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FACTOR ANALYSIS PROCEDURES REVISITED FROM THE COMPREHENSIVE
MODEL WITH UNIQUE FACTORS DECOMPOSED INTO SPECIFIC FACTORS AND

ERRORS

Kohei Adachi

OSAKA UNIVERSITY

Factor analysis (FA) procedures can be classified into three types (Adachi in WIREs Comput
Stat https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.1458, 2019): latent variable FA (LVFA), matrix
decomposition FA (MDFA), and its variant (Stegeman in Comput Stat Data Anal 99: 189–203, 2016)
named completely decomposed FA (CDFA) through the theorems proved in this paper. We revisit those
procedures from the Comprehensive FA (CompFA) model, in which a multivariate observation is decom-
posed into common factor, specific factor, and error parts. These three parts are separated in MDFA and
CDFA, while the specific factor and error parts are not separated, but their sum, called a unique factor,
is considered in LVFA. We show that the assumptions in the CompFA model are satisfied by the CDFA
solution, but not completely by the MDFA one. Then, how the CompFAmodel parameters are estimated in
the FA procedures is examined. The study shows that all parameters can be recovered well in CDFA, while
the sum of the parameters for the specific factor and error parts is approximated by the LVFA estimate
of the unique factor parameter and by the MDFA estimate of the specific factor parameter. More detailed
results are given through our subdivision of the CompFA model according to whether the error part is
uncorrelated among variables or not.

Key words: comprehensive factor analysis model, matrix decomposition factor analysis, completely
decomposed factor analysis, latent variable factor analysis, Inter-variable error correlations.

Factor analysis (FA) was originally conceived of by Spearman (1904) and developed toward its
modern form by Thurstone (1947). FA is performed for a multivariate data set in order to extract
two types of mutually uncorrelated factors: common factors and all others. The common factors,
whose number is much less than that of observed variables, serve to explain the variation of all
variables. On the other hand, the other factors explain the variations in the variables that remain
unaccounted for by the common factors. The latter factors are referred to as unique factors in a
prevalent FA model, while those factors are called specific factors in another FA model. Those
two FA models are introduced in the following two paragraphs.

The prevalent FA model is expressed as

x = �f + ẽ = �f + �u (1)

for a p-variate observed vector x(p × 1), with ẽ = �u and the expectations of the elements in
x being zero (e.g., Bartholomew, Knott, & Moustaki, 2011; Mulaik, 2010; Yanai & Ichikawa,
2007). Here, vectors f (m × 1) and u (p × 1) contain the common and unique factor scores,
respectively, with m < p. The scores in f and u are treated as random latent variables, while �

(p × m) and �(p × p) are the nonrandom parameter matrices to be estimated. The elements of
� are called factor loadings, as they describe how the p variables in x load them common factors
in f . In contrast to � being unconstrained, � is restricted to a diagonal matrix. This implies that
the p variables in x have one-to-one correspondences to the p unique factors in u: its jth element
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uniquely affects the jth one of x with the j th diagonal element of � being a coefficient. We refer
to the FA procedure based on (1) as latent variable FA (LVFA) following Adachi (2019), in order
to distinguish it from a procedure to be introduced later.

The vector ẽ = �u in (1) is sometimes referred to as an error vector; however, the classic
literature such as Harman (1976), Reyment & Jöreskog (1993), and Thurstone (1947) includes
the description that ẽ = �u is divided into two vectors as

�u = �s + e. (2)

Here, e (rather than ẽ) is referred to as an error vector, and the elements of s (p × 1) are called
specific factor scores, with � (p × p) being diagonal. That is, the FA model is also introduced
by incorporating (2) into (1), i.e.,

x = �f + �s + e. (3)

Here, �s is found to perform a role similar to the unique factor part �u in (1): � is diagonal as
is �, which implies that the j th specific factor score in s specifically (i.e., uniquely) affects the
j th variable of x, with the j th diagonal element of � a coefficient. As found in this sentence,
the adjective "specific" used for s in (3) has the same implication as the "unique" for u in (1):
"specific" and "unique" merely serve to avoid the confusion between �u in (1) and �s in (3).
However, the error vector e is included in (3) in addition to �s, while the error vector ẽ in (1)
equals �u. That is, each error in ẽ is assumed to uniquely affect the corresponding variable in
(1), but �s is separated from e. In this point, (3) is more generalized or comprehensive than (1).
We thus refer to (3) as a comprehensive FA (CompFA) model. This model can also be considered
compatible with Spearman’s (1904) original conception of FA (Anderson & Rubin, 1956, p. 112;
Yanai, Shegemasu, Mayekawa, & Ichikawa, 1990, p. 4).

However, the CompFAmodel has been left out of consideration in recent FA studies, as found
in the fact that (3) is not treated in the major introductions to FA published in this century (e.g.,
Bartholomew, Knott, & Moustaki, 2011; Mulaik, 2010). That can be attributed to the following
two points seen in the above classic literature: First, the CompFA model has been very briefly
mentioned on only a couple of pages in Harman (1976, pp. 19–20), Reyment and Jöreskog, (1993,
pp. 75–76), and Thurstone (1947, pp. 74–75); thus, model (3) was not impressed as fulfilling a
certain role in FA. Second, in that literature, (3) has been introduced merely as a model; no
procedure is described for estimating parameters based on (3).

However, a recently proposed FA procedure, which is called matrix decomposition FA
(MDFA) to distinguish it from LVFA (Adachi, 2019; Adachi & Trendafilov, 2018), can be viewed
as a parameter estimation procedure for the CompFA model. In more exactness, MDFA can be
modeled as a nonrandom matrix version of (3):

X = F�′ + S� + E. (4)

Here, X is an n-observations × p-variables column-centered data matrix, F is the n × m matrix
of common factor scores, S is the n × p matrix of specific factor scores, and E is an n × p error
matrix, with� and� being the same as those in (3). The rows of X, F, S, and E in (4) correspond
to the transposes of x, f , s, and e in (3), respectively. However, F and S in (4) are treated as
nonrandom parameter matrices, while f and s in (3) are random variable vectors. To the best of
our knowledge, MDFA was first proposed by Professor Henk A. L. Kiers at the University of
Groningen in 2001, as described in Sočan (2003, pp. 19–20). Then, the properties of the MDFA
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solutions were studied by Adachi and Trendafilov (2018) and Stegeman (2016). The last author
has also proposed a restrictive variant of MDFA. The factor vectors f and u in LVFA model (1)
are random, as are f and s in (3), but F and S in MDFA model (4) are not random, as described
above. This difference is not crucial in this paper, but rather we note that the unique factor part in
(1) is decomposed into the specific factor and error parts in (3), whose nonrandom matrix version
is (4).

In the aboveMDFApapers, the elements in thematrix corresponding toShave been referred to
as unique factor scores, but they must be called specific factor scores according to the terminology
in CompFA model (4). Such a confusing reference to S in the MDFA papers is due to the fact
that the CompFA model was not related to MDFA there. This fact provides a major motivation
for this paper: we study the relationships of the CompFA model to MDFA and its restrictive
variant. This study includes reformulating those MDFA procedures to elucidate whether their
parameter estimates arematched to theCompFAmodel assumptions for the parameters, with those
assumptions to be introduced inSect. 1.Here,wemust informbeforehand that the reformulation (in
Sect. 4) would allow Stegeman’s (2016) restrictive variant ofMDFA to be rephrased as completely
decomposed FA (CDFA). We thus call the variant CDFA hereafter. The relationships of LVFA
to the CompFA model are also studied in this paper, as model (1) for LVFA is linked to the
CompFA model through (2). The goal of our studies is to theoretically and empirically show how
LVFA, MDFA, and CDFA behave for CompFA data, i.e., how the parameters in the CompFA
model are recovered in the FA procedures, where the CompFA data refer to the data underlaid
by the CompFA model. The goal would include showing that all parameters in that model can be
recovered fairly well in CDFA but cannot be recovered as well in LVFA and MDFA.

The remaining sections in this paper are organized as follows: In Sect. 1, we specify the
CompFA model by introducing its assumptions. Then, LVFA, MDFA, and CDFA are treated
in Sects. 2, 3, and 4, respectively; we theoretically discuss how each procedure is related to
the CompFA model and behaves for the CompFA data. The discussions for the behaviors are
numerically assessed in Sect. 5 and illustrated in Sect. 6. Throughout this paper, we suppose n >

p > m.
A more detailed prospect for the remaining sections will be presented in the final part of

the next section, as that presentation is possible only after the CompFA model is fully specified.
This specification also includes our subdivision of the CompFA model along whether the errors
are assumed to be uncorrelated among variables or not. The subdivision is made, because the
behaviors of the FA procedures differ between the CompFA data with uncorrelated errors and
those with correlated ones, as discussed in Sects. 2, 3, 4 and shown numerically in Sect. 5.

1. Comprehensive Factor Analysis Model

In Sects. 1.1 and 1.2, we review the standard assumptions for CompFA model (3) and its
nonrandom matrix version (4), respectively. Those standard assumptions are not involved with
the inter-variable correlations of errors. We discuss in Sect. 1.3 that the consideration of the error
correlations allows the CompFAmodel to be subdivided. The prospects for the following sections
are given in the final subsection.

1.1. Random Version of Standard Assumptions

The CompFA model is expressed as (3), i.e., x = �f + �s + e, for the random observation
vector x, whose expectation E[x] is the p × 1 zero vector 0p. We review the assumptions for the
expectations and covariances of f , s, and e in the classic literature (Harman, 1976; Reyment &
Jöreskog, 1993; Thurstone, 1947).
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In line with E[x] = 0p, the expectations of the common factor, specific factor, and error
vectors are supposed as

E[f] = 0m, E[s] = 0p, E[e] = 0p. (5)

The covariance matrices for the factor score vectors are assumed to satisfy

C[f, f] = Im,C[s, s] = Ip,C[f, s] = mOp. (6)

Here, C[f , s] = E[(f−E[f])(s −E[s])′] denotes the m × p covariance matrix between f and s,
Im is the m × m identity matrix, and mOp expresses the m × p zero matrix. The factor score
vectors are assumed to be uncorrelated to the error vector:

C[f, e] = mOp,C[s, e] = pOp. (7)

The standard constraints for model (3) consist of (5)–(7).
From (6), the covariance matrix of �f and that of �s are found to be C[�f,�f] =

�C[f, f]�′ = ��′ and C[�s,�s] = �C[s, s]�′ = �2, respectively. Here, the diagonal ele-
ments of �2 are called specific variances, as they stand for the variances of the specific factor
part �s. Further, (6) and (7) lead to C[�f,�s] = C[�f, e] = mOp and C[�s, e] = pOp. Using
these results, the inter-variable covariance matrix C[x, x] for (3) is found to be expressed as

C[x, x] = C[�f + �s + e,�f + �s + e] = ��′ + �2 + C[e, e]. (8)

1.2. Nonrandom Matrix Version of Standard Assumptions

The nonrandom matrix version of the CompFA model can be expressed as (4), i.e., X =
F�′ + S� + E for the n × p data matrix X. Here, X is column-centered with 1′

nX = 0′
p and

supposed to have full column rank with rank(X) = p, with 1n and rank(X) denoting the n × 1
vector of ones and the rank of X, respectively. We summarize the assumptions for (4), i.e., the
matrix versions of the assumptions in Sect. 1.1.

The versions of (5) and (6) are expressed as

1′
nF = 0′

m, 1′
nS = 0′

p, 1
′
nE = 0′

p, (9)

1

n
F′F = Im,

1

n
S′S = Ip ,

1

n
F′S = mOp or F′S = mOp, (10)

respectively. The two equations in (7) can be changed into the matrix forms n−1F′E = mOp and
n−1S′E = pOp,which are equivalent to

F′E = mOp, (11)

S′E = pOp, (12)

respectively. The standard assumptions for model (4) consist of (9)–(12).
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The p × p inter-variable matrices for X and E can be expressed as CXX = n−1X′X and
CEE = n−1E′E, because of 1n ′X = 0p ′ and (9). Then, (9)–(12) lead to the nonrandom matrix
version of (8):

CXX = 1

n
(F�′ + S� + E)′(F�′ + S� + E) = ��′ + �2 + CEE, (13)

where F�′+ S� + E is column-centered because of (9).

1.3. Uncorrelated Error and Correlated Error Assumptions

In the classic literature (Harman, 1976; Reyment & Jöreskog 1993; Thurstone, 1947), the
elements of e in (3) are particularly referred to asmeasurement errors. If such errors are considered
to be uncorrelated among variables, we can add the assumption that the off-diagonal elements of
C[e, e] are zeros, i.e.,

C[e, e] = D[e, e] (14)

to those in Sect. 1.1,with D[e, e]= diag(C[e, e]). Here, diag(N) denotes the diagonalmatrixwhose
diagonal elements are those of a square matrix N. In the classic literature, (14) is not explicitly
presented, but might be implicitly supposed for the following reasons: In that literature, only
latent variable FA (LVFA) is described for estimating parameters, and the constraints considered
in LVFA follow from adding (14) to the standard ones in Sect. 1.1, as shown in Sect. 2.2. We can
also add the nonrandom matrix version of (14), i.e.,

CEE = DEE (15)

to those in Sect. 1.2, with DEE = diag(CEE).
We can also consider a version of the CompFAmodel, in which (14) and (15) are not assumed,

that is, the errors are allowed to be correlated among variables. In this correlated error version,
C[e, e] in (8) and CEE in (13) are merely supposed to be unconstrained covariance matrices that
are nonnegative-definite.

We should note the difference between uncorrelated error constraints (14) and (15), the latter
being stronger, as explained next. The rows of the error matrix E in CEE = n−1E′E can be
considered the realizations of the transpose of e in (14). This consideration leads to C[e, e] in
(14) equaling E[CEE], as detailed in Appendix 1. Thus, we can rewrite (14) as the expectation
of CEE being diagonal: (14) requires the diagonality of E[CEE], but not that of CEE itself. This
diagonality is required by (15), in contrast. To emphasize the strength of (15), we call this the
strong uncorrelated error condition.We can consider that data meeting (15) is hardly encountered,
i.e., is unusual. However, in the later sections, such data would be noted: The FA procedures are
shown to perfectly fit the data meeting strong condition (15), which is a motivation to study the
related properties of the FA procedures. The next theorem gives the foundation for the perfect fit
to be shown later.

Theorem 1. If the error matrix E in CompFA model (4) satisfies (15), (4) can be rewritten as the
error-free model:

X = F�′ + S̃�̃ = F�′ + S̃(�2 + DEE)1/2. (16)

Here, �̃
2 = �2 + DEE and S̃ =(S� + E)�̃

−1
can be regarded as the specific variance and

factor score matrices, respectively.
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Table 1.
Relationships of the FA procedures to the CompFA model.

Proc. Model Note Specific Factor
and Errors

Estimate ≈ True

LVFA x= �f +�u �u = �s + e �s& e unseparated �2 ≈ �2 + DEE � ≈ �

MDFA X = F�′+ S� + E ↓ diag(S′E) = pOp �2 ≈ �2 + DEE � ≈ �

CDFA X = F�′+ S� + E Nonrandom version S′E = pOp �2 ≈ �2 � ≈ �

Proof. We can rewrite (4) as (16):X=F�′+ S�+E=F�′+ (S�+E)�̃
−1

�̃. Thematrix �̃
2 =

�2 +DEE (p × p) is diagonal and nonnegative, thus regarded as the specific variance matrix. We

can show why S̃ = (S� + E)�̃
−1

(n × p) is the specific factor score matrix, as follows: (9)–(12)

and (15) lead to 1n ′S̃ = 1n ′(S� + E)�̃
−1 = 0p ′,

1

n
S̃

′
S̃= 1

n
�̃

−1
(S� + E)′(S�+E)�̃

−1=(�2 + DEE)−1/2(�2 + DEE)(�2 + DEE)−1/2 = Ip,

and F′S̃ = F′(S� + E)�̃
−1 = mOp. Thus, S̃ = (S� + E)�̃

−1
can be substituted into S in

(9)–(11). Further, (16) can be rewritten asX= F�′ + S̃�̃+ Ẽ, with the error matrix Ẽ being nOp,
which implies that those Ẽ and S̃ can be substituted into E and S in (12), respectively. ��

1.4. Prospects for Relating the CompFA Model to LVFA, MDFA, and CDFA

As the assumptions in the CompFA model have been specified, they can now be used for
providing the prospects for the following sections, where the relationships of the CompFA model
to LVFA, MDFA, and CDFA will be studied.

Among the relationships, those independent of the uncorrelated and correlated error assump-
tions (in Sect. 1.3) can be summarized as in Table 1. Its left-hand "Model" and "Note" columns
merely present the facts described before Sect. 1: (2) links LVFA model (1) to CompFA model
(3), and this matrix version is model (4) underlying MDFA and CDFA.

The right-hand columns in Table 1 present the key points in the relationships to be found.
The lower cells in the "Specific Factor & Errors" column show the facts to be found in Sects. 3.2
and 4.2: The MDFA solution does not meet (12) in the CompFA assumptions, but only satisfies
its diagonal part diag(S′E) = pOp, but (12) is satisfied by the CDFA solution. On the other hand,
the specific factor and error parts (� s and e) are unseparated in LVFA.

The column furthest right in Table 1 shows how �2, �2, and � are usually estimated in the
FA procedures for the CompFA data matrix

X = F�′ + S� + E with DEE = diag(CEE) = 1

n
diag(E′E), (17)

i.e., the observations underlaid by (4) with F,�, S,�, and E set to particular matrices F,�, S,�,
and E, respectively. Here, the latter matrices have been underlined for the sake of indicating that
particular values are substituted into the elements of those matrices. The final (third) subsections
in Sect. 2–4 are particularly concerned with how the true � and DEE in (17) are related to LVFA,
MDFA, and CDFA estimates, respectively, as outlined in the following two paragraphs.

In Sects. 2.3 and 3.3, we will discuss that the LVFA estimate of �2 approximates �2 +DEE
and theMDFA one of�2 approximates�2+DEE, respectively. The latter MDFA property of�2

≈ �2 + DEE is restated as �2 being contaminated by DEE. In Sect. 4.3, CDFA will be shown to
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provide the estimate �2 ≈ �2 differently from MDFA, with a discussion of how this difference
follows from the CDFA solution satisfying (12), which is not met by the MDFA solution.

In Sects. 2.3, 3.3, and 4.3, we will also discuss that the uncorrelated error assumption (in
Sect. 1.3) leads to the facts that are not covered in Table 1. The facts are summarized as follows.
Two of the formulas with "≈" in Table 1 are replaced by equalities only in strong uncorrelated
error condition (15):�2 = �2+DEEin LVFA and�2 = �2 +DEE inMDFA and CDFA, with all
procedures fitting data perfectly. However, apart from that strong condition, the CDFA estimate
of �2 can approximate �2, as described above.

The good recovery of loadings with � ≈ � in all procedures will be shown numerically in
Sect. 5.

2. Latent Variable Factor Analysis

In Sect. 2.1, we review the formulation of latent variable FA (LVFA) with the assumptions
added to (1). Then, in Sect. 2.2, we show how those LVFA assumptions can follow from the
CompFA ones. In Sect. 2.3, we discuss how the estimate of �2 approximates �2 + DEE, as
shown in Table 1.

2.1. Formulation

LVFA is modeled as (1), i.e., x = �f+ ẽ = �f+�u, where the expectations and covariances
for f and ẽ = �u are assumed to satisfy

E[f] = 0m, C[f, f] = Im, (18)

E[�u] = 0p, C[f,�u] = mOp, (19)

C[�u,�u] = �2. (20)

(e.g., Bartholomew, Knott, & Moustaki, 2011; Yanai & Ichikawa, 2007). Here, the diagonal
elements of �2 are called unique variances, as they stand for the variances of the unique factor
part �u.

LVFA assumptions (18)–(20) imply that inter-variable covariance matrix C[x, x] for (1) is
expressed as

C[x, x] = C[�f + �u,�f + �u] = ��′ + �2. (21)

Thus,� and�2 can be estimated so thatmodel-based (21) approximates its data-based counterpart
CXX = n−1X′X. This estimation can be attained by minimizing

f LS(�,�) = ‖CXX − C[x, x]‖2 = ‖CXX − (��′ + �2)‖2 (22)

over � and �2 (Harman & Jones, 1966), with ‖M‖ 2 = trM′M denoting the squared Frobenius
norm of a matrix M. Another estimation procedure is to minimize the function

fNL(�,�) = trCXXC[x, x]−1 − log|CXXC[x, x]−1| − p

= trCXX(��′ + �2)−1 − log|CXX(��′ + �2)−1| − p, (23)

which is the negative of the log likelihood following from (21) and the additional normality
assumptions for f and u (e.g., Bartholomew, Knott, & Moustaki, 2011; Yanai & Ichikawa, 2007).
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2.2. Relationship to the CompFA Model

LVFA model (1) and assumptions (18)–(20) do not include the specific factor and error
parts, which differs from CompFA model (3) and its assumptions. However, (1) is linked to (3)
through (2). Further, it is shown next how LVFA constraints (18)–(20) follow from the CompFA
counterparts:

Theorem 2. Under (1)–(3), LVFA assumptions (18)–(20) follow from CompFA ones (5)–(7) and
uncorrelated error assumption (14).

Proof. Obviously, (18) follows, since its two equations appear in (5) and (6). Next, E[�u] = 0p
and C[f , �u] =mOp in (19) follow from (5)–(7) under (2), since (2) and (5) imply E[�u] =
�E[s] + E[e] = 0p, while (2), (6), and (7) lead to C[f,�u] = C[f,�s + e] = C[f, s]�′ +
C[f, e] =mOp. The remaining task is to show how (20) follows. Its left side is rewritten, using
(2), (6), and (7), as C[�u,�u] = C[�s+ e,�s+ e] = �2 +C[e,e]. For this to equal the right
side of (20), i.e., nonnegative diagonal�2,C[e, e] must equal�2 –�2 which is also nonnegative
diagonal. This holds true for (14), i.e., �2 – �2 = D[e,e]. ��

This theorem shows that the LVFA assumptions follow from adding uncorrelated error
assumption (14) to the standard CompFA ones in Sect. 1.1. However, LVFA can be performed for
CompFA data (17), independently of whether its errors satisfy (14) or not. In the next subsection,
how LVFA behaves for data (17) is discussed.

2.3. Behaviors for CompFA Data

CompFA data matrix (17) leads to the covariance matrix

CXX = � �′ + �2 + CEE, (24)

i.e., (13) with �, �2, and CEE set to particular matrices �, �2, andCEE = n−1E′E, respectively.
Let us consider the LVFA solution for (24).

Loss functions (22) and (23) are known to be minimized for

�2 = diag(CXX − ��′) (25)

for a given� (e.g., Mulaik, 2010, (8.47), (8.80)). Using (24) in (25), this can be rewritten as�2 =
diag(� �′ + �2 + CEE− ��′) = diag(� �′ − ��′) + �2 + DEE. This implies

�2 ≈ �2 + DEE (26)

for ��′ ≈ � �′; if estimated ��′ approximates the true counterpart � �′, each of the diagonal
elements in �2, i.e., a unique variance, can be the estimate of the sum of the corresponding true
specific and error variances, though these two cannot be estimated separately.

The next corollary, which follows from Theorem 1, shows that formula (26) with "≈" is
replaced by the equality �2 = �2 + DEE, if (24) satisfies strong uncorrelated error condition
(15):

Corollary 1. For (15), (24) is restricted to CXX = � �′ + �2 + DEE. For this matrix, LVFA
loss functions (22) and (23) can attain their lower limit zero with the solution of �2 given by
�2 = �2 + DEE and that of � satisfying ��′ = � �′.
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Proof. The matrix difference CXX− (��′+ �2) in (22) and the product CXX(��′+ �2)−1

in (23) are rewritten, using CXX = � �′ + �2 + DEE, as � �′ + �2 + DEE− (��′ + �2)

and (� �′ + �2 + DEE)( ��′ + �2)−1, respectively. The former difference can be pOp, and
the latter product can be Ip, which allows (22) and (23) to attain zeros, for ��′ = � �′ and
�2 = �2 + DEE. ��
The result in this corollary is referred to in Sect. 3.3.

3. Matrix Decomposition Factor Analysis

In Sect. 3.1, we review the original formulation of matrix decomposition FA (MDFA). Then,
in Sects. 3.2 and 3.3, we discuss two properties of the MDFA solution shown in Table 1. One
property is the solution’s satisfying diag(S′E) = pOp but not (12), which implies that MDFA
can be reformulated with constraints that are less restrictive than the CompFA assumptions, as
discussed in Sect. 3.2. The other property �2 ≈ �2 + DEE is suggested by a theorem to be
presented in Sect. 3.3.

3.1. Original Formulation

For the data matrix X with 1′
nX = 0′

p, MDFA is formulated as minimizing the least squares
function for (4), i.e.,

f (F,�,S,�) = 1

n
‖E‖2 = 1

n
‖X − F�′ − S�‖2, (27)

over F, �, S, and � subjec to constraints (9) and (10). In the MDFA literature (e.g., Adachi &
Trendafilov, 2018; Sočan, 2003; Stegeman, 2016), 1n ′E = 0p ′ in (9) has not been described, but
this is trivial, since 1n ′E = 0p ′ follows from the other equations in (9), (4), and 1n ′X = 0p ′.

One difference in (27) from the LVFA loss functions, besides the former being based on (4),
is that (22) and (23) in LVFA do not include the factor scores, while (27) includes those scores
as F and S to be estimated. However, infinite solutions of F and S exist that minimize (27); the
optimal F and S are not unique (Adachi & Trendafilov, 2018, Sect. 4). Thus, only the solutions
of � and � are interpreted in MDFA, as are those of � and � in LVFA.

Though (27) is defined using data matrix X, the MDFA solution of � and � can be obtained
only if the covariancematrixCXX = n−1X′X is available, i.e., even if the originalX is unavailable
(Adachi, 2012, 2020). This can be captured in the fact that (27) can be expanded as n−1tr(X′X+
�′F′F� + �S′S�) − 2n−1tr(X′F�′ + X′S� − �F′S�) and simplified using (10) as trCXX +
tr��′+ tr�2− 2trCXF�

′− 2trCXS�, in which X does not appear. Here, CXF = n−1X′F and
CXS = n−1X′S contain the covariances of variables to factors and are uniquely determined for
given � and � (Adachi & Trendafilov, 2018, p. 411). On the other hand, the optimal � and �

can be obtained for given CXF and CXS(Adachi & Trendafilov, 2018, p. 410). Thus, the optimal
updates of the blockmatrices [CXF,CXS] and [�,�] are iterated alternately to provide the solution
of [�, �] in Adachi’s (2012, 2020) MDFA algorithm.

3.2. Reformulation from Properties of the Solution

Besides (9) and (10) imposed as constraints in MDFA, (11) and (12) are included in the
standard CompFA assumptions (Sect. 1.2). Thus, we must note whether (11) and (12) are satisfied
by the MDFA solution, i.e., the parameter estimates and E resulting in the minimization of (27)
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under (9) and (10). Adachi and Trendafilov (2018, Theorem 4.1) show that the solution satisfies
(11) and the diagonal part of (12), i.e.,

diag(S′E) = pOp, (28)

but does not meet the off-diagonal part of (12) with S′E– diag(S′E) �= pOp in general. That is,
the MDFA solution satisfies standard CompFA assumptions (9)–(11) but does not meet (12).

The MDFA solution satisfying (11) and (28) implies that these equations can be included
in the constraints. That is, MDFA can be reformulated as minimizing (27) over F, �, S, and �

subject to constraints (9)–(11) and (28). Here, (28) being only the diagonal part of (12) implies
that the MDFA formulation is less restrictive than the CompFA model, in that (12) is relaxed
as (28). In contrast, the theorems presented in Sect. 4.2 show that the CDFA solutions satisfy
CompFA constraints (9)–(12) completely.

3.3. Behaviors for CompFA Data

In this section, we consider how MDFA behaves for CompFA data matrix (17). The next
corollary, which follows from Theorem 1, shows the MDFA solution in strong uncorrelated error
condition (15).

Corollary 2. For data matrix (17) satisfyingCEE = DEE, i.e., (15) given by settingE toE, MDFA
loss function (27) can attain its lower limit zero for the solution satisfying F�′ = F�′, � = �̃,

S = S̃ with �̃ = (�2 + DEE)1/2 and S̃ = (S� + E)�̃
−1

.

Proof. Theorem 1 shows that (17) can be rewritten into the error-free form X = F�′ + S̃ �̃ for

CEE = DEE. SubstitutingX= F�′+S̃ �̃ in (27), it is rewritten as n−1
∥
∥
∥F�′+S̃ �̃−F�′−S�

∥
∥
∥

2
.

This can attain the lower limit zero for F�′ = F�′, S = S̃, and � = �̃ = (�2 + DEE)1/2. ��
By comparing Corollaries 1 and 2, we can find that both LVFA and MDFA perfectly fit the

CompFA data with strong condition (15), then �2 = �2 +DEE in LVFA, but �2 = �2 +DEE in
MDFA; its estimates of the specific variances are not their true values, and they are contaminated
by the error variances in DEE. This shows an undesirable property of MDFA.

Though the data with (15) are unusual, as mentioned in Sect. 1.3, whether the above contam-
ination can occur for usual CompFA data (17) that are not restricted by (15) is to be considered.
For this consideration, we reparameterize the error matrix in (17) as

E = G�′ with
1

n
G′ G = Ip , (29)

and� being p× p. The next theorem suggests that theMDFA estimate of�2 can be contaminated
by DEE, i.e., �

2 can be close to �2 + DEE:

Theorem 3. Consider the case where MDFA is performed for the data matrix specified as (17)
with (29) and rank(E) = rank(�) = p. Let two matrices be defined as

�̄ = (�2 + �2)1/2 and S̄ = (S� + G�)�̄
−1

, (30)

with � a p× p diagonal matrix. Then, the matrices �̄ and S̄ in (30) can be substituted into �

and S in function (27), respectively, and S̄ can be substituted into S in (9) and (10). Moreover, if
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� = diag(�) and F satisfies F′S̄ = F′E = mOp, then S̄ in (30) can be substituted into S in (28),
and we can use � = �̄,S = S̄, and (17) in (27) to rewrite this function as

f (F,�, S̄, �̄) = 1

n
‖F�′ − F�′‖2 + trDEE − tr�2. (31)

Proof. See Appendix 2.

Theorem 3 suggests that the MDFA estimate of �2 can be contaminated by DEE with

�2 ≈ �2 + DEE, (32)

as explained next. The theorem allows us to consider that �̄ and S̄ in (30) can be the MDFA
estimates of � and S, respectively. By substituting those �̄ and S̄ into � and S in the loss
function (27) to be minimized, it can be rewritten as (31). This value can be small for F�′ ≈ F�′
and �2 ≈ DEE. This use in (30) and � = �̄ lead to (32). It will be confirmed in Sect. 5 that (32)
actually arises.

4. Completely Decomposed Factor Analysis

In Sect. 4.1, we reviewStegeman’s (2016) restrictive variant ofMDFA that has been rephrased
as completely decomposed FA (CDFA) through the theorems present in Sect. 4.2. They also allow
CDFA to be reformulated so that it is perfectly matched with the CompFA model. In Sect. 4.3,
we argue how the CDFA estimate of �2 approximates �2 as shown in Table 1.

4.1. Stegeman’s Factor Analysis Procedure

Stegeman’s (2016) original formulation of CDFA is to add the constraint

S′(X − S�) = pOp (33)

to MDFA formulated as in Sect. 3.1: In CDFA, (27) is minimized over F, �, S, and � subject to
(9), (10), and (33), for the data matrix X with 1′

nX = 0′
p.

As described in Stegeman (2016, p. 196), the CDFA solution can be obtained through the
following three sequential steps: First, the optimal� subject to (33) can be obtained by performing
ten Berge and Kiers’ (2001) minimum rank factor analysis (MRFA) for CXX = n−1X′X. Then,
the resulting � provides the solution of S. Finally, loss function (27), whose � and S are fixed
to the ones resulting so far, is minimized over F and � subject to (9) and (10). This minimization
is attained for

F = √
nVm = √

n(X − S�)Wm�−1
m and � = 1√

n
Wm�m (34)

through the singular value decomposition (SVD) of X − S� defined as

X − S� = V�W′. (35)

Here, V′V = W′W = Iq , and � is the q × q diagonal matrix whose diagonal elements are
arranged in decreasing order, with q = rank(X − S�) and q ≥ m supposed. The matrices Vm
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(n × m) and Wm (p × m) in (34) contain the first m columns of V and W, respectively, with
�m the upper-left m× m diagonal block of �.

The optimal F and � in (34) are found to satisfy

1

n
X′F = �, (36)

since we can use (10), (34), (35), and V′Vm = [Im,mOq−m]′ (from V′V = Iq) to derive (36) as

1

n
X′F = 1

n
X′F − 1

n
�S′F = 1

n
(X − S�)′F = 1

n
W�V′ (√nVm

) = 1√
n
Wm�m = �.

As in MDFA, the optimal F and S cannot be uniquely determined, but their estimation can
be skipped to obtain the optimal � and �, only if the covariance matrix CXX is available. This
is shown using the fact that (10) and (33) lead to X′S = n�2. This, (33), and (35) imply that the
SVD of (X − S�)′(X − S�) =X′X −n�2 = n(CXX − �2) can be defined as n(CXX− �2) =
W�2W′ with �2 given by MRFA for CXX. This SVD can provide � with (34).

4.2. Reformulation Matched to the CompFA Model

The CDFA solution, i.e., the parameter estimates resulting in the minimization of (27) under
(9), (10), and (33), satisfies (36). This implies that (36) can be included in the constraints: CDFA
can also be formulated as minimizing (27) subject to (9), (10), (33), and (36). Here, constraints
(33) and (36) are proved to be equivalent to (12) and (11), respectively, under (4) and (10), in the
next two theorems.

Theorem 4. Under (4) and (10), (33) is equivalent to (12), i.e., S′E = mOp.

Proof. First, (33) → (12) is proved as follows: Using (4), we can rewrite (33) as S′(F�′+E)
= pOp, which implies (12), i.e., S′E =mOp, from (10). Next, (12) → (33) is proved as follows:
We can use (4) and (10) to rewrite (12) as S′(X−F �′ −S�) = S′(X−S�) = pOp, i.e., (33). ��
Theorem 5. Under (4) and (10), (36) is equivalent to (11), i.e., F′E =mOp.

Proof. First, let us prove (36) → (11). The former is rewritten as F′X= n�′. Using this, (4), and
(10), we have F′E= F′(X–F�′− S�) = F′X − F′F�′ = n�′ − n�′ = mOp, i.e., (11). Next,
(11)→ (36) is proved as follows: We can use (4) and (10) to rewrite (11) as F′(X−F�′ −S�) =
F′X − F′F�′ = F′X − n�′ =mOp, which leads to (36). ��

These theorems and (10) show that F′S =mOp, F′E =mOp, and S′E = pOp in (10)–(12)
hold true in the CDFA solution. These three equations imply that the common factors, specific
factors, and errors are mutually decomposed completely, thus the name CDFA. This name is
considered more suitable than another name, constrained uniqueness FA, used in Adachi (2019),
as the CompFA model has not been considered in the latter naming. Further, the theorems show
that Stegeman’s (2016) procedure in Sect. 4.1 can be reformulated as minimizing least squares
function (27) for model (4) subject to its constraints (9)–(12). Thus, CDFA is perfectly matched
to the CompFA model and its standard constraints in Sect. 2.2. Here, let us remember that MDFA
can be reformulated as minimizing (27) subject to (9)–(11) and (28) (Sect. 3.2); this (28) is
strengthened into (12) in CDFA.
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4.3. Behaviors for CompFA Data

In this section, we consider how CDFA behaves for CompFA data (17). At first, the following
corollary shows the CDFA solution in strong uncorrelated error condition (15):

Corollary 3. CDFA can be substituted for MDFA in Corollary 2.

Proof. This is the same as the proof for Corollary 2, since (27) is also the CDFA loss function. ��
This corollary shows that the CDFA estimate of �2 (specific variances) is contaminated by
DEE(error variances) for the CompFA data with (15), as is the MDFA estimate. However, we
can argue that the contamination is less likely to occur in CDFA than in MDFA for the usual
CompFA data that are not restricted by (15). This argument follows from the fact that constraint
(28), i.e., diag(S′E) = pOp, in MDFA is strengthened as (12), i.e., S′E = pOp, in CDFA, as
explained in the following paragraph.

In Sect. 3.3, we discussed that the MDFA estimate of �2 can be contaminated as (32), which
follows from (30) with S̄ = (S�+G�)�̄

−1
. This matrix andE lead to S̄′E = n�̄

−1
(��′ −�2)

as shown by (A6) in Appendix 2. Here, � is a p × p diagonal matrix and � is defined as in (29).
In CDFA, the above equation for S̄′E must be substituted into S′E in (12) as

S̄′E = n�̄
−1

(��′ − �2) = pOp , (37)

since (12) is included in the CDFA constraints as described in Sect. 4.2. The equivalence of (37)
to strong uncorrelated error condition (15) is shown next:

Theorem 6. SubstitutingE in (17) intoE in (15), it is rewritten asCEE = DEE. This is equivalent
to (37).

Proof. The last identity in (37) holds if and only if� is a diagonal matrix:� = �. This equivalence
to CEE = DEE is shown using (29) rewritten as CEE = n−1E′E = � �′. That is, � = � implies
that CEE = � �′ is also diagonal: CEE = DEE. On the other hand, CEE = DEE, i.e., CEE = � �′
being diagonal, implies that � is diagonal: � = �. ��
This theorem shows that contamination (32) is less likely to occur in CDFA for the data that do
not satisfy (15). On the other hand, even for such data, (32) can occur in MDFA, where S′E may
not be pOp, but only diag(S′E) = mOp is required. These arguments are empirically supported
in the next section.

5. Simulation Study

Weassess the performance of the FAprocedures for theCompFAdata in a simulation study. Its
purposes and the data types to be simulated are detailed in Sect. 5.1. Data analysis and assessment
procedures are described in Sect. 5.2, and the results are reported in Sects. 5.3–5.5.

5.1. Purposes and Data Synthesis Procedures

In this study, the FA procedures are carried out for the CompFA data synthesized with the
true loading matrix � and specific variance matrix �2. The major purpose of this study is to
numerically assess the following hypotheses:



980 PSYCHOMETRIKA

[H1] The CDFA estimate of �2 approximates the true �2 better than the MDFA estimate.
[H2] The MDFA estimate of �2approximates �2 +DEE, i.e., is contaminated by DEE, with

DEE the diagonal matrix including the true error variances.
[H3] The LVFA estimate of unique variance matrix �2 approximates �2 + DEE.
[H4] The estimates of � in all procedures approximate the true �.

Here, [H1] follows from the discussion in Sect. 4.3, and hypotheses [H2] and [H3] are equivalent
to (32) and (26), respectively. [H4] has not been discussed, but rather has been presupposed for
the discussions in Sects. 2–4. The estimates in the hypotheses are obtained, given the covariance
matrix CXX = n−1X′X for the CompFA data. Thus, we describe below how the true � and �2

are set and how they lead to CXX.
Let U (α, β) denote the uniform distribution for the interval [α, β]. Each element of � and

each diagonal one of �2 are drawn from U (−1, 1) and U (0.1, 0.8), respectively, subject to
rank(�) = m. From the resulting � and �2, we generate 12 types of CXX with rank(CXX)

constrained to be p. Here the 12 (= 3 × 2 × 2) types are defined by combining the three levels of
error correlations, two levels of error magnitudes, and two versions of the CompFAmodel, which
are explained in the following paragraphs.

The two versions of the model correspond to its nonrandom (N) version (4) and random
(R) version (3). The covariance matrix for the N version is given by (24) for (17) with CEE =
n−1 ∑n

i=1 eie
′
i :

CXX = � �′ + �2 + CEE = � �′ + �2 + 1

n

n
∑

i=1

eie′
i . (38)

Here, error vectors ei (i = 1, …, n) are chosen as ei = αεi , with εi drawn from Np(0p, �), i.e.,
the p-variate normal distribution whose mean vector is 0p and covariance matrix is �(p × p).
How α and � are defined is described later. The matrix for the R version is given by

CXX = 1

n

n
∑

i=1

xix′
i = 1

n

n
∑

i=1

(�f i + �si + ei )(�f i + �si + ei )′. (39)

This follows from (3), whose random vectors are followed by the observation-number subscript
i . The factor score vectors in (39) are sampled with [f i ′, si ′]′ ∼ Nm+p(0m+p, Im+p).

The three levels of error correlations can be referred to as no, low, and high levels (CN, CL,
and CH), while the two levels of error magnitudes can be called low and high levels (EL and EH),
respectively. Here, C, E, N, L, and H in the parentheses are abbreviations of correlation, error, no,
low, and high, respectively. At the CN level, � is set to the diagonal matrix DR whose diagonal
elements are drawn from U (0.1, 0.8). At the CL and CH levels, � is set to D1/2

R RD1/2
R , with R

= (r jk) the p × p symmetric nonnegative-definite matrix whose elements are chosen as r j j = 1
and r jk = τ jk r̃ jk for j �= k. Here, τ jk is randomly set to 1 or −1, and r̃ jk is drawn from N1(0.2ρ,
0.052ρ2) subject to −1 < r̃ jk < 1, with ρ = 1 for CL and ρ = 2 for CH. The α value is set
so that tr�/tr��′ = 0.1 and 0.2 for the EL and EH levels, respectively. We should notice that
� is diagonal at the CN level, but CEE = n−1 ∑n

i=1 eie
′
i obtained with ei ∼ Np(0p,�) is not

necessarily diagonal; the CN level does not exactly match (15). In Appendix 3, it is reported that
a simulation study for CXX satisfying (15) numerically demonstrated the facts in Corollaries 1–3.

The procedures in the last three paragraphs were replicated 500 times with the settings n =
200, p = 12, and m = 3. Thus, we had 6000 (=12 types × 500 times) CXX.
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5.2. Data Analysis and Assessment Procedures

For each of the 6000CXX, we performedMDFA, CDFA, and the two types of LVFA, i.e., the
least squares LVFA (LS-LVFA) and maximum likelihood LVFA (ML-LVFA) for minimizing (22)
and (23), respectively. Their algorithms are described in Appendix 4. In every procedure, � has
rotational indeterminacy; thus, it was rotated by the orthogonal Procrustes method (e.g., Adachi,
2020, p. 206), to optimally approximate the true counterpart � in a least squares sense. This
approximation allows � to be comparable to �; thus, the Procrustes method has been typically
used in previous simulation studies for FA (e.g., Adachi, 2013, Appendix D; Stegeman, 2016,
Sect. 4.2).

The similarities between estimated parameters and their true values can be assessed with the
smallness of a mean absolute difference (MAD). TheMAD for loadings is defined asMAD(�) =
‖� − �‖1/(pm), where ‖� − �‖1 denotes the L1 norm of �− �, i.e., the sum of the absolute
values of the elements in � − �. The denominator pm in this definition is replaced by p in the
following two MAD for p × p diagonal matrices:

MAD(�2) =
{

1
p

∥
∥�2 − �2

∥
∥
1for LVFA

1
p

∥
∥�2 − �2

∥
∥
1for MDFA and CDFA

, (40)

MAD(�2 + DEE) =
{

1
p

∥
∥�2 − (�2 + DEE)

∥
∥
1for LVFA

1
p

∥
∥�2 − (�2 + DEE)

∥
∥
1for MDFA and CDFA

(41)

with DEE = diag(CEE) = diag(n−1 ∑n
i=1 eie

′
i ). Here, MAD in (40) and (41) for LVFA differs

from those for MDFA and CDFA, as �2 corresponds to �2 in LVFA. We obtain (41) in addition
to (40), as both MAD are necessary for examining [H2] and [H3] in Sect. 5.1.

Let {�LS, �LS} and {�ML, �ML} denote the LS- and ML-LVFA estimates of {�, �},
respectively. The broad equivalence between {�LS, �LS} and {�ML, �ML} was found with the
averages (standard deviations) of ‖�LS − �ML‖ 1/(pm) and ‖�2

LS − �2
ML‖1/p over the solutions

for 5935 (= 6000 − 65) CXX being 0.010 (0.011) and 0.022 (0.019), respectively. Here, we
have removed the 65CXX for which LS-LVFA provided improper solutions with negative unique
variances. As described in Appendix 4, such improper solutions show an undesirable property of
LS-LVFA. These results allowed us to only consider the ML-LVFA solutions; thus, we refer to
only ML-LVFA as LVFA, hereafter.

Now, we have theMAD values for the three matrices (M),�,�2, and�2+DEE, which were
obtained from each solution of the three FA procedures (P) performed for the 6000 (= 3 × 2 ×
2 × 500) CXX. Here, these CXX are classified by combining the three levels of error correlations
(C), two levels of error magnitudes (E), two versions (V) of the model, and 500 replications (R). In
order to assess the hypotheses in Sect. 5.1, we performed analysis of variance of the randomized
block design (ANOVA-RBD) (e.g., Kirk, 2013) for theMAD values. Here, P, M, C, E, and Vwere
treated as treatments and R was treated as a block factor; the factorial design can be expressed as
P × M × C × E × V with R consisting of 500 blocks, with the sets of the levels in P, M, C, E,
and V being {LVFA, MDFA, CDFA}, {�, �2,�2+ DEE}, {EL EH}, and {N,R}, respectively.

The above ANOVA-RBD provided the F values for main and interaction effects in Table 2.
Wedo not use those values for statistical hypothesis testing, since this is senseless for our simulated
data, whose sample size is too large to reject null hypotheses. But rather, we consider the F values
as standing for the sizes of the effects, as the number of the levels in each treatment is restricted
to two or three; thus, it makes sense to compare the F values. We regard the effects with F ≥
24,000 as substantial enough, though the lower limit of 24,000 is a benchmark threshold chosen
because 24,000 is far greater than the largest one (= 14,491.0) among the F-values less than
24,000. Thus, the five effects boldfaced in Table 2 are regarded as substantial.
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Table 2.
F values resulting in ANOVA-RBD with the substantial effects boldfaced whose F values > 24,000.

Effect Source and F value

Main P M C E V Block
444.5 195361.0 14491.0 107830.5 26992.8 36.4

Two-way interaction P×M P×C P×E P×V M×C M×E
42997.4 67.7 213.6 952.1 5845.3 24629.0
M×V C×E C×V E×V
8393.9 1938.9 235.3 341.9

Three-way interaction P×M×C P×M×E P× M×V P×C×E P×C×V P×E×V
2051.2 4591.3 400.7 16.3 27.7 77.7
M×C×E M× C×V M×E×V C×E× V
1090.1 908.0 102.3 4.8

Higher-order interactions P× M×C×E P× M×C×V P× M×E×V P×C×E×V
291.1 277.6 28.6 1.3
M×C×E×V P×M×C× E×V
32.2 7.8

Table 3.
Averages of MAD for substantial effects with those for main effects shown by boldfaced italic letters.

(A) Procedure × Matrix (B) Matrix × Error (C) Version

� �2 �2 + DEE EL EH Nonrandom 0.099
LVFA 0.045 0.228 0.074 � 0.037 0.053 Random 0.131
MDFA 0.044 0.217 0.073 �2 0.132 0.249
CDFA 0.046 0.126 0.182 �2+ DEE 0.082 0.137
Matrix 0.045 0.191 0.110 Error 0.084 0.146

5.3. Averages for Substantial Effects

The averages of MAD for the levels associated with the substantial effects are presented in
Table 3. The averages for the main effect of V in Panel (C) show that the MAD for R version
(39) is greater than that for N one (38); this can be attributable to the fact that (39) has higher
randomness. The averages for the other main effects in the bottom rows of Panels (A) and (B) can
be interpreted from the interactions considered next.

The averages for the P × M levels in Panel (A) show that [H1]–[H4] in Sect. 5.1 were
supported: [H1] is supported by the CDFA average 0.126 for (40) being less than the MDFA
counterpart 0.217, [H2] and [H3] are supported by the result that the LVFA and MDFA averages
for (41) are less than those for (40), and [H4] is supported by the averages of MAD(�) being
small and almost equivalent among the procedures.

Panel (B) shows that everyMAD increases with the change fromEL to EH, but the increments
in (40) and (41) values are much larger than those in MAD(�). This difference in the increments
can be interpreted by taking into account the related three-way interaction, as explained in the
next subsection.
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Figure 1.
Averages of MAD for three-way interactions (A) and (B), which facilitate the interpretation of the substantial two-way
interactions.

5.4. Three-way Interactions Related to the Substantial Two-way Interactions

Figure 1 shows the averages associated with the P × M × C and P × M × E interactions,
whose F values are the largest among those for the three-way interactions (Table 2). Although
those values are not substantial, we note Fig. 1 for exploring the mechanisms that underlie the
interactions treated in Sect. 5.3.

Panel (A) in Fig. 1 shows that the changes of CN to CL and CL to CH increaseMAD (�) for all
procedures, but decrease the (40) value for CDFA. This result can be explained by the similarity
of the matrices CEE = n−1 ∑n

i=1 eie
′
i at CN to (15) and the deviation of CEE at CH from (15).

Here, (15) leads to the solution of � = � and �2 = �2 = �2 + DEE, as shown in Corollaries
1–3. However, for CEE deviating from (15), the CDFA estimate of �2 can approximate �2, as
discussedwith Theorem6. Thus, the deviation ofCEE from (15) increasesMAD(�), but decreases
(40) only in CDFA. The above explanation can also be used for the increase in the CDFA average
of (41) with the deviation from (15). On the other hand, the deviation is not found to decrease the
LVFA and MDFA values of (40). This is congruous with (26) and (32). Further, the LVFA and
MDFA averages of (40) rather increase with the change from CL to CH. These increases may be
correlated to those in MAD(�) from CL to CH, as � is jointly estimated with �2 and �2 in (40).
The LVFA and MDFA averages of (41) being smaller than those of (40) at all C levels is also
congruous with (26) and (32).

Panel (B) shows that the increments inMADwith the change from EL to EH differ among the
procedures and matrices. For explaining the differences, wemust consider error magnitudes (EM)
and DEE effects, where the EM effect stands for the errors with greater EM disturbing parameter
estimation more deeply, and the DEE effect refers to the fact that the diagonal elements of DEE
for EH have greater values than those for EL. We can consider that the increase in MAD(�) for
every procedure follows only from the EM effect, while those in the LVFA and MDFA values of
(40) are affected by the EM plus DEE effects, because of (26) and (32). The increments in (40)
being greater than their CDFA counterpart can be explained with Theorem 6, which shows that
(32) is less likely to occur in CDFA for CEE deviating from (15). On the other hand, (41) values
and their increments for MDFA and LVFA are found to be smaller than their (40) counterparts.
This result can be attributable to the fact that (41) is affected only by the EM effect in LVFA and



984 PSYCHOMETRIKA

MDFA, as the use of their properties (26) and (32) in (41) allows us to find that MAD(�2 + DEE)

can approximate zero, but this approximation can be deteriorated by the EM effect.

5.5. Additional Results

The results considered so far show the advantage of CDFA over the two other procedures.
Which of those two is better may be answered from the following result: The panels for �2 in
Fig. 1 show that the MDFA estimate of �2 is slightly closer to �2 than the LVFA estimate of
�2 on average. The generality of this relationship was found: The � value, which is defined as
the LVFA value of (40) minus its MDFA value, was positive for the 5819 pairs of LVFA–MDFA
solutions among the 6000 for all CXX. Further, we performed ANOVA-RBD for � with C, E,
and V treated as treatments, and R treated as blocks. Among all resulting F values, the one for
the main effect of C (3651.7) and the value for the effect of E (3238.4) were the largest, with the
other F values less than 940. However, the two effects for the largest F values are not considered
substantial, with the averages at levels CN, CL, CH, EL, and EH being 0.003, 0.008, 0.019, 0.006,
and 0.014, respectively; even the largest of those cannot be regarded as substantial. In conclusion,
the MDFA estimate of �2 is significantly closer to �2 than the LVFA estimate of �2, but not
substantially closer.

6. Real Data Illustration

The results in the previous sections can be summarized as follows: In CDFA whose for-
mulation is exactly matched to the CompFA model, its parameters (factor loadings and specific
variances) are well recovered for the CompFA data. In MDFA and LVFA, the loadings can be
recovered as well as in CDFA, but the specific variances cannot be recovered, so their MDFA
estimates are contaminated by the error variances, and the LVFA estimates of the unique variances
approximate the sums of the specific and error variances. These results suggest that CDFA should
be used for the CompFA data, particularly for the purpose of estimating the specific variances.
Therefore, in this section, we use two real data sets to illustrate how the CDFA estimates should be
interpreted, and we show the merits of using CDFA through comparisons among CDFA, MDFA,
and LVFA solutions, on the supposition that the data sets are underlaid by the CompFA model.
Here, LVFA is restricted to ML-LVFA, as its solutions were almost equivalent to LS-LVFA.

One of the data sets is that from Yanai and Ichikawa (2007) for personality test scores of
n = 200 students for p = 12 items. The other data set, which we obtained from Izenman’s
(2008) website, is known as Holzinger and Swineford’s (1939) 24 psychological tests data and
contains intelligence test scores of n = 301 participants for p = 24 items. We performed the
FA procedures for the correlation matrices for the personality and intelligence test scores, with
m set at 3 and 5, respectively. In every procedure, � was rotated by the varimax method (Kaiser,
1958) which is typically used in FA for real data. Tables 4 and 5 present the resulting � =
[λ1, ...,λp], ‖λ1‖2, ..., ‖λp‖2, ψ j , θ j , and ev j , with the last three terms being the j th diagonal
elements of�2,�2, and CEE, respectively, and ev an abbreviation of error variance. In the tables,
the sub-/superscripts of L, M, and C, which stand for LVFA, MDFA, and CDFA, respectively,
have been attached to �, λ j , θ j , and ev j , for distinguishing the solutions for different procedures.
We use the above notation with sub-/superscripts in this section.

Tables 4 and 5 show that the loadings resulting in all procedures are mutually similar and lead
to the identical interpretation of common factors. Although this result does not show the merits of
using CDFA, the merits are shown by the other results, as described in the following paragraphs.
There, an important role is fulfilled by the fact that
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v j =
∥
∥
∥λC

j

∥
∥
∥

2 + �C 2
j + evCj =

∥
∥
∥λMj

∥
∥
∥

2 + �M 2
j + evMj =

∥
∥
∥λL

j

∥
∥
∥

2 + �2
j (42)

holds for v j = n−1‖X‖2, which denotes the variance for variable j and is also the j th diagonal
element of CXX. Here, the first identity follows from the fact that the CDFA solution meets
(9)–(12) and thus (13), the last identity follows from (25), and the second identity is derived as
follows: (4), (10), and (11) imply diag(CXX) = diag( ��′+ �2 + CEE +n−1�S′E +n−1E′S�)

with diag(E′S�) = diag(�S′E) = �diag(S′E) = pOp from (28). Each of the terms ‖λ j‖2 (with
superscripts) in (42) can be called a common variance (or communality) by abbreviating the
variance of the common factor part affecting variable j , as found from ‖λ j‖2 equaling n−1‖Fλ j‖2
and the variance of λ′

j f under (6) and (10). When CXX is a correlation matrix as in our case, v j =
1; thus, ‖λ j‖2, θ2j , and ev j (with superscripts) in (42) stand for the proportions of the common,

specific, and error variances in the variance of variable j , respectively, with ψ2
j the proportion of

the unique variance.
Let us note the CDFA solution in Table 4 with keeping (42) in mind. For example, the results

∥
∥λC

1

∥
∥
2 = 0.44, �C2

1 = 0.39, and evC1 = 0.176 for the variable extraversion show that 44 percent
of the variations in extraversion are explained by the common factors, 39 percent are accounted
for by the factor specific to extraversion, and 17.6 percent of the variations remain unexplained
by common and specific factors. The comparison of �C2

j across j (= 1, …, p) shows that �C2
3 =

0.45 for empathy is the largest and empathy is affected most by the corresponding specific factor
among all variables. On the other hand, �C2

2 = 0.18 for activity is the smallest among all �C2
j ,

but
∥
∥λC

2

∥
∥
2 = 0.70 is the largest among all

∥
∥
∥λC

j

∥
∥
∥

2
, implying that activity is affected least by the

corresponding specific factor, but is explained best by the common factors, among all variables.
MDFA and LVFA solutions can be interpreted in a parallel manner, except that the term

"specific" is replaced by "unique" and an error variance is not obtained in LVFA. However, we
canfind inTables 4 and5 that�M2

j and�2
j aremuchgreater than�C2

j and rather close to�C2
j +evCj

for almost all variables. This finding is congruous with (26) and (32). For example, �C2
1 = 0.60

and �2
1 = 0.61 > �C2

1 = 0.39 for the variable extraversion in Table 4. We can consider that
�C2

1 = 0.60 and �2
1 = 0.61 are contaminated by the true error variance for extraversion and

greater than its true specific variance.
We can also find that the error variance evMj resulting in MDFA is far smaller than its CDFA

counterpart evCj for every variable. This result follows from the fact that MDFA is less restrictive

than CDFA; (27) value n−1‖E‖2 = trCEE = ∑p
j=1 ev j in MDFA cannot be greater than that in

CDFA, which suggests that evMj < evCj tends to occur. This property does not imply goodness of
theMDFAsolution but is rather congruouswith its undesirable property shownby (32); comparing

this with evMj = v j −
∥
∥
∥λM

j

∥
∥
∥

2 −�M2
j following from (42) allows us to find that �M2

j being larger

than its true value decreases evMj .

7. Conclusion

In this paper, latent variable factor analysis (LVFA), matrix decomposition factor analy-
sis (MDFA), and its variant from Stegeman (2016) were revisited from the comprehensive FA
(CompFA) model. The variant of MDFA was reformulated to be called CDFA and exactly under-
laid by the CompFA model. On the other hand, MDFA was reformulated as the procedure with
(12) in the CompFAmodel assumptions relaxed as (28).We also showed how the model for LVFA
can be related to the CompFA model.
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A goal of the revisit was to show how LVFA,MDFA, and CDFA behave for the CompFA data
based on the CompFA model. Except for the unusual case where the data satisfy strong condition
(15), the following results were theoretically and numerically found: The CDFA estimates of the
specific variances can approximate their true values, but the MDFA estimates are contaminated
by the error variances, and the LVFA estimates of the unique variances approximate the sum of
the true specific and error variances. It was also shown numerically that the factor loadings can
be recovered well in all three procedures. On the supposition that the data to be analyzed by FA
are underlaid by the CompFA model, the above results have the practical implications described
in the following paragraph.

When only factor loadings are of interest, LVFA, MDFA, and CDFA are equally useful.
However, if the specific variances are also interesting, CDFA is to be used. The LVFA estimate
of unique variances and the MDFA estimates of specific variances must be considered as larger
than the true specific variances.

However, a problem remains for showing the above implications to FA users, who are inter-
ested in only the factor loadings, not the specific variances. This problem would be dealt with, if
psychometricians could enlighten the users about the importance of the specific variances. For this
enlightenment, CompFA model (4) can be used as follows: By removing the specific factor part
by setting� = pOp in (4), this model and corresponding least squares function (27) are rewritten
as X = F�′+ E and ‖X − F�′‖2, respectively. Minimizing this function gives the formulation
of principal component analysis (PCA) as approximating X by reduced rank matrix F�′ (Eckart
& Young, 1936). This fact demonstrates that FA can be distinguished from PCA simply by the
fact that the former has specific factor part S�. That is, the significance of using FA (rather than
PCA) is in obtaining S�, which convinces the users of how it is necessary to interpret the specific
variances in �2 together with loading matrix � in the FA solution.

Finally, we should remember that MDFA can be regarded as a procedure for a relaxed variant
of the CompFA model with (12) replaced by (28). To study such a relaxed CompFA model is
beyond the scope of the present study; thus, it remains for future approaches.
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Appendix 1.Expectation of the Error Covariance Matrix

If the n rows of E in (4) are filled with the realizations of the transpose of e in (3), the expectation
of CXX = n−1E′E is rewritten as

E[CXX] = E

[
1

n
E′E

]

= E

[

1

n

n
∑

i=1

ee′
]

= E[ee′] = E[(e − E[e])(e − E[e])′] = C[e, e].

Here, we have used (5).

Appendix 2. Proof for Theorem 3.

In the proof, we use the fact that F, S, and E in (17) can be substituted into F, S, and E in (9)–(12),
respectively:

1′
nF = 0′

m, 1′
nS = 0′

p, 1
′
nE = 0′

p,
1

n
F′F = Im,

1

n
S′S = Ip ,

F′S =mOp,F′E =mOp ,S′E = pOp. (A1)

We also use that fact that (29) and rank(E) = p imply the nonsingularity of �′ and G = E�′−1.
This equation and (A1) imply

1′
nG = 0′

p, F
′G =mOp, and S′G = pOp. (A2)

At first, �̄ and S̄ in (30) can be substituted into � and S in (27), respectively, since �̄ =
�2 + �2)1/2 is a p × p diagonal matrix as is �, and S̄ = (S� + G�)�̄

−1
is n × p as is S.

The substitution of S̄ = (S� + G�)�̄
−1

into S in 1′
nS and n−1S′S leads to 1′

nS= 0′
p in (9) and

n−1S′S = Ip in (10) as follows: 1′
nS= (1′

nS� + 1′
nG�)�̄

−1 = 0′
p and

1

n
S′S = 1

n
�̄

−1
(S� + G�)′(S� + G�)�̄

−1 = (�2 + �2)−1/2(�2 + �2)(�2 + �2)−1/2 = Ip.

Here, we have used (A1), (A2), (29), (30), and rank(�) = p.

Through the following five steps in this paragraph, we show that S̄ in (30) can be substituted
into S in (28) for� = diag(�) and F satisfying F′S̄ =mOp. First, E in (28) refers to that in model
(4), which shows that E in (28) is rewritten as E = X−F�′ − S�. Since X is specified as (17),
this use in E = X − F�′−S� allows it to be further rewritten as

E = (F�′ + S� + E) − F�′ − S�. (A3)

Second, the substitution of S̄�̄ = S� + G� following from (30) into S� in (A3) gives

E = F�′ + S� + E − F�′ − (S� + G�) = F�′ − F�′ + E − G�. (A4)
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Third, the transpose of S̄ in (30) post-multiplied by (A4) can be rewritten as

S̄′E = S̄′(F�′ + E − G�) = �̄
−1

(S� + G�)′(F�′ + E − G�), (A5)

where the first identity follows from F′S̄ = mOp. Fourth, we can use (A1), (A2), and (29) to
further rewrite (A5) as

S̄′E = �̄
−1

�G′(F�′ + E − G�)

= �−1(�G′E − �G′G�)

= �̄
−1

(�G′ G�′ − �G′G�)

= n�̄
−1

(��′ − �2). (A6)

Finally, the substitution of (A6) into S′E in (28) leads to diag(S̄′E) = ndiag(�̄
−1

(��′ −
�2)) n�̄

−1
diag(��′ − �2) = n�̄

−1{�diag(�) − �2} = pOp for � = diag(�).
The remaining task is to show that substituting� = �̄, S= S̄ and (17) in (27) allows this function
to be rewritten as (31), for � = diag(�) and F satisfying F′E =mOp. Function (27) after the

substitution is given by the use of (A4) in (27): f (F, �, S̄, �̄) = n−1‖F�′ − F�′ +E− G�
∥
∥2.

Further, this can be decomposed as

f (F,�, S̄, �̄) = 1

n
‖F�′ − F�′‖2 + 1

n
‖E − G�‖2 , (A7)

since (A1), (A2), F′E =mOp, and the equation F′G =mOp following from F′E =mOp and

G = E�′−1. The last term in (A7) can be rewritten as n−1‖E − G�‖2 = trDEE+ tr�2

−2n−1trE′G� = trDEE+ tr�2− 2tr�� = trDEE+ tr�2− 2tr diag(�)� = trDEE− tr�2, where
we have used n−1trE′E = trDEE, � = diag(�), (29), and this implying E′G = n � . This
completes the proof for Theorem 3.

Appendix 3. Demonstration for Corollaries

We performed a simulation study. Its procedures are the same as those in Sects. 5.1 and 6.2, except
that simulated data satisfy (15): CXX are restricted to (38) with its CEE replaced by the diagonal
matrix � for the CN level. For all of the resulting 1000 CXX (= 500 replications × 2 levels of
EL and EH), every procedure provided the solutions with the loss function value = 0, MAD(�)
< 0.0006, and the (41) value < 0.0015.

Appendix 4. Algorithms

Here, we describe the FA algorithms used in this paper. Harman and Jones’ (1966) MINRES and
Adachi’s (2013) version of Rubin and Thayer’s (1982) EM algorithm are used in LS- and ML-
LVFA, respectively. Adachi’s (2012, 2020) algorithm is used for MDFA. Bertisimas, Cohenhaver,
andMazumder’s (2017) algorithm is used for the firstMRFAstep inCDFA, andStegeman’s (2016)
algorithm is used for the remaining steps in CDFA. The above LS-LVFA algorithm can give an
improper solution including a negative unique variance; such a solution cannot be given by the
algorithms for the other procedures (Adachi, 2013, 2019).
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