and 4 as well as in Tables 7 to 12 in the

supplementary materials by the fact that V̂ar(β̂ex) was larger than Var(β̂ex) for the respective β j .
Although variances are overestimated, the true and estimated variances nevertheless tend to be
smaller than the variance of the OLS-estimators. Thus, inferences still tend to be more precise,
suggesting a possible relationship with superefficiency (Bahadur, 1964).

As shown in Sect. 3, the relative variance reduction for each estimator of β j , reported in
column 
̂ j of Table3 as well as Tables 7 to 9 in the supplementary materials, did not change
significantly under the various conditions over the different sample sizes realized. The smallest
relative variance reduction per β j was attained by using the external information E(y2), ranging
from 0.018 to 0.059, followed by σ 2

y with a maximal relative variance reduction of 0.180. The
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largest relative variance reduction was attained by using the covariance, the correlation and βx j ,y

regarding β j , ranging from 0.633 to 0.734 for j = 2 as well as from 0.698 to 0.857 for j = 3.
For all other moments the values varied between 0.169 and 0.294, see Table3 and Tables 7 to 9
in the supplementary materials.

These variance reductions translated for all moments directly into a reduction of the length
of the confidence interval for the external point value. For the external interval, the length of the
union of the confidence intervals is always greater than the one derived from a single external
point. These differences increase with larger samples, as the variance estimator decreases with
increasing sample sizes, while it can be seen from the formulas in Theorem 1 that the interval
for β̂ex is only affected by the difference between the estimators and the true values of �R and
�h , not directly by n. Finally, with regard to |⋃CI| compared to |CI| the results imply that at the
sample sizes 15 and 30, using any moment except E(y2) resulted in a shorter confidence interval
union than the OLS confidence interval. For n = 50, this was the case for all moments except
E(y2), E(y) and σ 2

y . Finally, for n = 100, only the moments σx2,y , ρx2,y , βx2,y , σx3,y , ρx3,y and
βx3,y resulted in shorter confidence unions than point-CIs. This can be explained by the constancy
of Iex while n increases. There is always an interval inside

⋃
CI which does not vanish for large

n, while |CI| converges to 0.

5.2.2. Results for the Misspecified Setting The detailed results for sample size n = 50 are
presented in Table 4, while the results for the other sample sizes are given in Tables 10 to 12 in
the supplementary materials. The coverage rates using the point-valued moments illustrate the
expected sensitivity of the models due to misspecification. Even at n = 15 more than half of the
coverage rates are below 0.93, although in most cases they are still above 0.9. The severeness
increases with increasing n: For n = 30 only five coverage rates are in the acceptable range of
at least 0.93. As seen in Table4 for n = 50 the coverage is as low as 0.586 in the worst case
for β3 if σx3,y is used. Finally, for n = 100 all coverage rates are invalid, see Table 12 in the
supplementary materials. Except for the moments E(y2) and σ 2

y , this is corrected by the union
of confidence intervals based on the external interval, since all coverage rates in these cases are
above 0.93, except the one for β1 using σx2,y while n = 15. Like in the correctly specified
setting, there are considerably larger coverage rates for the moments βx j ,y and lower coverage
rates for σ 2

y or E(y2) even in the cases n = 30 and n = 15. The explanations for these over-
and undercoverages are the same as for the correctly specified case in Sect. 5.2.1. However, only
the use of covariance, correlation or β for x j and y for j = 2, 3 resulted in narrower confidence
unions as compared to OLS confidence intervals, not the use of other moments. Regarding β j for
j = 2, 3 this is the case for every n, regarding β1 this is only the case for n = 15. We conclude
that the use of external intervals for covariances, correlations or β not only corrects low coverage
rates due to misspecified point values for external moments, but can also lead to narrower (unions
of) confidence intervals.

6. Application

To illustrate the possible benefits of using external information in a linearmodel, we reanalyze
a dataset of Pluck and Ruales-Chieruzzi (2021), who investigated the estimation of premorbid
intelligence based on lexical reading tasks in Ecuador. We will focus on their Study 2. Since the
purpose of this analysis is to illustrate the proposed use of external information, we will only
shortly sketch the theoretical background of the study. For a more detailed description, see Pluck
and Ruales-Chieruzzi (2021). The dataset was downloaded from PsychArchives (Pluck, 2020a).

To quantify the cognitive impairment of patients, it is necessary to have an accurate baseline
estimate observed in the premorbid state (Pluck & Ruales-Chieruzzi, 2021). As psychometric
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Table 4.
Results of the simulations with misspecified external moments for sample size n = 50.

Moments β j
¯̂
βex Var(β̂ex) V̂ar(β̂ex) Cov CovI |CI| |

⋃
CI|

E(x2) β1 1.012 0.440 0.509 0.936 0.936 2.778 2.778
= OLS β2 0.488 0.041 0.049 0.960 0.960 0.865 0.865

β3 2.042 0.751 0.803 0.954 0.954 3.494 3.494
E(y) β1 1.636 0.412 0.376 0.782 0.992 2.397 4.032
E(x2y) β2 0.615 0.031 0.040 0.924 0.984 0.779 1.062
σx2,y β1 0.733 0.307 0.380 0.912 0.954 2.409 2.922

β2 0.627 0.016 0.016 0.864 0.984 0.496 0.747
ρx2,y β1 0.756 0.243 0.380 0.952 0.968 2.401 2.914

β2 0.617 0.019 0.016 0.880 0.996 0.494 0.744
βx2,y β1 0.768 0.271 0.376 0.926 0.960 2.397 2.901

β2 0.610 0.008 0.015 0.948 0.998 0.488 0.735
E(x3y) β3 2.505 0.486 0.622 0.934 0.982 3.095 4.165
σx3,y β1 0.827 0.341 0.413 0.930 0.966 2.502 3.026

β3 2.549 0.116 0.139 0.586 1.000 1.445 2.751
ρx3,y β1 0.830 0.291 0.413 0.956 0.978 2.498 3.025

β3 2.525 0.341 0.138 0.642 0.978 1.434 2.739
βx3,y β1 0.822 0.346 0.412 0.922 0.966 2.499 3.030

β3 2.537 0.092 0.135 0.618 1.000 1.428 2.740
E(y2) β1 1.136 0.512 0.513 0.914 0.944 2.802 3.151

β2 0.558 0.053 0.049 0.894 0.948 0.863 1.011
β3 2.318 0.846 0.790 0.894 0.958 3.477 4.093

σ 2
y β1 0.512 0.894 0.433 0.698 0.828 2.543 3.361

β2 0.626 0.067 0.044 0.754 0.896 0.806 1.029
β3 2.597 1.054 0.697 0.750 0.896 3.234 4.167

The expressions ¯̂
βex, Var(β̂ex), V̂ar(β̂ex),|CI| and |

⋃
CI| are defined in the beginning of Sect. 5.2. The results

for the moment E(x2) are equivalent to the OLS results. Cov is the coverage for the external point value
and CovI symbolizes the coverage for the confidence interval union based on the external interval. Only the
affected coefficients are reported per moment. The true values are β1 = 1, β2 = 0.5 and β3 = 2.

intelligence tests can be too long or cumbersome for elderly people with emerging cognitive
impairments, it is important to have short, yet reliable tests for general intelligence. It is argued in
Pluck and Ruales-Chieruzzi (2021) that vocabulary has a high positive correlation with general
intelligence, hence using short lexical tests could be helpful to estimate general intelligence.
Following Cattell’s classical theory, general intelligence can be divided into fluid and crystallized
intelligence (Cattell, 1963). In this context, the variance reduction property of the externally
informed linear model could provide an asymptotically unbiased estimate with higher precision
than the estimates in Pluck and Ruales-Chieruzzi (2021), because external information about the
correlation of general, fluid or crystallized intelligence and lexical tests is available. Although
the different factors of intelligence are not identical, combining external information about them
leads to a broader and thus more reliable external interval than using information about general
intelligence alone, as the correlation between lexical tasks and fluid or crystallized intelligence
may be lower or higher than for general intelligence.

In their Study 2 Pluck and Ruales-Chieruzzi (2021) used a Spanish, validated seven-subtest
version of theWechslerAdult Intelligence Scale in the 4th edition (WAIS-IV) (Meyers et al., 2013)
to measure general intelligence, as well as three lexical tests, the Word Accentuation Test (WAT)
in Spanish (Del Ser et al., 1997), the Stem Completion Implicit Reading Test (SCIRT) (Pluck,
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2018) and the Spanish Lexical Decision Task (SpanLex) (Pluck, 2020b). The sample consists of
106 premorbid participants without neurological illness. As one participant has not completed
the WAT, this person was excluded from the analysis regarding the WAT score. Simple linear
regression models with the WAIS-IV as dependent and the lexical tests as independent variable,
respectively, were conducted to determine the percentage of explained variance and to test the
predictability of general intelligence through every single test. Therefore, the samplewas randomly
divided into two halves; hence, the net sample size for the linear regression models was 53 as the
other half was used to test the prediction based on the regression models. We compared the widths
of the 95% confidence intervals for the parameters of these regression models to the widths of the
95% confidence unions resulting from externally informed versions of the linear models. Because
the OLS estimation does not account for heteroscedastic errors, which are common in practice,
the standard errors are often too small (White, 1980). To correct for heteroscedasticity, we have
computed robust standard errors of type HC3 using the package sandwich (Zeileis, 2004; Zeileis
et al., 2020). Since the dependent variable is the WAIS-IV, an intelligence test with calibration
sample, we calculated E(y) = 100. In the simulation study using the external information about
ρ was found to lead to high variance reduction. Hence, by reviewing the literature, we identified
the upper bound for the correlation between general intelligence and lexical tasks to be .85.
This value was reported as correlation between WAT and the vocabulary scale of the Wechsler
Adult Intelligence scale in Burin et al. (2000). A lower bound for the correlation between general
intelligence and lexical tasks was found using the meta-analysis of Peng et al. (2019) or the study
of Pluck (2018). Pluck (2018) argued based on a couple of studies that the correlation of general
intelligence and lexical skills is typically higher than .70. In the meta-analysis of Peng et al.
(2019), the reported 95% confidence interval for the correlation of fluid intelligence and reading
is [0.36, 0.39]. To compare the results, both sources were used separately, leading to the lower
bounds 0.4 and 0.7, where 0.4 is very conservative as it is derived from a correlation including
a different variable (fluid intelligence). Together this amounts to the intervals [0.4, 0.85] and
[0.7, 0.85], which are adopted for each of the three lexical tests. The confidence unions were
calculated in the same way as in the simulations using grid search, but with 10001 grip points
instead of 101 and �̂h = 1

n

∑n
i=1 h(z)h(z)T . The details of the analysis can be found in theR script

in the online supplements to this article. The results for the interval [0.7, 0.85] are shown in Table
5 and the results for the interval [0.4, 0.85] are in Table 13 in the supplementary materials. First,
the results of Pluck and Ruales-Chieruzzi (2021) were recalculated, showing no differences from
the results reported in their Study 2. In addition, the corresponding OLS confidence intervals
for the parameters were calculated based on the HC3 estimator (see column five of Table 5).
Then, estimator and standard error intervals, as well as the unions of confidence intervals, were
calculated for the externally informed model. For both [0.4, 0.85] and [0.7, 0.85], the maxima
of all standard error intervals were below the respective standard errors calculated for the OLS
models of Pluck and Ruales-Chieruzzi (2021). This clearly shows the variance reduction property
of the externally informed model and was most pronounced for the SpanLex. For [0.4, 0.85] all
estimation intervals included the OLS estimates and all confidence unions were larger than the
corresponding OLS confidence intervals, indicating that [0.4, 0.85] is very conservative. For [0.7,

0.85], the estimation interval [β̂ j , β̂ j ] included the OLS estimator only for the slope and intercept
of the regression on SCIRT and the one based on the WAT. In this case, however, all confidence
unions overlapped with the OLS-based confidence intervals. Using [0.7, 0.85], for every lexical
test, the widths of the confidence unions from the externally informed model were smaller than
the confidence intervals from the simple linear regression models, for both slopes and intercepts,
except for the intercept ofWAT. Since the prediction interval is calculated based on the distribution
of parameter estimators, this would lead to shorter prediction intervals for a participant’s general
intelligence based on the externally informed model. In addition, the confidence union approach
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Table 5.
Results using ρx,y ∈ [0.7, 0.85] and E(y) = 100.

j Test Pluck and Ruales-Chieruzzi Externally informed estimates

β̂ j s(β̂ j ) C I0.95 [β̂ j , β̂ j ] [s(β̂ j ), s(β̂ j )]
⋃

C I0.95

1 SpanLex 54.61 8.864 [37.06, 72.15] [37.41, 47.15] [2.373, 2.663] [32.06, 51.91]
WAT 62.81 4.701 [53.51, 72.12] [60.02, 62.89] [3.587, 3.612] [52.77, 70.10]
SCIRT 60.81 4.395 [52.11, 69.51] [59.01, 61.28] [3.910, 3.920] [51.14, 69.13]

2 SpanLex 1.821 0.332 [1.163, 2.480] [2.068, 2.430] [0.124, 0.132] [1.818, 2.696]
WAT 2.083 0.240 [1.607, 2.559] [2.041, 2.186] [0.190, 0.191] [1.659, 2.568]
SCIRT 3.292 0.358 [2.583, 4.001] [3.213, 3.393] [0.309, 0.310] [2.592, 4.015]

The third and fourth columns contain the recomputed results of Pluck and Ruales-Chieruzzi (2021) in terms
of the OLS regression coefficients β̂ j , where β̂1 is the intercept and β̂2 is the slope and the robust standard

errors s(β̂ j ) of the coefficients. The (robust) 95% confidence intervals C I0.95 for the parameters were

computed in addition. The estimator interval [β̂ j , β̂ j ], the standard error interval [s(β̂ j ), s(β̂ j )] and the 95%
confidence interval union

⋃
C I0.95 are shown as results of the estimation of the externally informed model.

is more robust than OLS confidence intervals with respect to deviations from the assumed normal
distribution. Taken together, this amounts to possiblymore precise yet robust parameter estimation
and prediction, if the external information is correct.

7. Discussion

In this paper, we show that incorporating external moments into the GMM framework by
using intervals instead of point values can lead to more robust analyses, while a possible variance
reduction can prevent the confidence unions from being too wide.

The results of the simulation study for point values show that the variance reduction can
be considerable, over 70% using external information about covariances, correlations or βx j ,y .
However if the external moments deviate from the true values, the inferences will be biased,
getting worse with increasing sample size. Instead, the use of external intervals often leads to
correct inferences. However, the F-probability couldn’t completely correct the undercoverages
caused by using the moments σ 2

y as well as E(y2), though it slightly improved them. The reason
for these undercoverages is the skewed distribution induced by y2, indicating a limitation of the
distributional robustness in the presence of large deviations from the normal distribution. As these
two moments also showed low variance reduction when used, one should thoughtfully decide on
basis of their relative variance reduction if one wants to use them in small samples. However,
bootstrapmethods, like the bias-corrected accelerated bootstrap (Efron&Tibshirani, 1993), could
be used instead to try to correct the undercoverage.

For small sample sizes, the use of covariances, correlations, and βx j ,y , j = 2, 3, leads to
variance reduction despite the use of external intervals. However, this was mostly the case for
certain entries β j of β in this setting, not for all elements in β. Interestingly, the use of covariances
and βx j ,y , j = 2, 3, still resulted in overcoverage caused by overestimation of the variance. This
means that inferences based on these moments would be more conservative than necessary, yet
they had the highest variance reduction of all the moments tested, providing an interesting link
to the concept of superefficiency (Bahadur, 1964). Further research on the variance estimator is
needed to potentially correct for its overestimation.
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Taken together, the simulation study showed promising results regarding very small sample
sizes as n = 15, and however, one should still be cautious as the estimators are only proved to
be consistent, not unbiased. To be sure that the inference will be valid in the sample at hand, a
simulation to test the adopted scenario, i.e.,model to be estimated anddata set, is advised. InSect. 6,
we showed the applicability of the theoretical results to real data, where for the variable SpanLex
the width of the confidence unions was significantly smaller than the width of the corresponding
point-CI, if an appropriately small external interval is used. This shows the usefulness of adopting
an externally informed model for applied problems.

A possible limitation of GMM is the assumption of the covariance matrix of the external
moments being positive definite, which excludes distributions for which the required covariance
matrix does not exist, e.g., the Cauchy distribution. Nevertheless, in many psychological applica-
tions the variables have a constrained range of values, so that at least the existence of the covariance
matrix can be assumed. In general, the applicability of the method is not overtly limited by its
assumptions. Another limitation is that the true value of the external moment must be within the
external interval. However, this identifiability assumption, or an analogous assumption, exists in
other approaches, and it is much weaker than point identifiability. Thus, a more robust use of
external information is possible, up to using the full range of possible values, which would defi-
nitely lead to a valid, more robust, but also very conservative inference. The construction of the
external moment interval in Sect. 6 was based on a rough, subjective approximation. The question
of how to construct the external intervals requires further research. In particular, further links to
existing techniques for eliciting intervals and preventing overconfidence bias would be important.

An application of the theory to generalized linear models or multi-level models is of inherent
interest for psychological research, especially as Corollary 1 sets the foundation for research on
more complex models. At first glance, the results appear to be in conceptional “conflict” with
multi-level-models, since these often assume the random effects to be normally distributed and
in this case there is no bounded interval, that includes the true parameter. However, even in these
models there are fixed (hyper-)parameters one could know bounds for, and hence, it would be
interesting for future research to analyze the behavior of these models in the external GMM
framework. With respect to the limitation of robustness found in the simulation study, it would be
interesting to investigate how robust the estimators are as a function of the length of the external
interval. Finally, research on (the properties of) significance tests based on the use of an external
intervals would be of great interest.
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