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FITTING AND TESTING LOG-LINEAR SUBPOPULATION MODELS WITH KNOWN
SUPPORT
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In this paper, the support of the joint probability distribution of categorical variables in the total pop-
ulation is treated as unknown. From a general total population model with unknown support, a general
subpopulation model with its support equal to the set of all observed score patterns is derived. In max-
imum likelihood estimation of the parameters of any such subpopulation model, the evaluation of the
log-likelihood function only requires the summation over a number of terms equal to at most the sample
size. It is made clear that the parameters of a hypothesized total population model are consistently and
asymptotically efficiently estimated by the values that maximize the log-likelihood function of the corre-
sponding subpopulationmodel. Next, new likelihood ratio goodness-of-fit tests are proposed as alternatives
to the Pearson chi-square goodness-of-fit test and the likelihood ratio test against the saturated model. In a
simulation study, the asymptotic bias and efficiency of maximum likelihood estimators and the asymptotic
performance of the goodness-of-fit tests are investigated.

Key words: categorical variables, log-linear model, pseudo-likelihood, normalizing constant, Pearson chi-
square test.

In practical applications of log-linear models (Agresti, 2013), the support of the joint proba-
bility distribution of the categorical variables in the population is usually assumed to be the set of
all theoretically possible score patterns. Assuming the support to be equal to a proper subset of the
set of all theoretically possible score patterns would result in a hybrid deterministic-probabilistic
model. Assuming the support to be equal to the set of all theoretically possible score patterns
makes the model completely probabilistic and is sensible in practice, where the true support is
almost always unknown. However, when the number of categorical variables is large, the use of
the all-inclusive support assumption has two well-known negative consequences.

The first negative consequence is that inmaximum likelihood estimation of themodel parame-
ters the log-likelihood function cannot be evaluated efficiently because it requires the summation of
a very large number of terms. To avoid this computational problem, maximum pseudo-likelihood
methods have been proposed (Besag, 1975). Under regularity conditions, model parameters are
consistently estimated using maximum pseudo-likelihood methods (Comets, 1992; Mase, 1995,
2000; Chatterjee, 2007; Mukherjee, 2016). A disadvantage of pseudo-likelihood methods, how-
ever, is that large sample sizes are needed to obtain stable parameter estimates (Geyer, 1991;
Geyer & Thompson, 1992; Guyon & Künsch, 1992). Although regularization methods can be
used in the case of a small sample size (Höfling & Tibshirani, 2009; Ravikumar et al., 2010), for-
mal inference is not available in using pseudo-likelihood methods to estimate the parameters of
a log-linear model. The pseudo-likelihood deviance of a log-linear model is not (asymptotically)
chi-square distributed.

The second negative consequence is that Pearson’s asymptotic chi-square goodness-of-fit
test and the usual likelihood ratio test of the assumed population model against the saturated
model cannot be validly applied due to a too big difference in size between the assumed support
and the set of all observed score patterns. If for many theoretically possible score patterns the
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sample frequency is zero, then the Pearson statistic and the likelihood ratio statistic are far from
chi-square.

The all-inclusive support assumption, however, might have a third negative consequence. If
the size of the unknown true support is much smaller than the size of the assumed all-inclusive
support, then the model parameters might be estimated less accurately. Consider, for example, the
situation of 20 categorical variables with each 3 categories, which is not uncommon in psycho-
logical testing, then the number of theoretically possible score patterns is 320 = 3, 486, 784, 401.
It might be that many of these score patterns have zero probability. In that case, the model assigns
positive probability to many score patterns that actually have zero probability. Such a misspec-
ification of the support of the probability distribution of the categorical variables might have an
adverse effect on the quality of the model parameter estimates.

In this paper, therefore, no assumption is made about the support of the joint probability
distribution of the categorical variables. The position is adopted that the true support is unknown
and not necessarily equal to the set of all theoretically possible score patterns. It is thought possible
that some theoretically possible score patterns are not observable at all and are thus structurally
missing. Although the exact support in the population is treated as unknown, it is obvious that the
true support is a subset of the set of all theoretically possible score patterns and a superset of the
set of all observed score patterns in the sample.

Fundamental to the present development is the observation that if observed score patterns are
obtained by random sampling from a population, then they are also obtained by random sampling
from any subpopulation defined by a superset of the set of all observed score patterns. The smallest
such subpopulation is the subpopulation defined by the set of all observed score patterns. In this
smallest subpopulation, the support of the joint probability distribution of the categorical variables
is exactly equal to the set of all observed score patterns.

In this paper, therefore, from a general model for categorical variables in the total population
with unknown support, a general model for the categorical variables in the subpopulation defined
by the set of all observed score patterns is derived. Next, maximum likelihood estimation of the
parameters of such subpopulation models is discussed. An advantage of maximum likelihood
estimation of the parameters of any such subpopulation model is that the evaluation of the log-
likelihood function only requires the summation of a number of terms equal to at most the sample
size. In addition, it is made clear that the parameters of a hypothesized total population model are
consistently and asymptotically efficiently estimated by the values that maximize the likelihood
function of the corresponding subpopulation model.

Although Pearson’s chi-square test and the likelihood ratio test can now be used to test the
goodness of fit of the subpopulation model (against a saturated subpopulation model), these tests
are still not applicable if many of the observed score patterns have a low frequency. Therefore,
for testing the goodness of fit of the subpopulation model, new likelihood ratio tests are pro-
posed. One of these tests is a generalization of one of Andersen’s likelihood ratio tests for the
Rasch model (Andersen, 1973). In addition to goodness-of-fit testing, some attention is paid to
out of sample testing and cross-validation. To investigate the asymptotic bias and efficiency of
maximum likelihood estimators of the parameters of the subpopulation model and the asymptotic
performance of the goodness-of-fit tests, a simulation study is carried out.

1. Models for Categorical Variables

1.1. A General Model

LetY = (Y1, . . . ,Yk)′ be a random vector of k categorical variables and y = (y1, . . . , yk)′ be
a realization, where yi ∈ {0, 1, . . . ,mi }, for i ∈ {1, 2, . . . , k}. The set of all theoretically possible
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score patterns is the k-ary Cartesian product given by A = ∏k
i=1{0, 1, . . . ,mi }. The number of

elements of A is
∏k

i=1(mi + 1) and exponentially increases with k.
The probability that Y takes on the value y for a randomly selected individual from the

population is denoted by P(Y = y), for all y ∈ A, and equals the relative frequency of y in the
population. It is throughout assumed that the population and any subpopulation are infinite. In
practice, it is usually assumed that P(Y = y) > 0, for all y ∈ A. It is, however, possible that
P(Y = y) = 0, for some y ∈ A. Many probability models for categorical variables can now be
generalized to the form given by

P(Y = y) = 1S(y)exp{ f (y)}
∑

y∈S
exp{ f (y)}

, for all y ∈ A, (1)

where S is the unknown true support, that is, the smallest subset of A for which
∑

y∈S P(Y =
y) = 1, 1S(y) is an indicator function, and f (y) is a parametric function of y. Note that the support
S is the subset of A that only contains all observable y, that is S = {y ∈ A | P(Y = y) > 0}.

The most general model of the form given by Eq.1 is the saturated model. In the saturated
model,

f (y) = βy, for all y ∈ S, (2)

where parameter βy is a real constant, for all y ∈ S. The arbitrary constraint
∑

y∈S βy = 0 can be
used for identification. The number of independent parameters of the saturated model equals the
number of elements of S minus 1.

1.2. Special Cases

Using dummy variables, the saturated model can be reparameterized in terms of all possible
associations among the categorical variables Y1, . . . ,Yk . The reparameterized saturated model
has many special cases. A whole family of hierarchical special cases is the set of models where
associations of higher order than r ∈ {1, 2, . . . , k − 1} are assumed to be absent. A well-known
member of this family is the two-way association model. Let xis = 1 if yi = s and xis = 0
otherwise, for s = 1, . . . ,mi , then the two-way association model in terms of dummy scores is
given by

f (y) =
∑

i

β ′
ixi +

∑

i< j

x′
i�i jx j , (3)

whereβ i = (βi1, . . . , βimi )
′ is a vector ofmain effect parameters, xi = (xi1, . . . , ximi )

′ is a vector
of dummy scores, and �i j = [ σi jst ] is a mi × m j matrix of two-way association parameters,
for all i and j . If mi = 1, for all i , then the two-way association model specializes to the Ising
model (Ising, 1925). If �i j = �i��′

j , for all i < j , where �i is an mi × q matrix, for all
i , and � is a diagonal matrix of order q ≤ k, then the two-way association model specializes
to the log-multiplicative association (LMA) model (Anderson & Yu, 2007; Anderson, 2013). If
�i j = siu′

i�u j s′j , for all i < j , where si = (1, . . . ,mi )
′ and ui = (ui1, . . . , uiq)′ is a vector of

fixed binary weights, for all i , and � is a q × q symmetric matrix, then the two-way association
model specializes to the conditional multinormal partial credit model (Hessen, 2012). Another
special case of the reparameterized saturatedmodel, which is not amember of the discussed family
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of hierarchical models, is the extended partial credit model (Masters, 1982; Agresti, 1993). In the
extended partial credit model, all associations of the same order are assumed to be equal so that,

f (y) =
∑

i

β ′
ixi +

k∑

r=2

σr pr (1′y), (4)

where σr is an r th-order association parameter, and pr (1′y) = (r !)−1∏r−1
v=0(1

′y − v) is an r th-
order polynomial function of 1′y. If mi = 1, for all i , then the extended partial credit model
specializes to the extended Rasch model (Rasch, 1960, 1966; Tjur, 1982; Cressie & Holland,
1983; Follmann, 1988; Hessen, 2011).

Item responsemodels inwhich the latent variables are assumed to follow a specific parametric
distribution in the population of examinees are not special cases of the model in Eq.1. These
models do not require the summation of a very large number of terms and can be fitted to data
using numerical integration techniques.

1.3. A General Subpopulation Model

Any subset of the true support S defines a subpopulation of individuals. Let B be an arbitrary
subset of S. The following theorem gives the general form of the probability that Y = y, for all
y ∈ A, for a randomly selected individual from the subpopulation defined by B.

Theorem 1. If the probability distribution of Y in the total population is of the form given by
Eq.1, then the probability distribution of Y in the subpopulation defined by B is equal to

P(Y = y | B) = 1B(y)exp{ f (y)}
∑

y∈B
exp{ f (y)}

, for all y ∈ A. (5)

Proof. If a score pattern is randomly sampled from the total population, then the probability of
randomly sampling a score pattern from the set B is given by

P(B) =
∑

y∈B
P(Y = y). (6)

Note that P(B) = 1 if and only if B = S. Next, the joint probability distribution of Y and B is
given by

P(Y = y, B) = 1B(y)P(Y = y), for all y ∈ A, (7)

where 1B(y) is an indicator function. Consequently, the conditional probability of Y given B is
given by

P(Y = y | B) = 1B(y)P(Y = y)
∑

y∈B
P(Y = y)

, for all y ∈ A. (8)

Substitution from Eq.1 into Eq.8 gives Eq.5. This completes the proof. ��
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Equation5 is the general form of the conditional probability distribution of Y given the
subpopulation defined by B. It is important to see that this general form is implied by the total
population model and that it contains as a special case the total population model because S is a
subset of itself. This means that if the parametric function f (y) holds true for the total population,
then it also holds true for the subpopulation defined by B, with the same set of parameters. The
general subpopulation model in Eq.5, however, does not imply the total population model in
Eq.1. The general subpopulation model is more general than the total population model and only
specializes to the total population model in Eq.1 if also

P(Y = y | B̄) = 1B̄(y)exp{ f (y)}
∑

y∈B̄
exp{ f (y)}

, for all y ∈ A, (9)

where B̄ = S\B is the relative complement of B in S, and

P(B) = 1 − P(B̄) =

∑

y∈B
exp{ f (y)}

∑

y∈S
exp{ f (y)} , (10)

because then P(Y = y) = P(Y = y | B)P(B) + P(Y = y | B̄)P(B̄) equals Eq.1.

2. Maximum Likelihood Estimation

To be able to practically apply a special case of the general subpopulation model in Eq.5, the
set B must be specified. In practice, it is usually assumed that S = A, so that B can be set equal
to A or to a proper subset of A. Often, however, S is unknown and might be a proper subset of A.
All that is known about S from the sample data is that it contains all observed score patterns. Let
O be the set of all observed score patterns in the sample, that is, O = {y ∈ S |ny > 0}, where ny
is the frequency of y in the sample. Note that O ⊆ S ⊆ A and that O defines the subpopulation
of individuals with score patterns that have been observed in the sample. If B = O , then the
subpopulation model in Eq.5 has known support and no assumption is made about the support
of the total population model in Eq.1. So, in practice B can be set equal to O but if a practical
situation gives rise to setting B equal to another proper subset of A, it stands to reason to choose
B such that it at least includes O .

Since the parameters of the subpopulation model in Eq.5 are exactly the same parameters
as the parameters of the total population model in Eq.1, the parameters of a hypothesized total
population model can be estimated by fitting a subpopulation model defined by B ⊇ O . Let
n =∑y∈O ny be the size of the random sample from the total population and let θ be the vector
of generic parameter values. Assuming independence of observations, the likelihood function
under the model in Eq.5 is given by

LB = κ−n
B exp

⎧
⎨

⎩

∑

y∈O
ny f (y; θ)

⎫
⎬

⎭
, (11)

where κB = ∑
y∈B exp { f (y; θ)}. The calculation of κB requires the summation over as many

terms as there are elements in B. If B = A, then κB is the sum of
∏k

i=1(mi + 1) terms and the
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computational efficiency rapidly decreases with k andm1, . . . ,mk . If B = O , then the calculation
of κB only requires summation over at most n terms.

Now, let θ0 be the vector of true parameter values and let �̂B be the vector of maximum
likelihood estimators that maximizes LB with respect to θ . It is well-known that under regularity
conditions �̂B converges in probability to θ0, as n → ∞, and

√
n(�̂B − θ0) converges in

distribution to the multivariate normal distribution with mean vector 0 and covariance matrix
I−1
B (θ0), where

IB(θ0) =
⎡

⎣
∑

y∈B

∂P(Y = y | B)

∂θa
· ∂P(Y = y | B)

∂θb
· 1

P(Y = y | B)

∣
∣
∣
∣θ0

⎤

⎦ (12)

is the Fisher information matrix in the subpopulation defined by B, as n → ∞. So, under
regularity conditions, the asymptotic variance of the ath element of �̂B equals the Rao-Cramér
lower bound 1

n {I−1
B (θ0)}a,a . Sufficient regularity conditions for the asymptotic properties of �̂B

are: (1) any two different values of θ do not have the same P(Y = y | B), for all y ∈ B (theoretical
identification), (2) B is independent of θ , (3) θ0 is not on the boundary of the parameter space,
(4) P(Y = y | B) > 0 at θ0, for all y ∈ B, (5) P(Y = y | B) has continuous first-order
partial derivatives with respect to θ in a neighborhood of θ0, for all y ∈ B, and (6) the Jacobian
matrix whose rows are given by ∂P(Y = y | B)/∂θ , for all y ∈ B, has full rank (equal to the
length of θ) at θ0. See also Agresti (2013, p. 592) and Lehmann (1999, pp. 499–501), for these
regularity conditions, and Agresti (2013, ch. 16) and Lehmann and Casella (1998, ch. 6), for
proofs. If sufficient regularity conditions are satisfied and �̂B is unique, then it is consistent,
asymptotically normal, and asymptotically efficient given B. Note that if B ⊃ S then regularity
condition (4) is not satisfied. If, however, B = O , then regularity condition (4) is always satisfied.

If, under sufficient regularity conditions, B is a fixed subset of S and the sample size tends
to infinity, then the elements of �̂B are in general consistent but only asymptotically efficient
given S if B = S. The following theorem gives conditions under which the elements of �̂B are
in general asymptotically efficient given S.

Theorem 2. If B is a subset of S and includes the random set O, then, under sufficient regularity
conditions,

√
n(�̂B − θ0) converges in distribution to the multivariate normal distribution with

mean vector 0 and covariance matrix I−1
S (θ0), as n → ∞.

Proof. If n < |S|, then O cannot be S, where |S| is the cardinality of S. On the other hand,
if n ≥ |S|, then O might be S. If O = S, then B = S and �̂B = �̂S . If �̂B = �̂S , then
|√n(�̂B − θ0) − √

n(�̂S − θ0)| = √
n|�̂B − �̂S| < ε, for all ε > 0. As a consequence,

P(O = S) ≤ P(�̂B = �̂S) ≤ P(
√
n|�̂B − �̂S| < ε), where the elements of both �̂B and �̂S

are discrete random variables. So, if P(O = S) → 1, as n → ∞, then the absolute difference
between

√
n(�̂B − θ0) and

√
n(�̂S − θ0) converges in probability to zero. The set O equals S

if and only if ny > 0, for all y ∈ S, where ny is a realization of random frequency Ny. If the
joint probability that Ny > 0, for all y ∈ S, tends to one, as n → ∞, then P(O = S) → 1. The
joint probability that Ny > 0, for all y ∈ S, is one minus the probability that Ny = 0, for at least
one y ∈ S, and therefore, this joint probability is greater than or equal to 1 −∑y∈S P(Ny = 0).
Ny is a binomial random variable with binomial parameters n and P(Y = y), for all y ∈ S.
It then follows that P(O = S) ≥ 1 −∑y∈S{1 − P(Y = y)}n , from which it can be seen that

P(O = S) → 1, as n → ∞. So, the absolute difference between
√
n(�̂B−θ0) and

√
n(�̂S−θ0)

converges in probability to zero, as n → ∞. Consequently,
√
n(�̂B−θ0) converges in distribution

to the asymptotic distribution of
√
n(�̂S − θ0), as n → ∞, and this asymptotic distribution is

multivariate normalwithmean vector 0 and covariancematrix I−1
S (θ0). This completes the proof.��
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From the result in Theorem 2, it can now be concluded that under sufficient regularity con-
ditions, the elements of �̂B , where O ⊆ B ⊆ S, are in general asymptotically efficient as the
sample size tends to infinity. Fromwhat follows, however, it is clear that the speed of convergence
of the estimators in �̂B is lower than or equal to the speed of convergence of the estimators in
�̂S . First, note that it follows from Eq.11 that

LB = (κB/κS)
−nLS, (13)

where κB/κS = P(B). It is obvious that if P(B) converges to 1, as n → ∞, then LB converges
to LS , as n → ∞. Now, since P(B) equals

∑
y∈O P(Y = y) +∑y∈C P(Y = y), where C is the

complement of O relative to B, P(B) converges to
∑

y∈S P(Y = y) = 1, as n → ∞, because
P(O = S) → 1, as n → ∞. So, LB converges to LS and the values that maximize LB tend to
the values that maximize LS , as n → ∞.

The general subpopulation model in Eq.5 can be rewritten as the log-linear model

lnμy = δ + f (y; θ), for all y ∈ B, (14)

where μy = nP(Y = y | B) and δ = ln(n/κB). In the case of a standard log-linear subpopulation
model, the maximum likelihood estimates of the parameters of the model can be obtained using
iterative weighted least squares (Charnes et al., 1976). The Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm (Fletcher, 1987), on the other hand, can be used to obtain the maximum
likelihood estimates of the parameters of both standard and non-standard log-linear subpopulation
models.

3. Goodness-of-Fit Tests

3.1. Pearson’s Chi-Square and Likelihood Ratio

The observed frequencies of score patterns in B are realizations of random frequencies that
can be assumed to jointly follow a conditional multinomial distribution given B with parameters
n and P(Y = y | B), for all y ∈ B. Therefore, to assess the goodness of fit of the log-linear
model of interest in the subpopulation defined by fixed set B, where O ⊆ B ⊆ S, the Pearson
chi-squared test might be appropriate. The observed value of Pearson’s statistic for testing the
model in Eq.5 is given by

∑

y∈B

(ny − nπ̂y|B)2

nπ̂y|B
, (15)

where π̂y|B , for all y ∈ B, is the estimate of the conditional probability in Eq.5, under a special
case. Under any identified model in the subpopulation defined by the fixed set B, the Pearson
statistic is asymptotically chi-square distributed with the degrees of freedom equal to |B|−1− e,
where e is the number of free parameters in the hypothesized subpopulation model.

In the case of fixed set B, the asymptotic sampling distribution of the Pearson statistic in
Eq.15 can be conceived of as follows. Imagine that infinitely many random samples of size n
have been drawn from the total population. The set B can be selected in advance or a superset
of the set of all observed score patterns in one of the random samples is taken as B. Observed
score patterns that are not in the selected fixed set B are removed from all random samples. New
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score patterns can be randomly sampled from the total population, and if these new randomly
sampled score patterns belong to B, they can be added to the random samples until all samples are
of size n. Subsequently, the same hypothesized special case of the general subpopulation model
in Eq.5 is fitted to all these random samples of size n. Next, the observed value of the Pearson
statistic in Eq.15 is calculated for all these random samples. The chi-square distribution with its
degrees of freedom equal to |B| − 1 − e is now the asymptotic sampling distribution to which
the frequency distribution of the observed sample values of the Pearson statistic approaches, as n
tends to infinity.

An alternative goodness-of-fit test is the likelihood ratio test of the subpopulation model
against the saturated subpopulationmodel. The likelihood function for the saturated subpopulation
model is given by

L∗
B =

∏

y∈B
π
ny
y|B, (16)

where πy|B = 1B(y)exp(βy)/
∑

y∈B exp(βy), for all y ∈ A. The maximum likelihood estimate of
πy|B is ny/n, for all y ∈ B. So, the maximum of the log-likelihood function under the saturated
subpopulation model is given by

l̂∗B =
∑

y∈B
ny ln ny − n ln n. (17)

The observed value of the likelihood ratio statistic is then given by

2
(
l̂∗B − ln L̂ B

)
, (18)

where L̂ B is the maximum of the likelihood function under the particular subpopulation model
fitted to the data. Under any identified model for the subpopulation defined by the fixed set B, the
likelihood ratio statistic in Eq.18 has the same asymptotic sampling distribution as the Pearson
chi-square statistic in Eq.15.

In the case of random set B, we have the following result for the Pearson and likelihood
ratio statistics. Since P(O = S) → 1, as n → ∞, also P(B = S) → 1, as n → ∞, and
each of the two statistics given B converges in probability to the corresponding statistic given
S. As a consequence, the distribution of each statistic given B converges to the distribution of
the corresponding statistic given S. Since the limiting distribution of each statistic given S is a
chi-square distribution with |S| − 1 − e degrees of freedom, both statistics given B converge in
distribution to the chi-square distribution with |S| − 1 − e degrees of freedom.

3.2. New Likelihood Ratio Tests

If many observed score pattern frequencies are low, then the Pearson statistic and the like-
lihood ratio statistic are known to be far from chi-squared and thus not applicable. For such a
practical situation, the likelihood ratio tests that are presented in this section might be more useful.

To be able to test a special case of the general subpopulation model in Eq.5 using a likelihood
ratio test, a more general model is needed. In what follows, two generalizations of the subpopula-
tion model in Eq.5 are presented and it is shown how they can be used in a likelihood ratio test of
a particular subpopulation model. The two generalizations are obtained by imposing restrictions
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on a reformulation of the general form of the likelihood function LB . The general form of LB is
given by

LB =
∏

y∈O
{P(Y = y | B)}ny =

∏

y∈O
{P(Y = y)}ny

⎧
⎨

⎩

∑

y∈B
P(Y = y)

⎫
⎬

⎭

n . (19)

Now, in the following theorem, a reformulation of the general form of LB is given in terms of the
elements of a partition of the fixed set B.

Theorem 3. If B1, . . . , Bg are the elements of a partition of B, then the general likelihood function
in Eq.19 equals

LB =
g∏

p=1

∏

y∈Op

{P(Y = y | Bp)P(Bp | B)}ny , (20)

where O1, . . . , Og are the elements of a partition of O such that Op ⊆ Bp, for all p, and

P(Y = y | Bp) = P(Y = y, Bp)

P(Bp)
= 1Bp (y)P(Y = y)

∑

y∈Bp

P(Y = y)
, for all y ∈ A, (21)

is the conditional probability distribution of Y given the subpopulation defined by Bp, for all p,
and

P(Bp | B) =
∑

y∈Bp
P(Y = y)

∑
y∈B P(Y = y)

, for all p. (22)

Proof. Substitution from
∏

y∈O{P(Y = y)}ny = ∏g
p=1

∏
y∈Op

{1Bp (y)P(Y = y)}ny and n =
∑g

p=1

∑
y∈Op

ny into the right-hand side of Eq.19 yields

LB =
g∏

p=1

∏

y∈Op

{
1Bp (y)P(Y = y)
∑

y∈B P(Y = y)

}ny

. (23)

Next, multiplying both the numerator and the denominator in the right-hand side of Eq.23 by∑
y∈Bp

P(Y = y) gives Eq.20. This completes the proof. ��
The elements of the partition can be chosen inmany different ways. One simpleway is to randomly
assign score patterns in B to B1, . . . , Bg . Alternatively, the elements of the partition can be selected
on the basis of the values of a particular function of y. For instance, one general choice of the
pth element is Bp = {y ∈ B | z = cp}, for p = 1, . . . , g, where the elements of the vector
z are the elements of a nonempty subset of {y1, y2, . . . , yk} and c1, c2, . . . , cg are the distinct
possible values of z. Example choices of z are y2 and (y1, y3)′. A second general choice of the
pth element is Bp = {y ∈ B |w′y = tp}, for p = 1, . . . , g, where each element of the vector w
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is an element of {0, 1} and t1, t2, . . . , tg are the distinct possible values of w′y. Example choices
of w are (1, 1, 0, . . . , 0)′, in which case w′y = y1 + y2, and the vector of ones, in which case
w′y =∑i yi . A third general choice of the pth element is Bp = {y ∈ B |dp−1 ≤ w′y < dp}, for
p = 1, . . . , g, where d0, d1, . . . , dg are percentiles of w′y in B.

A first generalization of the general subpopulation model in Eq.5 is now given by the model
in which it is assumed that

P(Y = y | Bp) = 1Bp (y)exp{ f (y; θp)}
∑

y∈Bp

exp{ f (y; θp)} , for all y ∈ A and p, (24)

where P(Bp | B) is unrestricted and treated as a parameter, for all p. This generalization specializes
to the subpopulation model in Eq.5, if θp = θ and

P(Bp | B) =
∑

y∈Bp
exp{ f (y; θ)}

∑
y∈B exp{ f (y; θ)} , for all p. (25)

Under this generalization, the likelihood function in Eq.20 equals

LB =
g∏

p=1

L p · {P(Bp | B)
}n p , (26)

where n p =∑y∈Op
ny and

L p =
∏

y∈Op

{
P(Y = y | Bp)

}ny = exp

⎧
⎨

⎩

∑

y∈Op

ny f (y; θp)

⎫
⎬

⎭
/

⎡

⎣
∑

y∈Bp

exp{ f (y; θp)}
⎤

⎦

n p

(27)

is the likelihood function for the subpopulation defined by Bp, for all p. The values that maximize
L p, for all p, can be found by fitting the log-linear model

lnμy = δp + f (y; θp), for all y ∈ B and p, (28)

where μy = n p P(Y = y | Bp) and δp = ln
[
n p/

∑
y∈Bp

exp{ f (y; θp)}
]
. Note that the likelihood

function in Eq.26 under the first generalization is a product of the likelihood functions L1, . . . , Lg

and the likelihood function
∏g

p=1

{
P(Bp | B)

}n p . Sincenoneof these likelihood functions depends
on the parameters of the other likelihood functions, the likelihood function in Eq. 26 under the first
generalization can be maximized by maximizing each of these likelihood functions separately.
This independence of likelihood functions can easily be seen by taking the first derivative of the
logarithm of the right-hand side of Eq.26 with respect to either θp or the vector π B = {P(B1 |
B), . . . , P(Bg | B)}′. The resulting gradient is independent of all other parameter vectors. The
conditional probabilities P(B1 | B), . . . , P(Bg | B) are recognized as multinomial probabilities
and then it follows from a well known result for multinomial probabilities that the maximum
likelihood estimate of P(Bp | B) equals n p/n, for all p.

Let �̂p be the vector of maximum likelihood estimators that maximizes L p with respect to
θ , for all p, and let the vector N/n = (N1/n, . . . , Ng/n)′ be the vector of maximum likelihood
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estimators of the elements of π B . Under regularity conditions, the elements of �̂p, for all p,
and N/n are consistent estimators,

√
n p(�̂p − θ0) is asymptotically multivariate normal with

mean vector 0 and covariance matrix I−1
p (θ0) (the inverse of the Fisher information matrix in the

subpopulation defined by Bp), for all p, and
√
n(N/n−π B) is asymptotically multivariate normal

withmeanvector0 and covariancematrix
B = diag(π B)−π Bπ ′
B . Since the vectors �̂1, . . . , �̂g

and N/n are mutually independent, their joint distribution is asymptotically multivariate normal
with mean vector 0 and a block diagonal covariance matrix, where the main-diagonal blocks
are I−1

1 (θ0), . . . , I−1
g (θ0), and 
B . According to a fundamental result by Wilks (1938), it then

follows that under a hypothesized regular special case of the subpopulation model in Eq.5, the
value given by

− 2 ln

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L̂ B
g∏

p=1
L̂ p ·( n p

n

)n p

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (29)

where L̂ B is the maximum of LB in Eq.11 and L̂ p is the maximum of L p in Eq.27, for all p, is
the observed sample value of a random variable having an asymptotic chi-square distribution with
(g − 1)(e + 1) degrees of freedom. Note that the denominator in Formula 29 is the maximum of
the likelihood function in Eq.26 under the first generalization of the hypothesized subpopulation
model, and the numerator is the maximum of this same likelihood function if the parameter space
is restricted by the hypothesized subpopulation model.

A second generalization of the general subpopulation model in Eq.5 is the special case of
the first generalization for which θp = θ , for all p, so that

P(Y = y | Bp) = 1Bp (y)exp{ f (y; θ)}
∑

y∈Bp

exp{ f (y; θ)} , for all y ∈ A and p, (30)

and P(Bp | B) is again unrestricted, for all p. This generalization specializes to the general
subpopulation model in Eq.5, if Eq. 25 is satisfied. Under this generalization, the likelihood
function in Eq.20 is given by

LB = LC

g∏

p=1

{
P(Bp | B)

}n p , (31)

where

LC =
g∏

p=1

L p = exp

⎧
⎨

⎩

∑

y∈B
ny f (y; θ)

⎫
⎬

⎭

g∏

p=1

⎡

⎣
∑

y∈Bp

exp{ f (y; θ)}
⎤

⎦

−n p

(32)

is a total likelihood function for the subpopulations defined by B1, . . . , Bg . The values that
maximize LC can be found by fitting the log-linear model

lnμy = δp + f (y; θ), for all y ∈ B and p, (33)
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where μy = n p P(Y = y | Bp) and δp = ln
[
n p/

∑
y∈Bp

exp{ f (y; θ)}
]
.

Let �̂C be the vector of maximum likelihood estimators that maximizes LC with respect to
θ . Under regularity conditions, the elements of �̂C are consistent estimators and

√
n(�̂C − θ0)

is asymptotically multivariate normal with mean vector 0 and covariance matrix I−1
C (θ0), where

IC (θ0) = −E

[
∂2 ln LC

∂θ2

∣
∣
∣
∣θ0

]

.

Since the vectors �̂C andN/n are mutually independent, their joint distribution is asymptotically
multivariate normal with mean vector 0 and a block diagonal covariance matrix, where the main-
diagonal blocks are I−1

C (θ0) and 
B . According to the fundamental result by Wilks (1938), it
now follows that under a hypothesized regular special case of the general subpopulation model
in Eq.5, the value given by

− 2 ln

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L̂ B

L̂C

g∏

p=1

( n p
n

)n p

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (34)

where L̂ B is again the maximum of LB in Eq.11 and L̂C is the maximum of LC in Eqs. 31 and 32,
is the observed sample value of a random variable having an asymptotic chi-square distribution
with g − 1 degrees of freedom. Note that the denominator in Formula 34 is the maximum of the
likelihood function in Eq.31 under the second generalization of the hypothesized model, and the
numerator is the maximum of this same likelihood function if the parameter space is restricted
by the hypothesized subpopulation model.

Instead of a hypothesized special case of the general subpopulation model in Eq.5, its second
generalization in Eq.30 can be tested against its first generalization in Eq.24 using a likelihood
ratio test. According to the fundamental result by Wilks (1938), it follows that under the second
generalization of the hypothesized regular special case, the value given by

− 2 ln

⎛

⎜
⎜
⎜
⎝

L̂C
g∏

p=1
L̂ p

⎞

⎟
⎟
⎟
⎠

(35)

is the observed sample value of a random variable having an asymptotic chi-square distribution
with (g − 1)e degrees of freedom. Note that the likelihood ratio in Formula 35 is obtained by
dividing the maximum of the likelihood function in Eq.31 by the maximum of the likelihood
in Eq.26. The denominator in Formula 35 is the maximum of the likelihood function in Eq.26
under the first generalization of the hypothesized subpopulation model, and the numerator is the
maximum of this same likelihood function if the parameter space is restricted by the second
generalization of the hypothesized subpopulation model. If B = A and mi = 1, for all i , f (y) is
given by Eq.4, and Bp = {y ∈ A |1′y = p}, for p = 1, . . . , k − 1, then the likelihood ratio test
for which the value of the observed sample statistic is given by Formula 35 coincides with one of
Andersen’s likelihood ratio tests for the Rasch model (Andersen, 1973; Rasch, 1960, 1966).

In the case of random B, the three likelihood ratio statistics with the observed sample values
in Formulas 29, 34, and 35 have the same limiting chi-square distributions as in the case of fixed
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B because the degrees of freedom of these limiting chi-square distributions are independent of
|B| and only depend on g and e.

3.3. Out-of-Sample Testing and Cross-Validation

Let O be the set of observed score patterns in a training sample of size n and let O0 be the
set of observed score patterns in a validation sample of size n0. The training sample is assumed
to be randomly sampled from the subpopulation defined by B ⊇ O and the validation sample
is assumed to be randomly sampled from the subpopulation defined by B0 ⊇ O0. Let ny be the
observed frequency of score pattern y in the training sample, and let ny0 be the observed frequency
of y in the validation sample. Let θ̂ be the value of θ that maximizes the likelihood function LB

in the training sample, then the predicted frequency of score pattern y in the validation sample, is
given by

n̂y = n0
exp{ f (y; θ̂)}
∑

y∈B0
exp{ f (y; θ̂)}

, for all y ∈ B0, (36)

where the fraction on the right-hand side is an estimate of P(Y = y | B0), for all y ∈ B0.
To measure the validity of f (y; θ̂) in the subpopulation defined by B0, the mean-squared error
given by

∑
y∈B0(ny0 − n̂y)2/|B0|, where |B0| is the cardinality of B0, can be used. An alternative

estimate of θ , however, is given by the value of θ that maximizes the likelihood function LB∪B0
in the training sample. Let θ̄ be the value of θ that maximizes LB∪B0 in the training sample, then
the predicted frequency of score pattern y ∈ B0 in the validation sample, can alternatively be
obtained by replacing θ̂ with θ̄ and B0 with B ∪ B0 in the right-hand side of Eq.36.

To obtain insights on how a special case of the general subpopulation model in Eq.5 will
generalize to an independent data set when no validation data set is available, g-fold cross-
validation can be employed using the elements B1, . . . , Bg of a partition of B as g folds. Since
the result in Theorem 1 only requires that B ⊆ S, the result of Theorem 1 also applies to the
training subset Dp = B\Bp, that is,

P(Y = y |Dp) = 1Dp (y)exp{ f (y; θ)}
∑

y∈Dp

exp{ f (y; θ)}
, for all y ∈ A. (37)

Let θ̃p be the value of θ that maximizes the likelihood function LDp = ∏

h �=p
Lh . The predicted

frequency of the left-out score pattern y ∈ Bp, based on Dp, can then be given by

ñy = n
exp{ f (y; θ̃p)}
∑

y∈B
exp{ f (y; θ̃p)}

, for all y ∈ Bp, (38)

where n =∑y∈O ny. An alternative predicted frequency of the left-out score pattern y ∈ Bp can
be obtained by replacing n with n p and B with Bp in the right-hand side of Eq.38. In either case,
the predicted frequency can be determined for all y ∈ B. Subsequently, the mean-squared error
given by

∑
y∈B(ny − ñy)2/|B| can be calculated.
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4. Simulation Study

In this simulation study, the asymptotic bias and efficiency of the maximum likelihood esti-
mators in �̂B and the usefulness of the goodness-of-fit tests are studied. Concerning the test
statistics, special interest is in the sample sizes for which their distributions are satisfactorily
close to the theoretical asymptotic chi-square sampling distributions. The goodness-of-fit tests
are the Pearson chi-square test (CS), the likelihood ratio test of the hypothesized (sub)population
model against the saturated (sub)population model (LRs), the likelihood ratio test of the hypoth-
esized (sub)population model against its first generalization (LR1), the likelihood ratio test of the
hypothesized (sub)population model against its second generalization (LR2), and the likelihood
ratio test of the first generalization against the second generalization (LR12).

To study the bias and efficiency of the maximum likelihood estimators, the average abso-
lute approximate bias, the average approximate mean square error, and the average approxi-
mate variance over estimates have been calculated. In addition, the average of squared esti-
mated standard errors has been calculated. To study the usefulness of the tests, rejection rates
have been calculated. The calculations have been carried out under six sample sizes, that is,
n ∈ {250, 500, 750, 1000, 5000, 10,000} and two numbers of variables, that is, k ∈ {5, 10}. The
number of elements of the partition of the set of observed score patterns is fixed to two. For
convenience, score patterns have been randomly assigned to the elements of the partition.

The R program (R Core Team, 2020) has been used to generate data under two models for
binary variables. In the first data generation model, f (y) = ∑k

i=1 βi xi + σ21′y(1′y − 1)/2.
This model is a simple special case of both the extended Rasch model and the Ising model and
is called the conditional normal extended Rasch (cn-ER) model. The second data generation
model is the more complex Ising model, where f (y) =∑k

i=1 βi xi +∑i< j xi x jσi j . In both data
generation models, the vector (β1, . . . , βk) is fixed to (−3.5,−2.5,−1.5,−0.5, 0.5), for k = 5,
and to (−5.0,−4.5,−4.0,−3.5,−3.0,−2.5,−2.0,−1.5,−1.0,−0.5), for k = 10. In the cn-ER
model, the parameter σ2 is set to .63. In the Ising model, σi j , for all i < j , is randomly sampled
from a normal distribution with mean 30 and standard deviation 5, for k = 5, and from a normal
distribution with mean 30 and standard deviation 1, for k = 10.

Data have been generated under two support conditions: S = A and S ⊂ A. In the case of
S = A, the number of observable score patterns is 25 = 32, for k = 5, and 210 = 1024, for
k = 10. In conditions in which S ⊂ A, an arbitrary substantial number of score patterns that
showed low probabilities in the case of S = A, have been excluded from S. In the case of S ⊂ A,
k = 5, and the cn-ER model, the cardinality of S is 15. In the case of S ⊂ A, k = 5, and the
Ising model, the cardinality of S is 19. In the case of S ⊂ A, k = 10, and the cn-ER model, the
cardinality of S is 202. In the case of S ⊂ A, k = 10, and the Ising model, the cardinality of S is
198.

In each of the 48 conditions (2 numbers of variables× 6 sample sizes× 2models× 2 support
conditions), 10,000 data sets have been randomly generated. For each data set, the saturatedmodel,
the data generation model, its first generalization, and its second generalization have been fitted
to the data twice, once using B = O and second using B = A. All models have been fitted to
the data using the R function glm(). The five tests have also been carried out twice, once using
B = O and second using B = A. The nominal level of significance was set at .05, for all tests. In
each condition, for each test a rejection rate has been calculated. The rejection rate of a test is the
number of times the null hypothesis model has been rejected in favor of the alternative hypothesis
model divided by 10,000. Most calculated rejection rates are approximate type I error rates and
should be close to the nominal level of significance. In the case of S ⊂ A and B = A, however,
calculated rejection rates are approximate power values.

In nearly all conditions, the approximate variance of the estimator over estimates and the
average of the squared estimated standard errors are the same up to three decimal places. Only now
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Table 1.
Median and range of the cardinality of O , averages of absolute approximate bias, approximate mean square error, and
approximate variance of the estimator, for S = A.

k Model n Median |O| Range |O| B = O B = A
Bias MSE var(	̂) Bias MSE var(	̂)

5 cn-ERM 250 24 [18, 30] 0.115 0.064 0.043 0.009 0.046 0.046
500 27 [22, 32] 0.047 0.026 0.022 0.004 0.023 0.023
750 28 [23, 32] 0.027 0.016 0.015 0.003 0.015 0.015
1000 29 [25, 32] 0.019 0.012 0.011 0.003 0.011 0.011
5000 32 [29, 32] 0.001 0.002 0.002 0.000 0.002 0.002

10,000 32 [30, 32] 0.000 0.001 0.001 0.000 0.001 0.001
Ising 250 22 [15, 29] 0.246 0.446 0.245 0.050 0.264 0.261

500 25 [18, 31] 0.122 0.183 0.124 0.040 0.147 0.144
750 26 [21, 32] 0.077 0.106 0.081 0.026 0.100 0.098
1000 27 [22, 32] 0.056 0.073 0.062 0.022 0.074 0.072
5000 31 [27, 32] 0.005 0.013 0.013 0.004 0.013 0.013

10,000 32 [29, 32] 0.001 0.006 0.006 0.002 0.006 0.006
10 cn-ERM 250 104 [84, 126] 1.162 2.046 0.029 0.015 0.043 0.043

500 154 [129, 183] 0.804 0.992 0.017 0.007 0.021 0.021
750 190 [157, 219] 0.627 0.606 0.012 0.005 0.014 0.014
1000 218 [187, 249] 0.517 0.413 0.009 0.003 0.010 0.010
5000 415 [379, 450] 0.149 0.035 0.002 0.001 0.002 0.002

10,000 512 [474, 548] 0.081 0.011 0.001 0.000 0.001 0.001
Ising 250 105 [87, 131] 0.687 1.326 0.311 0.083 0.353 0.341

500 153 [127, 181] 0.516 0.747 0.130 0.044 0.168 0.164
750 185 [156, 216] 0.427 0.522 0.085 0.031 0.110 0.108
1000 211 [182, 239] 0.366 0.395 0.063 0.024 0.083 0.081
5000 389 [354, 426] 0.125 0.060 0.013 0.005 0.015 0.015

10,000 479 [444, 514] 0.070 0.023 0.007 0.002 0.008 0.008

and then (for lower sample sizes) they differ in the third decimal. Therefore, only the approximate
variance of the estimator over estimates is reported.

The asymptotic bias and efficiency results for S = A are given in Table 1. The results in
Table 1 show that in the case of S = A, the averages of the absolute approximate bias, the
approximate mean square error, and the approximate variance of the estimator, all tend to zero
as the sample size increases, irrespective of the number of variables, model complexity, and the
selection of B. As expected in the case of S = A, the averages of the absolute approximate bias
and the approximate mean square error are in general higher for B = O than for B = A. Note
that in the case of k = 10, the averages of the absolute approximate bias and the approximate
mean square error in the case of B = O are based on much smaller numbers of score patterns
than in the case of B = A because the maximum cardinality of O is 548. On the other hand, the
averages of the approximate variance of the estimator do not seem to depend on the choice of B.

All calculated rejection rates for S = A are approximate type I error rates. These approximate
type I error rates are given in Table 2. The results in Table 2 show that in the case of k = 5, none
of the rejection rates is unacceptably higher than .05 and most of the rejection rates are close to
.05. The following can be said about the rejection rates for S = A and k = 10. The rejection
rate of the CS test is under most conditions too high. The rejection rate of the LRs test is too low
under all conditions. In the case of B = A and the cn-ER model, the rejection rates of the LR1
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Table 2.
Approximate type I error or rejection rates of theCS, LRs, LR1, LR2, andLR12 tests at the .05 nominal level of significance,
for S = A.

k Model n B = O B = A
CS LRs LR1 LR2 LR12 CS LRs LR1 LR2 LR12

5 cn-ER 250 .048 .019 .036 .049 .036 .074 .035 .060 .052 .062
500 .052 .023 .042 .049 .041 .068 .054 .053 .048 .052
750 .051 .026 .044 .048 .045 .060 .058 .053 .054 .051
1000 .050 .026 .043 .047 .044 .063 .068 .054 .049 .056
5000 .050 .046 .050 .048 .052 .051 .056 .050 .046 .050

10,000 .052 .052 .048 .049 .048 .052 .059 .053 .049 .055
Ising 250 .014 .009 .009 .027 .010 .077 .015 .031 .058 .032

500 .029 .015 .017 .043 .017 .080 .033 .048 .053 .048
750 .040 .023 .025 .045 .023 .074 .040 .052 .051 .052
1000 .048 .031 .033 .051 .033 .065 .042 .051 .054 .052
5000 .038 .029 .032 .048 .032 .056 .066 .060 .051 .061

10,000 .046 .042 .044 .053 .042 .051 .062 .060 .050 .061
10 cn-ER 250 .000 .000 .026 .050 .020 .244 .000 .053 .055 .052

500 .032 .000 .086 .075 .074 .245 .000 .050 .052 .048
750 .185 .000 .118 .080 .106 .249 .000 .056 .054 .054
1000 .382 .000 .130 .082 .118 .249 .000 .051 .052 .051
5000 .953 .010 .114 .072 .110 .245 .000 .047 .044 .048

10,000 .966 .011 .088 .068 .084 .222 .000 .048 .047 .047
Ising 250 .001 .000 .000 .036 .000 .130 .000 .186 .052 .187

500 .010 .000 .000 .056 .000 .181 .000 .099 .054 .099
750 .036 .000 .005 .066 .004 .190 .000 .082 .050 .083
1000 .087 .000 .011 .068 .011 .211 .000 .074 .052 .075
5000 .736 .001 .061 .062 .060 .217 .000 .055 .048 .056

10,000 .862 .003 .068 .057 .066 .217 .000 .049 .052 .049

and LR12 tests are close to .05. In the case of the Ising model, the rejection rates of the LR1 and
LR12 tests tend to .05 as the sample size increases. In the case of the cn-ER model, the rejection
rates of the LR1 and LR12 tests are under most conditions too high if B = O . The rejection rate
of the LR2 test is close to .05 under all conditions.

The asymptotic bias and efficiency results for S ⊂ A are given in Table 3. The results in
Table 3 show that in the case of S ⊂ A, the averages of the absolute approximate bias, the
approximate mean square error, and the approximate variance of the estimator, all tend to zero as
the sample size increases, irrespective of the number of variables andmodel complexity, if B = O .
In the case of B = A, only the average of the approximate variance of the estimator seems to tend
to zero as the sample size increases, irrespective of the number of variables andmodel complexity.
In the case of k = 5, the averages of the absolute approximate bias are all smaller for B = O
than for B = A. In the case of k = 10, the averages of the absolute approximate bias are higher
for B = O than for B = A if the sample size is less than 750 but smaller for B = O than for
B = A if the sample size is greater than 500.

All calculated rejection rates for S ⊂ A are given in Table 4. The results in Table 4 show
that in the case of B = O , none of the rejection rates is unacceptably higher than .05. In the case
of B = O and k = 5, most of the rejection rates are close to .05. In the case of B = O and
k = 10, most rejection rates are less than .05 but are closer to .05 as the sample size increases.
In the case of B = A, the rejection rates are approximate power values instead of approximate
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Table 3.
Median and range of the cardinality of O , averages of absolute approximate bias, approximate mean square error, and
approximate variance of the estimator, for S ⊂ A.

k Model n Median |O| Range |O| B = O B = A
Bias MSE var(	̂) Bias MSE var(	̂)

5 cn-ERM 250 15 [13, 15] 0.014 0.072 0.072 0.438 0.381 0.054
500 15 [14, 15] 0.006 0.036 0.036 0.432 0.344 0.026
750 15 [15, 15] 0.005 0.024 0.024 0.427 0.329 0.018
1000 15 [15, 15] 0.004 0.017 0.017 0.426 0.322 0.013
5000 15 [15, 15] 0.002 0.003 0.003 0.425 0.310 0.003

10,000 15 [15, 15] 0.000 0.002 0.002 0.424 0.307 0.001
Ising 250 18 [14, 19] 0.110 0.320 0.265 0.191 0.324 0.256

500 19 [16, 19] 0.057 0.184 0.163 0.187 0.215 0.136
750 19 [17, 19] 0.054 0.133 0.114 0.182 0.172 0.093
1000 19 [17, 19] 0.052 0.104 0.085 0.178 0.144 0.069
5000 19 [19, 19] 0.045 0.040 0.015 0.163 0.076 0.013

10,000 19 [19, 19] 0.044 0.033 0.008 0.163 0.068 0.006
10 cn-ERM 250 90 [71, 112] 0.820 1.026 0.035 0.345 0.224 0.045

500 124 [102, 146] 0.457 0.335 0.020 0.335 0.193 0.023
750 145 [126, 166] 0.293 0.145 0.015 0.333 0.183 0.015
1000 159 [140, 177] 0.205 0.076 0.012 0.332 0.179 0.011
5000 201 [195, 202] 0.005 0.003 0.003 0.328 0.166 0.002

10,000 202 [200, 202] 0.001 0.001 0.001 0.328 0.164 0.001
Ising 250 93 [74, 110] 0.521 1.028 0.358 0.296 0.570 0.397

500 126 [107, 144] 0.319 0.491 0.166 0.291 0.397 0.207
750 145 [122, 166] 0.223 0.326 0.115 0.280 0.323 0.142
1000 158 [137, 174] 0.169 0.251 0.089 0.273 0.283 0.107
5000 190 [190, 198] 0.045 0.112 0.022 0.247 0.162 0.020

10,000 198 [195, 198] 0.044 0.100 0.011 0.244 0.149 0.010

type I error rates because in these conditions the support of the probability distribution of the
categorical variables is misspecified. As could be expected, the results in Table 4 show that for
B = A and k = 5, all rejection rates are closer to one as the sample size increases. Under these
conditions, the LR2 test seems to be the least powerful. In the case of B = A and k = 10, the
rejection rates of the new likelihood ratio tests are also closer to one if the sample size increases.
Out of the new likelihood ratio test the LR2 is again the least powerful under these conditions. In
the case of B = A and k = 10, the rejection rates of the CS and LRs tests are all close to zero,
except one.

It can be concluded that the LR2 test performs better than the other tests if either B = O
or the support has been correctly specified. Under these conditions, unlike the rejection rates of
the other tests, the rejection rate of the LR2 test does not seem to be affected by the number
of variables, model complexity, and sample size. Furthermore, it can be concluded that if the
support of the probability distribution of the categorical variables is misspecified, then parameter
estimates contain more bias and under many conditions, correctly specified f (y; θ) is more often
rejected than it should be using one of the tests.

In addition to the asymptotic performance of the tests under correctly specified conditions,
it is also of interest to compare the power of the tests under misspecified f (y; θ) in conditions in
which all tests have type I error rates close to the nominal level of significance. According to the
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Table 4.
Rejection rates of the CS, LRs, LR1, LR2, and LR12 tests at the .05 nominal level of significance, for S ⊂ A.

k Model n B = O B = A
CS LRs LR1 LR2 LR12 CS LRs LR1 LR2 LR12

5 cn-ER 250 .045 .051 .056 .049 .058 .063 .199 .505 .136 .487
500 .046 .051 .049 .051 .049 .726 .992 .822 .205 .800
750 .049 .053 .051 .054 .050 .997 1.000 .908 .273 .892
1000 .048 .050 .048 .049 .043 1.000 1.000 .946 .321 .932
5000 .052 .053 .050 .046 .054 1.000 1.000 .999 .609 .998

10,000 .053 .053 .055 .050 .053 1.000 1.000 1.000 .705 .999
Ising 250 .022 .019 .019 .052 .018 .001 .002 .007 .077 .007

500 .036 .037 .037 .048 .038 .004 .024 .066 .109 .061
750 .041 .048 .047 .054 .046 .018 .146 .279 .133 .261
1000 .046 .052 .051 .056 .052 .077 .507 .643 .165 .599
5000 .050 .052 .053 .054 .052 1.000 1.000 .991 .427 .991

10,000 .048 .048 .048 .055 .049 1.000 1.000 .994 .566 .992
10 cn-ER 250 .000 .000 .007 .033 .005 .000 .000 .072 .058 .071

500 .000 .000 .015 .045 .014 .000 .000 .094 .064 .093
750 .000 .000 .024 .046 .024 .000 .000 .115 .075 .111
1000 .000 .000 .025 .041 .028 .000 .000 .143 .079 .138
5000 .032 .032 .048 .052 .049 .000 .000 .640 .194 .614

10,000 .050 .062 .052 .050 .052 .000 1.000 .895 .294 .877
Ising 250 .000 .000 .000 .026 .000 .000 .000 .189 .061 .186

500 .000 .000 .000 .036 .000 .000 .000 .153 .062 .152
750 .000 .000 .000 .038 .000 .000 .000 .180 .070 .177
1000 .000 .000 .001 .038 .001 .000 .000 .225 .073 .222
5000 .026 .030 .040 .050 .038 .000 .000 .968 .158 .966

10,000 .048 .059 .051 .049 .051 .000 .000 1.000 .244 1.000

Table 5.
Approximate power values of the CS, LRs, LR1, LR2, and LR12 tests at the .05 nominal level of significance, for S = A.

k Model n B = O B = A
True Fitted CS LRs LR1 LR2 LR12 CS LRs LR1 LR2 LR12

5 Ising cn-ER 250 .516 .393 .323 .159 .283 .456 .328 .337 .158 .298
500 .876 .827 .638 .254 .568 .810 .786 .616 .248 .542
750 .974 .963 .809 .333 .734 .956 .956 .788 .330 .707
1000 .996 .995 .900 .396 .829 .994 .995 .884 .383 .810
5000 1.000 1.000 .999 .680 .996 1.000 1.000 .999 .695 .996

10,000 1.000 1.000 1.000 .770 1.000 1.000 1.000 1.000 .779 1.000

previous results, a fair comparison of the power of the tests is possible when data are generated
under the Ising model, k = 5, and S = A, and the cn-ER model is fitted to the data using both
B = O and B = A. For the same sample sizes as before 10,000 data sets have been generated
with the same parameter values and all tests have been carried out for each data set under both
B = O and B = A. Rejection rates have been calculated and are given in Table 5.
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The results in Table 5 show that the CS test is the most powerful test and the LR2 test is the least
powerful test, irrespective of sample size and choice of B. In addition, the results show that all
tests have higher approximate power values in using B = O instead of B = A, for most sample
sizes.

5. An Empirical Data Example

The data in this example are the responses of 493 adolescents to seven items that are intended
to measure nonaggressive antisocial behavior (Dekovic, 2003). The adolescents have been asked
to indicate how often they have committed the antisocial act given by each item in the last twelve
months. The responses are coded as 0 = never, 1 = once, 2 = two or three times, 3 = four to ten
times, and 4 = more than ten times. The cardinality of A is 57 = 78125. The number of observed
score patterns is 267 (the cardinality of O). The extended partial credit model in Eq.4 is fitted to
the data twice, once using B = A (assuming S = A) and second using B = O . The number of
parameters in this model is

∑k
i=1 mi + k − 1 =∑7

i=1 4+ 7− 1 = 7 · 4+ 6 = 34. The parameter
estimation results are given in Table 6.

The goodness-of-fit test results are given in Table 7. Using B = O , some parameters of the
first generalization of the subpopulation partial credit model could not be estimated due to too
little observations for some categories. As a consequence, the degrees of freedom for the LR1 and
LR12 tests are smaller than in case of B = A. According to all test results in Table 7, the extended
partial credit model cannot be rejected at the 5 percent level of significance.

6. Discussion

Using the conditional probability distribution of the categorical variables given the set O
of observed score patterns, in principle, only requires a random sample from the subpopulation
defined by O . In practice, however, a random sample from the total population is still required
to guarantee that the sample is a random sample from the subpopulation defined by O because
O is only known after the sample has been drawn. Not needing, in principle, a random sample
from the total population is characteristic of fixed effects regression models. The model for the
subpopulation defined by the set of all observed score patterns can also be seen as a fixed effects
regression model, that is, a regression model where the conditional distribution of the random
outcome frequency Ny given fixed y is a Poisson distribution, for all y ∈ O . Note that if the
observed sample frequencies are the observations of independent Poisson random frequencies
and the mean of random frequency Ny is λy = α exp{ f (y)}, for all y ∈ O , then the likelihood
function is given by

∏

y∈O

λ
ny
y exp(−λy)

ny! = αnexp

⎡

⎣
∑

y∈O
ny f (y) − α

∑

y∈O
exp{ f (y)}

⎤

⎦/

⎛

⎝
∏

y∈O
ny!
⎞

⎠ (39)

and the maximum likelihood estimate of the normalizing constant α equals n/
∑

y∈O exp{ f̂ (y)},
where f̂ (y) is the maximum likelihood estimate of f (y) and the sum in the denominator is again
only over all y ∈ O . Also note that the values that maximize the likelihood function in Eq. 39 are
exactly the same as the values that maximize the likelihood function in Eq.11, for B = O , because
both likelihood functions yield the same estimating equations. Furthermore, it is a well-known
fact that if the observed sample frequencies are the observations of independent Poisson random
frequencies and the mean of random frequency Ny is λy = α exp{ f (y)}, for all y ∈ O , then the
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Table 6.
Estimation results under the extended partial credit model in Eq.4 for the Dekovic (2003) data.

Parameter B = A B = O
Estimate SE Estimate SE

β11 − 0.995 0.173 − 1.215 0.180
β12 − 1.415 0.305 − 2.552 0.330
β13 − 3.162 0.469 − 4.554 0.490
β14 − 4.657 0.624 − 6.527 0.642
β21 − 1.903 0.189 − 2.026 0.197
β22 − 2.914 0.334 − 3.716 0.346
β23 − 5.430 0.515 − 5.713 0.528
β24 − 7.597 0.689 − 7.586 0.692
β31 − 3.271 0.225 − 2.285 0.229
β32 − 5.076 0.384 − 4.115 0.385
β33 − 7.904 0.614 − 6.133 0.658
β34 − 10.384 0.825 − 6.917 0.825
β41 − 2.299 0.205 − 2.080 0.202
β42 − 2.985 0.338 − 3.582 0.345
β43 − 4.930 0.505 − 5.438 0.516
β44 − 6.511 0.662 − 7.247 0.674
β51 − 2.850 0.214 − 2.466 0.214
β52 − 4.111 0.356 − 3.973 0.355
β53 − 6.418 0.538 − 5.643 0.549
β54 − 8.300 0.702 − 7.666 0.731
β61 − 2.633 0.202 − 2.272 0.203
β62 − 4.500 0.365 − 3.663 0.383
β63 − 7.219 0.573 − 5.692 0.605
β64 − 10.032 0.813 − 7.582 0.873
β71 − 3.081 0.213 − 2.242 0.216
β72 − 5.969 0.440 − 4.038 0.475
β73 − 9.571 0.876 − 6.494 1.082
β74 − 12.366 1.229 − 8.643 1.700
σ2 0.345 0.158 0.749 0.165
σ3 − 0.124 0.126 − 0.336 0.136
σ4 0.069 0.074 0.152 0.084
σ5 − 0.031 0.031 − 0.057 0.037
σ6 0.009 0.008 0.015 0.010
σ7 − 0.001 0.001 − 0.002 0.001

conditional distribution of the random frequencies given
∑

y∈O Ny = N = n is a multinomial
distribution with parameters n and

λy
∑

y∈O λy
= exp{ f (y)}
∑

y∈O exp{ f (y)} , for all y ∈ O, (40)

which is exactly equal to the conditional probability in Eq.5, for B = O . The multinomial
likelihood function also yields the same estimating equations as the likelihood function in Eq.11,
for B = O , and therefore, also the same maximum likelihood estimates.
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Table 7.
Goodness-of-fit test results for the extended partial credit model in Eq.4 for the Dekovic (2003) data.

Statistic B = A B = O
Value df p value Value df p value

CS 62,415.090 78,090 1.000 105.467 232 1.000
LRs 1569.898 78,090 1.000 97.212 232 1.000
LR1 43.797 35 0.146 15.745 32 0.993
LR2 0.601 1 0.348 0.565 1 0.452
LR12 43.196 34 0.134 15.180 31 0.992

The null hypothesis tested by the goodness-of-fit tests for which the observed sample values
of the test statistics are given by Formulas 29 and 34 is the hypothesis that the particular model
used holds in the subpopulation defined by B. The null hypothesis tested by the goodness-of-
fit test for which the observed sample value of the test statistic is given by Formula 35 is the
hypothesis that the particular model used separately holds in each of the subpopulations defined
by B1, . . . , Bg . The hypothesis that the model separately holds in each of the subpopulations
defined by B1, . . . , Bg is implied by the hypothesis that the model holds in the subpopulation
defined by B. Since the null hypothesis that the model holds in the subpopulation defined by
B is implied by the hypothesis that the model holds in the total population, rejection of any of
the null hypotheses implies rejection of the total population model. If, on the other hand, the
null hypotheses cannot be rejected, then the sample data do not provide evidence against the
hypothesis that the model holds in total population. The hypothesis that the model holds in the
total population, however, is not implied by any of the null hypotheses of the goodness-of-fit tests.
This means that it might be that the specified model holds in the subpopulation defined by B,
but not in the total population, or that the model separately holds in each of the subpopulations
defined by B1, . . . , Bg but not in the subpopulation defined by B nor in the total population. In
such situations, the goodness-of-fit tests do not have any statistical power to reject the specified
model in the total population.

The goodness-of-fit tests, but also the maximum likelihood procedure proposed, are not just
applicable to the model for the subpopulation defined by the set O of all observed score patterns.
The procedures can also be applied to themodel for any subpopulation defined by either a superset
of O , including the set of all theoretically possible score patterns, or a subset of O . Any superset of
O can be assumed to be a subset of the true support of the probability distribution of the categorical
variables. Assuming the set A to be the support, is one such an option. Assuming the support to
include a specific proper superset of O not equal to A, is another option that already increases
the computational efficiency relative to the all-inclusive support assumption. The problem then,
however, is the selection of that specific proper superset of O and the possibility of wrongly
including unobservable score patterns, that is, score patterns that are not in S. An example of a
practical situation in which it is reasonable to exclude particular unobserved score patterns from
the proper superset of O that is assumed to be a subset of the true support, is the situation in
which the model of interest is the extended Rasch model for dichotomously scored items. In that
situation, it is reasonable to exclude unobserved score patterns that are expected to be unobservable
according to the deterministic Guttman model.

Any subset of the set of all observed score patterns defines a subpopulation with known
support. The set of all observed score patterns defines the largest subpopulation with known
support. An advantage of using the set O of all observed score patterns is that all data are
used. Another possible subpopulation model that might be useful in practice is the model for
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the subpopulation defined by the set {y ∈ A | ny ≥ n0}, where n0 is a prespecified minimum
sample frequency. In this case, observed score patterns with sample frequencies less than n0 are
not used. Possible negative consequences of choosing such a subpopulation are that the model
parameters are estimated less precisely and that the hypothesized subpopulation model becomes
underidentified.
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